Curvature integral and Lipschitz parametrization in
1-regular metric spaces

Immo Hahlomaa*

Abstract. We show that for a bounded 1-regular metric measure space (E, ) the
finiteness of the Menger curvature integral

///c(zl,zz,zg)zd,uzld,uzgd,uzg
eJelJE

guarantees that E is a Lipschitz image of a subset of a bounded subinterval of R.
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1 Introduction

Let 21, zo and z3 be three points in a metric space (F,d). The Menger curvature of

the triple (z1, 29, 23) is
2sin 212923

C(Zl, 22, 253) = d(Zl 23) )
3

where

d(Zl, 22)2 =+ d(Zg, 23)2 - d(Zl, 23)2
2d(21, ZQ)d(ZQ, 23) )

Note that ¢(z1, 29, 23) is the reciprocal of the radius of the circle passing through z,
7y and x3 whenever {z, zo, 73} C R? is an isometric triple for {2y, 2, 23}. We set

cQ(E):///c(zl,zg,zg)Qd,uzld,uzgd,uzg.
eJelJE

Through the paper p is the 1-dimensional Hausdorff measure on E.
We say that a metric space (F,d) is 1-regular if there exists My < oo such that

(212923 = arccos

(1) Mytr < p(B(z,r)) < Myr

whenever x € E and r €]0,d(F)]. Here d(F) is the diameter of E and B(z,r) will
denote the closed ball in E with center x € E and radius r > 0. The smallest constant
M such that (1) holds is called the regularity constant of E. We denote

(2) ¢(E) =inf{Lip(f) : f: A— E is a surjection and A C [0,1] },
*The author was supported by the University of Jyviskyla.




where Lip(f) € [0,00] is the Lipschitz constant of f. Note that if F is a subset of
a Hilbert space H, then by the classical Kirszbraun-Valentine extension theorem we
can take in (2) the infimum over all functions f : [0,1] — H for which E C f(]0,1])
without that £(F) changes. Further, if £ is a connected metric space, £(E) is at most a
constant multiple of u(E) (see [11] and [3]). In this paper we shall prove the following
theorem:

Theorem 1.1. Let (E,d) be a 1-regular metric space. Then £(E) < C(*(E) +d(E)),
where C' < oo depends only on the reqularity constant of E.

In [4] P. W. Jones gave a sufficient and necessary condition for £ C C to be
contained in a rectifiable curve by showing that

(i) €(F) < Cr (d(B) + Xgep B(Q)4(Q)),

(i) Ygep Ar(Q)*d(Q) < C2L(E),
where C; and Cy are some absolute constants, D = {3Q : @ is a dyadic cube} and

fs(Q) = nf (@) sup {d(y, L) - y€ BN Q)

for Q € D, where the infimum is taken over all lines. Here 3() is the cube with the
same center as () and sides parallel to the sides of @), but whose diameter is 3d(Q).
Jones’ proof for (i) works also if E C R". The latter part has been extended to sets
in R™ by Okikiolu in [8]. Then, of course, the constant Cy must depend on n. In [11]
Schul extended this theorem to sets in a Hilbert space H using the family

{{yeH :d(y,z)<A2*} 1z e, keZ}

in the place of D. Here A is some fixed constant and (Ag)g is a net for E, that is, Ay
is a maximal subset of E such that d(x;,z5) > 27% for any distinct points z1, 7o € Ay
and Ay C Agyq for all k£ € Z. The easier part of Jones’ theorem has an extension also

for general metric spaces. In [3] we showed that there is an absolute constant C' such
that £(F) < C(d(F) + B(F)) for any metric space F, where

B(E) = inf{ Z Z B(x,27%)2(27%) . (Ag)x is a net for E}

kEZ .’L‘EAk\Ak_l

and S(z,t) = sup { c(z1, 22, 23) : 21,20, 23 € B(x, At), d(2i,2;)) > tVi#j} for v € E
and ¢ > 0, where A is some sufficiently large constant. An example given by Schul
shows that there is not any absolute constant C' such that S(E) < C{(E) for any
metric space E. In fact, there exists a plane set F equipped with the ¢! metric such
that /(E) < oo and S(E) = oo. The part (i) has extended also to the Heisenberg group
in [2].

David and Semmes proved in [1] that a closed 1-regular set E' C R" is contained in
a l-regular curve if and only if there is C' < oo such that

R dt
(3) / / By(z,t, E)*dur — < CR
o JENB(,R) 3
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for all z € E and R > 0. Here ¢ € [1, 0] is arbitrary,

1/q
By(z,t, E) = inf <t1q / d(y, L) duy>
L ENB(z,t)

for ¢ € [1,00] and
foo(z,t, E) = iILlft_1 sup{d(y,L) : y € ENB(z,t)},

where the infima are taken over all lines in R". For ¢ = oo this was already proved
by Jones. In fact, David and Semmes gave in [1] a version of this theorem for m-
dimensional sets in R", where m is any integer. In [9] Pajot gave a more direct proof
for that a closed 1-regular set E C R" lies in a 1-regular curve if (3) is satisfied. His
construction also yields

(4) o(E) < O(d(E)—i— /0 “ /E 8,(x,t, B)? duz %)

where C' < oo depends only on the regularity constant of E. The basic idea of our
proof for Theorem 1.1 is inspired by Pajot’s algorithm, which is itself a kind of variant
of Jones’ one in [4].

Mattila, Melnikov and Verdera used Menger curvature in [7] for proving that the
L? boundedness of the Cauchy integral operator associated to a closed 1-regular set
E C C implies that E is contained in a l-regular curve. The starting point of their
work was the relation that for any three points z1, 29, 23 € C

1
0(21722az3)2 = E—————
za: (2o1) = 20(3)) (20(2) — Z0(3))

where ¢ runs through all six permutations of {1,2,3}. This implies that the Cauchy
operator is bounded in L?(E) if and only if there is C < oo such that ¢*(ENB(z, R)) <
CR for all z € F and R > 0. They showed that for some constant A depending only
on the regularity constant of F

R
(5) / / Bo(a, t, B) duz & < \2(E 1 B(z, AR))
0 JENB(zR) t

forall z € E and 0 < R < d(E)/A. The claim now follows from the result of David
and Semmes. Note that we get from (5) and (4) that a bounded 1-regular set £ C R"
lies in a rectifiable curve if ¢*(E) < oc.

Jones has later proved that for a 1-regular set £ C C

R
/ / Buo(w,t, B): dpz & < C2(E 0 B(z,CR))
o JEnB(R) t

for all z € E and R > 0, where C' < oo depends only on the regularity constant of
E. For the proof see [10]. Using this we get also 8(F) < Cc?(E) for some C' < oo
depending only on the regularity constant of F whenever E is a 1-regular set in C.
We can easily construct an example which shows that this is not true for general
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1-regular metric spaces. For example, let § > 0 and consider the plane set Es =
([0,1] x {0}) U ({0,1} x [0,4]) equipped with the ¢! metric. Then ¢*(E;)/B(Es;) — 0
as § — 0.

Any Borel set E C R" with u(F) < co and ¢?(F) < oo is rectifiable in sense that
there are rectifiable curves I'y, 'y, ... such that

ﬂ(E\['jr) —0.

This was first proved by David. Léger gave in [5] a different proof which also gives a
version for higher dimensional sets in R".
For related results see also [6].

2 Preliminaries of the proof of Theorem 1.1

We assume that E is a bounded 1-regular metric space with regularity constant M,
such that c2(F) < oo. Let Cy, Cy and § < 1 be positive constants such that C;(1—§) >
4(2 = 6) and Co(1 — 0) > 8(1 + 2C1)(2 — 6), and let r9, 74 and Ry be small positive
constants depending on Cy and . Then, let r5 > 0 be a small constant depending on
Cs, 9, 19, 74 and Ry. We also let 73 and Rj3 be large positive constants depending on Cj,
0 and My, and then we let €9 < 1 be a sufficiently large positive constant depending on
C1, Cy, 0, My and r5. Finally, let 7y > 0 be a small constant depending on Ry and &g,
and let r; > 0 be a small number depending on most of the above constants. See more
details later. For any x € E and n € Z we choose a point ¢, (z) € B(z,710™) such that

w(B(z, 16™) / IRCERABI A

S / / C(’Zla 22, Z3)2 dIU’Q(ZI: 22) duz?n
B(z,r16™) J Sn(z)

where S, (z) = {(¢,n) € (B(z,736")\B(2, 726™))* : d((,n) > r46"} for z € E. We also
set
I(z,n) =sup{e € [0,1] : {21,20,23} € O(e) V(21, 22,23) € W(z,n) },

where

W (z,n) = { (21,22, 23) € B(w, R36")* : d(z;,2;) > Ro6" Vi # j }

and O(e) is the set of the metric spaces E such that d(x, z) > d(z, y)+ed(y, z) whenever
z,y, z € E such that d(z, 2) = d({z,y, z}). We say that E' C E has an order, if there
is an injection o : E' — R such that for all z,y, z € E’ the condition o(z) < o(y) < o(z)
implies d(z,z) > max{d(z,y),d(y, z)}. In that case the function o is called an order.
If there is an order o on {zy,...,z,} C E, n € N, such that o(z;) < o(x;11) for
i=1,...,n—1, we write shortly z x5 ...xz,. The notation z1z,23|¢ means that z;xsx3
and {x1,z9, 23} € O(e).

Let zo € FE and let ng be the biggest integer such that E C B(zg,0™). Set
D{° = {qn,(x0)}. Let now n > ny and assume by induction that we have constructed
Dy~ C E such that for any z,y € Dy ', 2 # y, d(x,y) > 6. Let Al C F such that



- for any z,y € A;w z 7é Y, d(.@,y) > 671.’
- forany xr € A', y € Dy, d(z,y) > 0",
- for any = € E there exists y € A, U D}~" such that d(z,y) < §™.

Now #A! < 2Myd "u(E) < 2MZ5"d(E). We set A, = ¢,(A") and D} = A, U
an(Dg"). Let A, = {7,...,a%, } such that

d (mz, D,’c‘:ll) = max { d (a:, D,’c’:ll) xr €A, }

for k =1,...,#A,. Here and in the sequel we denote D} ' = D' U {z?,...,2}} for
k=1,...,#A,. By choosing § <1 — 2r; we have for all n > ny

(i) for any z,y € Dy, z # vy, d(z,y) > (1 — 2r;)d",
(ii) for any x € E there exists y € D such that d(z,y) < (1 +71)d™.

For m > n > ny and x € Dj~" U D we denote

@) [aeo s o 0gn(@) itz e Dy,
Gm.n Gm © Gm—1° - 0 ¢y () if v € Dy L.
Here we interpret ¢, () = z if * € D}. Note that = = g,(z) for z € D§"' N Dy. We
also use the convention ¢, ,(z) = z for any =.

We are going to construct a sequence (GZ)n>no,0§k§#D3‘+1 of connected weighted
graphs with no cycles. We will denote by V| and E} the sets of the vertices and the
edges of G}. For each (n,k) we will have D} C V;*. For all z,y € D} such that
{z,y} € E} we will have w}({z,y}) > d(z,y), where w} : E} —]0,00[ is the weight
function on the graph G}. We denote [(G}) = ZeeE;g wi(e) and for y € D} we will
use the notations

Vitlly) ={z eV : {y,2} € By },
Dy (y) = V' (y) N Dy

Each vertex in V*\ D} will have only one neighbour. Thus the subgraph of G} induced
by D} will also be connected. We will denote this graph and the set of its edges by 7}
and F}'. For each (n,k) we will define a 1-Lipschitz surjection fj' : I} — D}, where
I} C [0,2((T})]. Here I(T}}) = ZeEF]:" wi(e). If e € F, we denote

Jp(e) ={(s1,82) € I} X I} : 51 < 82, fr({s1,s2}) = e and I}N]sy, s2[=0 }.

Further we will define a function PP : D? — {V : V C {{z,y} : 2,y € V", x #y} }
such that the following properties will be satisfied:

- Let y € D?. If €1 # es and e1,e9 € PP (y), then e; Ney = 0. If v € V*(y), then
v € e for some e € P (y). If {v1,v2} € PJ(y), then {vi, v} C Vi (y) and vy # vs.

- #{ee Pl(y) : eC DP(y)} < 1forally € D}



- Let e € F}!. Then 1 < #J7(e) <2 and so — s; = wi(e) for all (s1,s92) € J(e).

For n > ng and k € {0,...,#A,1} also the following condition, called the (n,k) -
property, will be satisfied:

Ify € Dl?: {217'22} € PI:L(y)a {217'22} - Dl?(y) and max{d(y,zl),d(y,zg)} <
Co(1 4+ 71)0™, then gm, n(21)@mn(V)@man(22)|€0 for any m, mi,ms > n — 1.

In Section 3 we define the graph G}~' by deforming the graph G}~;. The main
point of the proof is to control [(G} ) —1(G}~1) by some integral estimate. For this we
need that the vertices are well chosen. Thus we at every stage n “update” the vertices
by applying ¢, to them. We do this in Section 4. In Section 5 we show that [(T§") is
uniformly bounded by a constant multiple of ¢?(E) +d(E), from which we get the final
conclusion.

We define a graph G7° with 4 vertices and 3 edges as follows. Put V| = D7 U
{b1,bo}, where {b;,by} N E =0, and set

E?O = {{qno (-TO)a x7110+1}’ {qno (.%‘0), bl}a {33717'0‘}_1, bZ}} ’

Further we define wi® and P{"° by setting

Wi ({Gno (o), 27°*7}) = d(gno (w0), 27°7Y),

W ({ano (70), b1}) = wi®({21°", ba}) = C1d(gn, (w0), 27°1),
P"°(qno(xo)) = {{=1""", b.}},
Pro(@"") = {{dno (x0), b2}}.

Now
(6) I(GT°) < (1+42C1)d(E).

We set I = {0, d(gn,(w0), 27°™")} and define f7° : I — D7° by setting f1°(0) =
no (20) and 1 (d(gn, (20), 27°T1)) = 27, In the following two sections we assume
that n > ny.

3 Construction of G;le

Let now k € {1 ., #A,} and assume by induction that we have constructed a graph
G = (Vi ,E,’c‘ 11) with a weight function w}_| : E}| —]0,00[ and a 1-Lipschitz
surjection fp—! : I} — Dp~[, where I}~ C [0, 2[(T,?_11)] We also assume that we
have defined P,:‘:ll D = {V iV {{z,y}: z,y € V',  # y} } such that the
(n—1,k — 1) -property and the other conditions mentioned in the previous section are
satisfied. We denote x = z7. Let y € D}"| such that d(z,y) = d(z, D}~}).

Case 1. 9(z,n) < &.

We set V'~ = V"' U {z, by, by}, where by # by, {b1,b} N (V5 UE) = 0, and
define
= 51U oy b (9.}
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Further we define w}~" and P~ by setting

d(z,y)  fore={z,y},
wl?_l(e) = Cld(‘r: y) for e € {{.’L‘, bl}: {y7 bQ}}ﬂ
wy i(e) foree€ By}

and
Hy, b1}} for v = x,
Prl(w) = PP (v) U{{z,bs}} forv=y,
P (0) for v € D=\ {y}.

Let t € I}~ such that f~(t) = y. We set
' = Uu{t+d(z,y)} U Jo,
where J; = I}~/ N[0,¢] and Jo = (177 N [t, 00[) + 2d(z,y), and define f{'~" by setting

1(s) for s € Jy,
"ls) =Sz for s =1t +d(xz,y),
(s —2d(z,y)) for s € J.

Now the (n— 1, k) -property is satisfied, I;' =" C [0,20(T{~")] and f{"~" is surjective and
1-Lipschitz.

Let (wy,ws, w3) € W(x,n) such that {w,ws, w3} & O(eo) and let z; € B(w;, rod™)
for i = 1,2,3. Denote di; = d(w;,w;) and d;; = d(z;,2;) for i = 1,2,3. Suppose that
d(z1,23) = d({z1, 22, 23}) and dy2 > da3. Then, by choosing ry small enough,

dll3 —_ d’12 < (d13 + 27”05") — (d12 —_ 27‘06”) < d13 - d12 =+ 47”05"

d’23 - d23—27'05n B (1—27‘0R2_1)d23
< M ([ dro) _sfetidn
R2—2T0 R2 R2—2T0

Letting o = (212923 we have

2sin v)? 4(1 — cos® « 1 —max{e?, 1/4
o oyt = M A —costa) (ch1/1)
d(zl,Zg) (2(R3 +7‘0)(5 ) ((R3 +7‘0)5 )
where
e — EORQ + 47‘0
5 RQ - 2’/’0 ’
Using this and the regularity we get
0353n7°801

UGE™) — UG = (L+2C)d(z,y) < (1+2C)(1+71)6" " = =)
(7) 0

< (s / / / c(z1, 22, 23)° dpzy dpze dpzs,
B(z,(R3+10)0") J Tx(23) J T(23)NT} (22)



where

1 —max{eZ, 1/4}

“ (R3 -+ 7‘0)2
T 1073

and T} (z) = B(z,2(Rs + 10)0™)\B(z, (Ry — 2r()d") for z € E.
For the rest of the cases we assume that 9(z,n) > &.

Case 2. There exists z € D} (y),n' <n, k' € {1,...,#Ay} such that k' < kifn' = n,
{v,2}Y e Fi ' y=tnaw(y)), 2 = gno1w(?') and Cad (zy, {y/, 2'}) < d(y/, 7).
We define G7~ ', PP~ ! and f{ ' as in Case 1. Now

(8) UGE™) — UGT) = (1 +2C)d(z, y).

The construction will show that {gmn(y), ¢mn(2)} € F§* for all m > n.
For the rest of the cases we assume that the condition of Case 2 does not hold.
Case 3. There exists 2 € D} | (y) such that d(z, 2) < d(y, 2).

We set V,*~! = V7' U {z} and define

By = (B \{y 23D U {{y, o} {z, 23}

Further we define w} ' by setting

d(y, x) for e = {y, z},
wp(e) = { max {d(z,z), w;" ({y, 2}) —d(y,z)} for e = {z,z},
wy 3 (e) for e € Eg7)\{{y, 2}}.

Let 2/, y" € V"' such that {2',2} € P~ (y) and {y,y'} € P (2). We set

Hy, 2}} for v = x,

PP (o) = (P1?:11(U)\{{Z'a Z}}) U{{z,z}} forv=y,

' (P \{H{w, v 1) U f{e )} forv =12,
P (v) for v € DP~\{y, 2}.

Let (t1,t2) € J2~ ! ({y, 2}). We set
Lot = JU{t +wp ™ ({5 (1), 2} U o,

where J; = I}~ N [0,¢;] and Jo = (I}7 N[t2,00]) + U(G}™") — I(GZ}), and define
,?,al : I/?,BI — D! by setting

71 (s) for s € Jy,
1?,51(5) =1\ for s =1t; + w,’:_l({f,?__ll (t1),7}),
P s —UGE ) + UG Y)) for s € .

8



It #J;07 ({y, 2}) =1, we put Ip ™' = IV and f77' = fro'. Else let uy, upy € I['g" such
that up — uy = wip_ ({y, 2}), fro {1, u2}) = {y, 2} and I g Nuy, us[= 0. We set

11?71 =JiU{u + wﬁfl( Zal(ul)am)} U Jz,

where J; = I} ;' N [0,u] and Jo = (I7'y" N [ug,00[) + 1(GE ') — I(G}Z]), and define
f,?_l by setting

1?,81(5) for s € Ji,
1?_1(5) =3\ for s = uy + wg_l({fﬁal(m),x}),
1?,51(5 — UGy Y+ UGE=y)) for s € Jo.

Now I}~' C [0,20(T7~")] and f~! is surjective and 1-Lipschitz.

We next, show that the (n — 1, k) -property is satisfied at z. Suppose that {z1, 22} €
Pl '(z) such that {21,205} C Dy '(z) and max{d(z, 21),d(z,20)} < Co(1 + ry)6" L.
If v & {21,2}, then {21,20} € P/(z) and the (n — 1,k)-property is satisfied at
z by the (n — 1,k — 1) -property. Thus we may assume that z; = x, which implies
{y, 2} € P (2). Since d(y,z) < Cao(1 +71)0"", we have yzzy by the (n — 1,k —1)-
property. By choosing

2T1
<1 -
Resl=977%
(202-80)(1*{*7”1) 1
>
By 2 5 15

we have {Y, Gm,n(%); Gmn(2), @myn(22)} € O(go) for any m,my,me > n — 1. Now
d(v1,ve) < Kd(vs,vy) for all vy, vy, vs,v4 € {y, T, 2, 20}, v3 # v4, where

1+7’1
K = 14— 1.
CE( *'C1—2roa>

We choose €y > K/(K +1). Therefore, since yzz and yzzo, {y, z, z, 20} has an order by
Lemma 2.2 of [3]. So we must have zzz,. Choosing 1 < €o(1 — § — 2r1) the following
lemma gives that the (n—1, k) -property is satisfied at z. Similarly we see that (n—1, k)
is satisfied at y and =x.

Lemma 3.1. Let {(,n,§,&} C E such that {¢,n, &} {¢n, &} € Ogy).
(i) If ¢n¢ and d(§, &) < eomin{d(¢,n), d(n, &) + d(n, &)}, then (né:.
(i) If ¢&n and d(§, &) < eomin{d(¢, ¢) + d(&1,¢), d(€,n) + d(&1,m))}, then C&in.

Proof. (i) By the assumptions we have

d(¢,&1) +eod(n, &) — d(¢,m) > d(C, &) — d(§, &) +eod(n, &) — d(¢,m)
2 d(<7 77) + 50d(77> 6) - d(ga 61) + 50d(77a gl) - d(Ca 77)
= eo(d(n,) + d(n, &)) — d(£,&) > 0



and

d(Ca gl) + ‘SOd(Ca 77) - d(nﬁ 61) > d(Ca 5) + ‘SOd(Ca 77) - d(n7 5) - 2d(£7 51)
> eod(C,n) + d(n, &) + €0d(¢,n) — d(n, &) — 2d(&, &)
::280d(<an)'_'2d(€a£1):> 0.

Therefore, since {(,7n,&} € O(ep), we must have (né;.
(ii) Now the assumption gives

d(¢,n) + eod(&1,m) — d(¢, &)
> d(C, &) + €od(§,m) + e0d(&1,m) — d(¢, &) — d(§, &)
= eo(d(&,m) +d(&1,n)) —d(§,61) >0

and similarly d({,n) + €od((, &) > d(&1, 7). 0
Since Ry <1 —2r; and dR3 > Co(1 + 1), we have

(9) UGE™Y) — UG < d(y,2) + d(,2) — d(y, z) < (1 - eo)d(y, z).

Let us now assume that there is m > n such that {{¢mn(v), gmn()}; {@mn(2), gmn(2)}}
N Ej* = (. By the construction (see also Case 4 and Section 4) this implies that there
exist y1, wi, T1, Lo, Wa, 29 € E such that yiwix1, Towszo,

T15n
1-94’
T15n+1

1-46"

max{d(y,y1),d(z, z2)} <

max{d(x,x1),d(z,x9)} <

d(y1, 71) < Comin{d(yy, wy), d(wy, 1)},
d(zg, z9) < Coymin {d(xq, ws), d(ws, 22) }

and
min {d(yla 'U)l), d(wla ml)a d(.’EQ, ’U)Q), d(’lUQ, ZQ)}
i riontt rio" ri0"
< min {d(w1,w2) + ﬁa d(w1,2) + 11_—5, d(y, ws) + 1 1_ 5} :
Denote
r' = id( z) — dpd"
- Cb Y, ov
147 1
Ci:Mg (Tl (02—804'52) —do),
where
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Below we will use

and

(02 — &0+ 2’/‘5)(1 + 7'1)

7'3ZC{+ 5

+T1,

2T5(1 + 7'1)

Ry > C] + 5

+7'1.

By the first part of Lemma 3.1 we have yw,z and zwyz. Let N; be the smallest integer
such that C]6™ < d(E) and assume that n > N;. Denote R’ = MZ((Cy — &¢)d(y, ) +

r’). By the regularity

p(B(z, RO\B(z,d(z, 2) + 1)) > u(B(z, R)) — p(B(z, d(z, z) + r'))

> My 'R — My(d(z, 2) +7") >0

and so we find wz € B(z, R)\B(z,d(z,z) + r'). Now d(z1,22) > r' for any 21,29 €
{y, w1, x,we, z, w3}, 21 # zo. We may assume that d(ws, ) < d(ws, z). The other case

can be treated similarly.

Now z = g,(z') for some z' € A!. Further by the construction there are ny, n3 €
{n — 1,n} such that y = ¢,,(y’) and z = ¢,,(2') for some ¢',2’ € E. Denote B; =

B(w;, rsd(y,z)) for i = 1,2,3. Now
B; x Bj C Sp(z") N S,y (y') N Sy (2)

fori,j € {1,2,3}, i # j. We also have

(By x B,) U ((ByUB,) x (B1UByU By)) C S,(),
(B, x B,) U((B;UB,) x (BiUByUB3)) CS,,(1),

(By x By) U ((By UBy) x (B UByU Bs)) C Sy,

where B, = B(z,15d(y,z)), By = B(y,r5d(y,z)) and B, = B(z,75d(y, x)). Thus

min { 42*(Sn(2)), 1* (Sny (¥)), 17 (Sns (2) } =

Denote
M2+ 875"

O =y, )

11

S 20r2d(y, x)2.



and let I' =Ty UT'y U '3, where

I, = { () € Sule) + kS @NeCn2)? > G [ clen, 20,0) di(1, 20) }

Sn(z')

Ty = { (C¢,n) € Sn,(¥) = 1 (Sny(¥))e(Cmy)* > G (21, 22,y)? dp (21, 22) },

Sny(y')

I3

{ (€1 € Susl#) ¢ 2 (Sm(N)elé 0272 G [

Sng (2")

c(z1, 22, 2)2 d,uQ(zl, 29) }

If c(z,y, 2) = 0, we have I(G}™') — [(G}~]) = 0. Thus we may assume c(z,y, z) > 0.
Then, since (21, z2) = ¢(21, 2, 23) is continuous on {(z1,22) € E? : 21 # 20 # 23 # 21}
in the product topology, we have by the regularity

/ c(zl,zg,ac)2 du2(zl, 29) > 0,

Sn(z')

/ (21, 22, 9)2 d/ﬂ(zb z3) > 0,
Snz(y’)

/ c(z1, 22, 2)* dp* (21, z2) > 0.
5n3(2')

Thus by the Tchebychev inequality
p?(T) < p?(T1) + p(T2) + p(Ta)
(1 (S (") + 1 (Sna () + 12 (S (2')))

=

<
<

1 2
<M07'3 — ﬁo’l"g) (5271 + 52n2 + 5211.3)

1 2 2 rid(y, z)?
(M()’f'3 - ﬁTQ) (1 + ﬁ) 5271 < %
0 0

IN
Ql= Q- Q-

<

Denote U; = {w € By : {w} x B; C '} for i = 2,3. We next show that there exists
(u1,u9,u3) € By X By X Bz such that (u1,us) ¢ T and (uq,u3) € I'. Suppose this is
false. Then By = Uy U Us. Letting

p = p2(S,(2")'G (21, 22, 7) dp? (21, 29)
Sn(z')

we have
{we B : {w}xBQCI‘l}:{wEBl : c(w,zz,x)Qprorall,ZQEBg}
= ﬂ {weB: cw,2,2)”>p},

22€ B2

which is a closed set. Similarly {w € By : {w} x B; C I';} is closed for each i € {2, 3}
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and j € {1,2,3}. Thus U; and U, are closed and we get
(L) > p*(Us x By) + p*(Us x By)
= u(Uz)pu(Bz) + 11(Us) p(Bs)
> (u(U2) + p(Us)) min {4(Bz), 11(Bs) }
. rid(y, x)?
> p(By) min {u(Bo), u(By)) > TS
0
which contradicts (10).
For any 21,29 € {y,u1,x,us,2,us}, 21 # 29, we have d(z1,29) €]r, R], where r =
r' —2rsd(y,z) and R = R' + d(z, z) + 2rs5d(y, ). Now R < Kr for
MZ +1)(Cy — g9) + MEC,* + 2r5) (1 — 2r1) — M2d,
(02_1 - 2’/’5)(1 - 27"1) — do '
Therefore, choosing €3 > (4K — 1)/(4K + 1), {y,u1, %, us,2,u3} has an order by
Lemma 2.3 of [3]. The latter part of Lemma 3.1 gives yu;z and zusz. So we have
Yyu1TUz. Since
d(ug, ) > d(ws, ) — r5d(y, z) > d(z,2) + ' = r5d(y, ) > d(z,2) > d(y, 7),
we must have ugyuixusz or yuizruszus. Using the assumption d(ws, z) < d(ws, z) and
Lemma 3.1 we get uzzz. Thus we have ugyurusz.
Let ¢ = min{ey,e9,63,64}, where €1 = — cos <ujzug, €9 = — cos {ugyuy, €3 =
— cos (ujugz and g4 = — cos <usu;z. Then
d(ya Z) > d(U’Sa Z) - d(u3: y)
> e4d(us, ur) + d(us, z) — d(us, y)
> e4(e2d(u3, y) + d(y, u1)) + d(u, uz) + €3d(ug, 2) — d(us, y)
> e4(ead(us, y) + d(y,u1)) + d(u1, x) + e1d(x, ug) + e3d(ug, 2) — d(us, y)
> e(d(y, ur) + d(ur, 2) + d(a, ug) + d(uz, 2)) + (¢ — 1)d(us, )
> e(d(y, ) + d(z,2)) + (€% — 1)d(us, y)-

P

Denote
/\1 - C(:E: Uy, U2)2d(U1, U’?)Za
)\2 = C(y, Uy, u3)2d(u1a ’LL3)2,
As = c(z, u1, ug)’d(uy, 2)?,
Ay = ¢z, ug, u3)2d(u3, 2)2.
Now
Gd(ul,u2)2 / / 2 59
M < c(z1, 20, 23) du(z1, 22) duzs,
LS LB, a6 RS ) oy Sy () B 22) iz
Gd(ul,ug)Q / / 2 ;92
Ay < c(z1, 29, 23)° dp” (21, 22) dpzs,
? ,U,(B(yl,7"15”2))/1,2(Sn2(yl)) B(y',r10™2) J Sny(y')
Gd(ul,z)2 / / 2 7.2
A3 < c(2z1, 29, 23)° du” (21, 22) duzs,
3 1(B(2', 116")) i2(Sn, (2)) B wa678) 50, 27 (21, 22, 23) (21, 22) 3

Gd(us, 2)? / / .
A< C\z1, %2, % d,U: 21, & dpz
S B0 2 () Jaipainsy Sy (2 28 A o122 s
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Using this we get

WG = UG < d(y, ) +d(z, ) — d(y, 2)
1— &) (d(y, x) + d(z, 2)) + (1 — €*)d(us, y)
1 — &) (d(y, x) + d(z, 2) + d(us,y))

(11) < % max{ 1, Ao, Mgy A} (d(y, 7) + d(z, 2) + d(us, )

<y / / / (21, 22, 23)° dpzy dpzy dpzs,

B(z,R40™) T2(23) T2(23)\ B(22,r46™)

where

Ry = (Cy — so)(15+ 1) + 27“1’

T3 (23) = Blzs, (13 + 11)8" )\B(z3, (r2 — r1)8")
and

M§Gd(us, 2)*(d(y, =) + d(@, 2) + d(us, y))
4 -20r2d(y, )2ri o™

3MTr2(2 + 62 1 d ’
< 80(1()—?’2(7“1)7‘§7“1)52 <M3 (02—80+—_ 0 ) +02—60+27“5> 204.

Case 4. d(y,z) < d(z,z) for all z € D}~|(y).

Assume that {z1,2,} € P (y) such that {z,2,} C D} [(y). Now d(y,v) <
Cy(1+7,)0" ! for all v € D} | (y). Thus by the (n— 1,k — 1) -property we have z,yzo.
Since 0R3 > (1 + C2)(1 4+ 1) and Ry < 1 — 27y, we have {y,x, 21,22} € O(gg). Now
d(vi,v9) < Kd(vs,vs) for all vy, ve,v3,v4 € {21,2,Y, 22}, v3 # vy, and g9 > K/(K + 1)
for K = max{2Cy, (1+C5)(14r1)(1—2r;)"'}. Since now zyz; and zyz,, it follows from
Lemma 2.2 of [3] that yz;2; or yze2;, which is a contradiction. Thus the assumption
above is false and for fixed z € D}~}(y) there exists b € V;" '\ D~} such that {z,b} €
PR (y).

We set V,* ! =V, ' U{z} and define

Byt = (Be2\{y, 03}) U {{z, v}, {=,0}} .

Further we define w}~" and P}~ by setting

d(z,y) for e = {z,y},
wy(e) = S wiTi({y,b}) for e = {z,b},
wii (e) for e € E;7/\{{y, b}}
and
{{y, b}} for v = x,
Pe7(v) = § (PES 0\{{=,0}}) U {{, )} forv =y,
P (v) for v € D} \{y}.
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Now
(12) (G = UGRT)) = d(z,y).

Since zyz, 0R3 > (1 + Co)(1 +7)d 1 +r(1 —6)Y, Ry < 1—2r(1 —46)*! and
r1 < &l — 6 — 2r1), we have the (n — 1,k)-property at y by Lemma 3.1. The
construction will show that for each m > n there is v € DJ* such that {v,b} € EJ* and
wi({v,b}) = wi—; ({y,b}). We define I' ' and f ' as in Case 1.

4 Construction of Gj

Denote Dj~! = {2% 4,410 - Thpp}. We define inductively Dy~ = (D= \{z}}) U
{gn(z})} for k = #A, +1,...,#Dp. Let k € {#A, +1,...,#D}} and assume
by induction that we have constructed a graph G}~| = (Vk”_ll, E}~!) with a weight
function w}~, : B}~ —]0,00[ and a 1-Lipschitz surjection f;—' : I/~ — D}/, where
I~ C [0,20(TP)]. We also assume that we have defined a functlon Pl

We denote z = af. We set V" " = (V";'\{z}) U {gn(2)} and define

By = (BiZ f\{{x v} i v € Vi (@)}) U{{gm(),v} : v e Vi (2)}

Further we define w} ;' : Ey~! —]0, oo by setting

(A 11({33, v}) + 76" for e = {q,(x),v}, where v € D} {(z),
w,’c‘,gl(e) = wy” 11({56, v}) for e = {g,(x), v}, where v € Vk":f(ac)\E,
wi1(e) for e € B \{{z,0} : v € VT (2)}-

For any v € D} (z) let z(v) € V"['(v) for which {z,2(v)} € P!'(v). We define
P,f_l by setting

P,?__ll(m) for v = g, (),
Pt (w) = § (PES (0)\{{z, 2(0)}}) U {{gn(x), 2(v)}} for v € DE_{ (),
P ) for v € D\ (D5-L(a) U {a}).

Further we set I,?,gl = I;'"] and define f,zal : I,?,gl — D! by setting
n—l(s) _ qn(.’II) lf f (8) =
k0 =9 -
Pi(s) i T (s) 76

Let {y1,---,ym} = Dy ~{(z) and i € {1,...,m}, where m = #D} | (z). Assume
by induction that we have defined a function f; i ]]?’;_11 — DYl Let (ti,tp) €
i ({z,yi}). We set

Igio = (IE2 0 [0, 6]) U (132 N It 00[) + 116™)

and define fk i0 I;‘Zé — D! by setting

nt gy = T (9) for s € Iy, ', N [0, 1],
. S) = ) )
k0 T (s —ri0m) for s € (If7)) N [ta, 00f) + r10™.
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If #J77 ({z,v:}) = 1, we put 7 = I,?Zo and f,g,;l = ,g;g. Else let uq,uy € 1,2,;,5
such that uy — u1 = wi~; ({z, u;}), fk,z,o({ul, us}) = {z,y;} and I,’;’Zéﬂ]ul, ug[= 0. We
set

It = (I N [0,ud]) U (I75 N [z, 00f) + 716™)

and define f,:‘,i_l by setting

ni(g) = o (s) for s € 773 N[0, ui),
ki ,?,_é(s —ri0™) forse€ (I,?Z_é N [ug, Oo[) + 6

Denote

P ={{v, v} € PP (z) :max{d(g,(), gn,n(v1)), d(gn(T), Gn,n(v2))} < Co(1 + 11)5"
and {vy,v2} C D} |(z) }
If P =10, we set wy~ 1= wko1 Iy~ 1= =1 ! and = fen 1 . From now on we assume

that {y,z} € P. Let us assume that mln{s : o 1( ) = y} < min{s : fi!; 1(s) = 2}
and define w~' by setting

p for e = {y, gn(2)},
w}r;—l(e) =357 for e = {gu(2), 2},

wio'(e) fore € By "\{{y, gu(2)}, {an(2), 2}},

where

p = max {w,?:ll({y,fv}) — 116", d(y, gn(z ))} )
7= max {w= ({y, 2}) + = ({2, 2}) — p, d(ga(), 2)} -
Let {e1,ea} = {{v, a.(2)}, {gn (), 2}} and i € {1, 2} and assume by induction that

we have defined a function f,?,;bﬂri 1 I,?;m L = DL Let ty,ty € I,?;nlﬁ_l such that

tg — tl = UJZ,B ( ) fk i 1({t1,t2}) =€; and ],?’;zl_l_i_lﬂ]tl,tg[: @ We set
Il?ml—l—zO Jl U JQ’

where J; = I,?mﬂ 1N [0,¢] and Jp = (I,?mJrZ 1 N [t2,00[) + wp'(e;) + t1 — t2, and
define f; 1 i0 I,Zmﬂ,o — D! by setting

fk m—|—z 1( ) for s € Jl,
fkm—HO( ) n_1
fk m+i— (s —wpm (&) —t1 +t3) for s e .

If there exist uy, up € Iy}, o such that uy # 1, up—uy = wj (&), fimtso({ur, u2}) =

ei and Iy L 0Ny, us[= 0, we set

I,?mlﬂ =J1 U Js,

where J; = I,?mlﬂo N [0,uq] and Jp = (I,’;mﬂo N [uz, 00[) + wp~'(e;) + ur — ug, and
define f,c i - I,’;mlﬂ D}~" by setting

fim m+z o(s) for s € Jy,
fk m—|—z( ) n_l
Fim mrio(8 —wp T (e)) —ti+ty) for s € J.
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n—1 _ tn-— — fn-—1
Else we put I ki Ik m+i,0 and fk m—|—z kym+4,0°

We set I}~ T =1Ip,. ., and fi~ rms2- By the construction there exists {y/, 2’} €

Pyt (z) such that {y',2'} C D#A s Gon(Y) = Gun(y) and ¢np(2') = gnn(2). Since
) S 1 — 2ry, we have max{d(z,y'),d(z,2")} < Co(1l + r1)d™ + 2r16™ < Co(1 + r1)6" L.
Thus yg,(x)z|eg by the (n — 1,#A,) -property and we have

Wy ({y, n(@)}) + wp ({n(2), 2}) — wi 1 ({y, 2}) — wp={ ({z, 2})
< max{d(y, ¢.(2)) + d(gu(2), 2) — d(y,z) — d(z, 2),0}
< d(y, ¢u(z)) + d(gn(2), 2) — d(y, 2)

< (1 — &) min{d(y, ¢.(2)), d(gn(7), 2) }-

If ¥(gn(x),n) < &9 we get as in Case 1

wi T ({y, 4 (@)}) + w0y ({an (@), 23) — wpZ ({y, 2}) — wiZi ({=, 2}) < ho™

(z)
14
(14) < 05/ / / (21, 22, 23)% dpz1 dpzo dpzs,
B(gn(z),(R3+r0)o™) J T (23) v Ty (23)NT(22)

where h = min{2r;, (1—&0)(Ca(1+r1)+r1)} and Cs = MZhey 'ry®. We now assume that

Y(gn(x),n) > €o and there is m > n such that {{gm(¥), Gmn(z)}, {@mn(2), gmna(2)}} N
F{" = (). Denote

(13)

Ch=MZ(Co(1+11)+7 +di),

where d; = C;'(1—7;)—dy. Let Ny be the smallest integer such that C56™2 < d(E). By
assuming n > N, and using max {r1(1 — §) "}, r5} < eody, max {ryd 1, Ry} < dy — 2rs,
T9 S 5(d1 —7'5) — T, T3 Z Cé + 02(1 + 7"1) + 2(7‘1 —+ 7'5), R3 Z Cé +r + 27’5 and
g3 > (4K —1)/(4K + 1), where

Cé +02(1 +T1) +r +27"5
d1—2’f‘5 ’

K=

we get as in Case 3

wi ({Y, gu(@)}) + w7 ({gn(2), 2}) — wiZ ({y, 2}) — wpZi ({z, 2})
< d(y, gn(x)) + d(ga(z), 2) — d(y, 2)

(15)
< Cs / / / (21, 20, 23)? dpzy dpzo dppzs,
B(gn(z),R50™) J T2(23) ¥ T3(23)\B(22,r40™)

where

Rs = Cy(1+m) +< )7“1,

r3(2 4 6%) (Ch + Co(1 +71) + 71 + 275)°
8074r, 62 ’

Co="

If k = #Df, wenow set Vi = V' 1, Ef = By wpy =wp Pp = Py I = I
and f = f*. Since (Co(1 +71) +2r1)8 < Co(1+11), the (n,0) -property is satisfied.
Note also that {gmn(v1), gmn(ve)} € F§* for all m > n if {v;, v} € Fj such that
d(vi,ve) > Co(1 +171)6™.
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5 End of the proof

By iterating the above algorithm, we construct a sequence (G{),>n, of graphs and a
sequence f' : Il — D{ of 1-Lipschitz surjections such that IJ C [0,2[(7})] for all
n > ny.
Let n > ng, k € {1,...,#A,} and y € D}~|. Denote
T={ie{k,...,#A,} : 9(z},n) > ¢ and d(a},y) = d(a}, D) }
and further for j =0,1,2,... set
Ii={ieT: (1+eg)? d<dly) <(1+e)7d},

where d = max{d(z?,y) : i € I} < (1 4+ r)d"'. Let j € {0,1,2,...}. We show
that #Z; < 2. Suppose this fails and there exist 41,142,735 € Z; with 41 < i < 43.
Since R, < 1 —2r; and 6R3 > 2(1 4 1), we have {y, ], 2}, Z3} € O(gg). Denote
dy = d(z},y) for | =1,2,3. Since gy > 1/2,

d1 -+ 80d3 + EO(dQ + Sodg) - (d1 + dg) > (280 — 1)(1 + 80)_jd 2 0.

Thus we have 212y for some 21,2 € {z},, 27,2}, }. This implies d(z1, 22) < d(21,y) —
g0d(29,y) < (1 4+ &9)?71d, which is a contradiction. So we have

Zd(x?ayhiZd(x?,y i | 4 eg)dd = 2L EE)d
€1 j=0 i€Z; =0 €0

Let ng < n' <m, k' € {1,...,#A,}, and assume that {y/,2'} € F,:ﬁ —!. Then, since
) S 1— 27’1,

d.s) _(=-r)
d(Qm,n’ (y/)’ qm,n' (Z,)) 1—-6—-2r '

Suppose that Cod(z?,y") < d(v,2'). If now n’ < n < m and z € A,, we have
koY Y

(1+r)6™ ™y, 2)

(16)

(1+ rl)énfnlfld(xz,', y')

IN

d(z, Df) < (L+r)0" * <

1—2r; (1—2r)Cy
Using these estimates and (8) we get
>, eh-uem+ Y > (G - uGE)
keA, (y"UA i (2'), k>k n=n/4+1keA,(y' )UA,(2")

< Mld(Qm,n’ (y,)a Gm,n' (Z,)) < le(T)n ({qm,n’ (y,)a Gm,n' (ZI)})

for all m > n’, where
Aa®) = {k € {1,..., #A,} : 9(af,m) > e and d(@, g 1,0(v)) = dlaf, DI) }
forv € D"A1 and

Al +e)(1+2C) (1 - 8)(1 1) 1+7;
M= Cyeo(1 — 8§ — 2r)) (1 T2 5))
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From this we get
(17) Z (UG = UGETD) < MUTTY)

for all m > ng, where
={ke{l,...,#A,} : Case 2 applies to z} at stage n}.
Let n > ng, k € {1,...,#A,} and {y,b} € E}~, where b € V";'\Dy~|. Denote
I={ie{k,...,#A,} : {a},b} € B}
and further for 7 =0,1,2,... let
i={i€eT: (1+e) 7 d<d@al,D!7)<(1+e)7d},

where d = max{d(z?, D?7') : i € I} < (1 +711)d" 1. We show that #Z,; < 2 for all j.
Suppose that this fails and for some j there exist i1, 2,73 € Z;, %1 < 12 < 73, such that
d(z},xp_ ) = d(@7, Dj~ 1) for I = 2,3. Denote z; = zp for [ =1,2,3 and let z9 € E
such that d(z1,z0) = d(z1, D}'"}). Now zyzy41149 for [ = 0,1. Namely, if this is not
true for fixed [, there exists a nonempty set {y1,...,yp} C D”H 1 such that ypzi 117149,
Y1 %141 and yyg1xie1 for ¢ = 1,...,p — 1. Since (1 4 &) 7 'd < d(z1,22) < 3(1 +
g0) ?d for each distinct points z1, 22 € {To, T1, T2, T3, Y1, -- -, Yp} C B(w1,2(1 + &) 7d),

¥(z1,n) > €o and we have chosen 0R3 > 2(1 +71), Ry <1 —2r; and

3> 12(1 + &) — 1,
12(1+e0)+ 1

{z0, 21,22, 3, Y1, ..., Yp} has an order by Lemma 2.3 of [3], from which we conclude

xlxl+1xl+2 Since max{d(z,D}_}) : z € Az} = d(z1,70) < d(x2,70), there exists

€ DM '\{zo} such that d(zs,2) < d(x1,z0). As above, {zq, 21, 2,3, 2} has an

21—1
order Since d(zy, ;1) = d(z zl,ij) for [ = 1,2, 3, we must have zqz122232. From

this we get d(zo,2) > d(xa,23) + od(z3,2) > (1 + €0)7?d > d(z1,70), which is a
contradiction. Thus we have

_ G - 2(1 +&o)d
n n—1y __ n n— 1 —
Sdlat, D) = Y03 dlat, D) < 321 4 20) da= 2T

ieT j=0 i€T; §=0
Using this and (12) we get
(18) Z Y (UG — UG < M(UGE) — UTEY)

n=no+1 keA2

for all m > ng, where

A2 ={ke{l,...,#A,} : Case 4 applies to = at stage n },

,_2(1+80) 14+7r
Ml N 0180 (1+ (1 —27’1)(1 —5)) '
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Since ™ < d(E) < C}6M 1 (see pages 4 and 11), we have N} —ng < 2 —
log C;/logd. Using this and # A4, < 2M2§ "d(E) we get

Ni—1
> #AL - (1—g)(1+1)0" < CYA(E),
n=no+1

where

. log C7\ 2MZ(1 —&o)(1 +71)
cr=(1- .
log d o

Thus by using (9), (16) and (11) we get

Z > (UGEY) = UGY) < CYA(E) + Mol(T}")

n=no+1 k€A

vay s o, 22,20 s disa i,
B(x},Ra0™) J T2 (23) J T2 (23)\B(22,m40")

n=N1 kEA3

(19)

for all m > ng, where

A2 ={ke{l,...,#A,} : Case 3 applies to z at stage n },
(1—g9)(1—=0)(1—r)
1—5—27"1 ’

Since Ny —ng < 2—1log C4/logd (see page 17) and #D% < 2MZ6~"d(F) for n > ny,
we have

M2:

No—1
min{2ri,1 - eo}d(E) + Y #Dy~' - hé" < CYd(E),
n=no+2
where 2MZhd log C,
. 0
Cy = min{2r,1 —go} — OIT;gQ.

Let ng < n' < m and assume that b € VJ\Dy. For any n > n' let kL(b) €
{1,...,#D}} be the unique index such that b € V#;nl(le (b)). Denote also by v, (b) the

unique vertex in D" {kl(b) 44,y for which {gn»(yn(b)), b} € P (gnn (2} ). We have

Yo (W {0} —wirg)_ (ah e, 92 (0)}))

n>n', kL (b)>#An

< 27“15”— T15

n=n’

and
W' (Gm,m (T}, ), 0) = WG (Gt (231 (5)), 0) > CL(1 — 2r1)0" .

Assume now that {y, z} € F;'AT;, such that {gnmn (y), gnn(2)} € F for all n > n'. For
x € D;&:j, and n > n' let k2(z) € {1,...,#D}} such that g, 1, (z) = Tha(z)- Denote
also

n(x1,z9) =inf{n >n' : v,(z1,2) € E and ¢,_1(21) & Ay }
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for {z1, 25} € F. #A ', where v, (71, 79) is the unique vertex in V"~ ax{kg(

#A0) such that
{Qn,n’ (372)1 dnn (Un(xla 372))} € PO (Qn,n (.’171)) Now

1),

S (Wi (nm (), valy, 2)}) + Wiy (g (8), Pa(2,9)})
n=n(y,z)
— s e ), 0n (0, 2)}) — w5 (e (1), Pa(2,9)})
+ Z Wi (g (2), va(2,9)}) + Wil ({nm (2), Pu(y, 2)})

- wk%(z)_l({anl,n’ (2),vn(2,9)}) — wzg_(i)—l({anl,n’ (2), Py, Z)}))
< MSw(T)n({Qm,n’ (y)a 9m,n' (Z)}),

where p,(z1,29) € D,’:%_(;) such that g, (pn(21,22)) = @uw(z1) for {z1, 22} € FgA_ll
and
4’/‘1

1-— 6 + 27’1 ’
Using these estimates, (13), (14) and (15) we get

M3:

#Dg

Z S UEEY - UuGE)

n=no+1k=#An,+1
< CYd(E) + Mal(T3") + My (LG — U(TE™)

20
(20) + Cs Z / / / c(21, 22, 23)? dpzy dpzy dpzs
R3—|—7‘0)(5n Tl(z3 T1 z3 Z2)

n=no+1 zcH}

+ Cy / / / c(z1, 22, 23)? dpzy dpze dpzs
Z Z x R55n) T,,%(z;;) T3(23)\B(22,7‘4(5n)

n=Nz xc H2

for all m > ng, where
1
Ci(1—2r)(1=96)’
={z€q(Di™") : 9z,n) <},
={z€q(DF") : 9(x,n) >0}

M=

Combining the estimates (6), (7), (17), (18), (19), and (20) we get for all m > ng

g < ( +2C, + CY + C))d(E) + (My + My + M3)I(T§")

+Co Z / / / 0(21, 29, 23)2 duzy dpzo duzs
(z,R00™) J Tn(23) J Tn(23)\B(22,p00™)

n=no+1 z€D}

+ (M7 + My — 1) ((GF) = UTF)),
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where

Co = max {Cjs,C4,C5,Cs},

Ry = max{R; + 19, R4, Rs},

po = min{ Ry — 2rg, 74},
T.(2) = B(z, R10™)\B(z, p10™)

for z € FE, where

Rl = maX{2(R3 + 7'0), (7’3 + 7'1)571},
p1 = min{Ry — 2ry,r9 — 11 }.

Let n > ng, y € E and D = B(y, (Ry +71)6") N (A, UDg™"). Then
My ((Ry +71)0" +0"/2) > p(B(y, (Ro +7r1)d" + 6" /2))

w gy > D"
>Z,u x,0"/2)) A
z€D 0

from which we get
# (B(y, Ro6") N D) = #D < Mg (2(Ro +71) +1) .
Suppose now that k; < ko and Ty, (y) N Tk, (y) # 0. Then p;6% < R;6%2, which gives

log Ry —1
ko — ky < 0g ngl'

—logd
Thus we have for all m > ny

Z / / / (21, 22, 23)* dpzy dpzo dpizs
(,Ro0™) ¥ Tn(23) ¥ Tn(23)\B(22,000™)

n=no+1 xeDf

< C(']/ / / c(21, 22, 23)? dpzy dpzy dpzs
n(23) J T (22,23)

n=ngo+1

< C(')C(')'/ // c(21, 22, 23)° dpzy dpze dpzs
E JE JT(z22,23)

ZC()C(')'/ c(zl,z2,23)2 d/,[;3(Z1,Z2 23),
T

where C{ = MZ(2(Ro + 1) + 1), C§ = (log p1 —log R1)/logé and

T ={(21,22,23) € E® : d(z,2;) < Kod(zx, ) for all 4,5, k,1 € {1,2,3}, k #1},
T(ZQJ Z3) - {Z S E : (Z: Z25Z3) € T}a
where
Ry max{2p, p1 }
Pop1

K():
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By choosing the constants suitably we have M; + My + M3 < 1 and M| + M} < 1.
Thus there exists a constant C' (depending on M) such that
2(T5") < C(c*(E) + d(E))

for all m > ny. We denote I, = I and f, = fi for n > ny. Since now I, C
[0,C(c*(E) +d(E))] for all n > ng, there exists a compact set I C [0, C(c*(F)+d(E))]
such that I,, — I in the Kuratowski sense:

(i) If @ = limg_yo0 ay, for some subsequence (a,, ) of a sequence (a,,) such that a, € I,
for any n, then a € I.

(ii) If @ € I, then there exists a sequence (a,) such that a, € I, for any n and
a = lim,_,. a,.

Let a € I and let (a,), be a sequence such that a, € I, for any n and a, — a as
n — oo. Let m > n > ng. By the construction there is b € [, such that

47,.1672—1—1 " k
—4-5 <~ D dArdt <b—ay <2UTFY) - UTY))
k=n-+1

and f,(a,) = fm(b). Using this we get

d(fm(am); falan)) = d(fm(am), fm () < lam —b| < [am — an| + |an — b
< |am — ap| + max {4r 6" (1 — &)~ 2 ((TP) — U(TF))} -

From this we see that (f,(a,)) is a Cauchy sequence in E. Thus we can define f: I —
E, where FE is the completion of F, by setting for a € I

fa) = lim fu(an),

where (a,) is a sequence such that a, € I, for any n and a, — a as n — oo. Clearly
f(a) does not depend on the choice of the sequence (a,). Let a,b € I and let a, — a
and b, — b such that a,, b, € I,, for any n. Now, since f, is 1-Lipschitz for each n,

d(f(a), F(0)) < d(f(a), fa(an)) + d(fn(an), fu (b)) + d(fn(br), f (b))
< d(f(a), fa(an)) + lan — bu| 4+ d(fu(bn), £ (b)) = |a — 0]

as n — oo. So f is 1-Lipschitz. It is also surjective. To check this let z € D
for some k > ng. Then there is ¢, € I such that z = fg(cx). By the construc-
tion we have a sequence (cy)n>k such that ¢, € I,, fu(c,) = = and |cpp1 — ¢n] <
max{4r; "L 2(1(T) — 1(T3))} for any n > k. From this we see that (c,) is a Cauchy
sequence and thus there is ¢ € [0, C(c*(E) + d(E))] such that ¢, — c¢. Now ¢ € I by (i)
and & = limy, 0 fu(cn) = f(c). Thus U;2, Dy C f(I). Since U, Dy C E is dense
and f(I) is compact, we have E C f(I) = E. Finally, we restrict f to f~*(E). The
proof of Theorem 1.1 is now complete.

We actually showed that

(21) (E) < C ( /r (s 22, 25)2 Ay (21, 22 25) + d(E)) |

A slight modification of the proof gives that we can take Kj in the definition of 7 as
a universal constant such that (21) holds for some C depending only on the regularity
constant of F.
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