ON DISCRETE TIME HEDGING IN D-DIMENSIONAL OPTION
PRICING MODELS

MIKA HUJO

ABSTRACT. We study the approximation of certain stochastic integrals with re-
spect to a d-dimensional diffusion by corresponding stochastic integrals with piece-
wise constant integrands i.e. an approximation of the form 22:1 fOT NEdXE ~
22:1 S NE_(Xf — X[ ). The approximation error is measured with respect
to L? and it is shown that under certain assumptions the approximation rate is
n~1/2 when one optimizes over deterministic but not necessarily equidistant time-

nets 0 =to <tq <---<t,="T.

1. INTRODUCTION

Assume a Borel-function f : R? — R, T > 0 and a stochastic process (X¢)eeqo,1]

defined as a solution of
X/ :x5+/ bi(Xu)dquZ/ o (X )dWY, i e {1,...,d}, (1.1)

where (W;)eor) is a d-dimensional Brownian motion and the functions b and o
satisfy certain assumptions (cf. Chapter 2).

Consider the problem that a trader has to hedge, by a self-financing strategy,
a European type option with maturity 7" > 0, where the pay-off of the option is
described by a random variable f(X7). The perfect hedging strategy is determined

by the process (N, )uep,r) in a stochastic integral representation of f(X7),
d T
fotr) =Vo+ 3 [ aax
k=10
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where Vj is the initial capital. In practice the continuous strategy has to be replaced
by a discretely adjusted one. This leads to an approximation

Z/ NFIXF ~ ZZN{“ (XE—XxE ),

k=1 i=1

where 0 =ty < t; <ty < --- < t, = T is a deterministic but not necessarily
equidistant time-net.

We will measure and (to some extend) optimize the error of this approximation
in L2, Our interest lies in the rate of convergence of the approximation, when the
approximation error is minimized over all time-nets with at most n + 1 time-knots.
This means that we are interested in the quantity

/ NFax*® — ZN;c (X - XF )

k=1 i=1

inf

TeTn <12)

L2

as n tends to inﬁnity, where
T ={t)y: 0=ty <ty < -+ <ty =T,m<n}.

Let us recall some results from the literature. Among others, the 1-dimensional
case has been considered by Zhang [13], Gobet-Temam [8], and Geiss [5]. Geiss
considered the approximation problem for general deterministic nets, which are not
necessarily equidistant, and a closed form formula for the Ls-error was obtained.
Based on this, in [7] several classes of examples were given, where the optimal rate

~1/2 ig attained by general deterministic nets (but, in general, not

of convergence n
by equidistant ones). The result from [5] and [7] cannot be straightforward extended
to the multi-dimensional case because part of the arguments from the 1-dimensional
case do not seem to apply in the multi-dimensional situation.

The multi-dimensional case was, for example, studied by Zhang [13] and Temam
[12] for equidistant nets. For C'-functions with derivatives of polynomial growth (cf.
[13, Proposition 3.1.6, Corollary 3.3.3]) Zhang established the rate n~/2. On the

other side, Temam proved the rate n='/* for the European digital option.

The aim of this paper is to improve the approximation rate of the European digital

option in the multi-dimensional case from n~'/4 to n='/2 by replacing the equidistant

nets by general deterministic nets.
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The paper is organized as follows: In Theorem 1 we show, for a certain class of
functions f, that one gets the L*-approximation rate of n~/? by optimizing over
all deterministic nets of cardinality n + 1. Here we also allow a drift term in the
underlying diffusion process (which is sometimes remarked, but not carried out, in

the literature). In Section 4 we finish by some examples illustrating Theorem 1.

2. PRELIMINARIES

In this chapter we introduce the setting we are working with and recall some known
facts that are needed in order to prove our results.

We shall use the standard assumptions from stochastic calculus, i.e. we assume
a complete probability space (2, F,P) and, for 7' > 0, a right-continuous filtration
(Ft)ieo,r) generated by a standard d-dimensional Brownian motion W = (W).ejo.11
such that Fr = F and Fy contains all null-sets of F (cf. [9]). By ||z|| we denote the
Euclidean norm of a vector z € R%. A Borel-function ¢ : B — R on some set B C R

will be extended to B¢ C R by the notation

p(x) = (p(x1), @(@2), -, p(2a), © € B

We consider a diffusion
X! :x3+/ bi(Xu)du+Z/ 0 (X)dWI, i=1,....d, as. (2.1)

where xy € R?. The process X is obtained through Y given as the unique path-wise

continuous solution of (cf. [10, Corollary 2.2.1, p. 101])

¢ d t
Y;i:yé+/ bi(Yu)dquZ/ (Y)W, i =1,....d, as.  (22)
0 = o

where
bi(x), 64(x) € Cp°(RY)

and 667, where (667),;(z) = Zzzl Gik(x)0 ;1 (), is uniformly elliptic i.e.

d
D (667)i()6&; = MIENP, for all z,¢ € R and some A > 0.

ij=1
Under these assumptions the process Y has a transition density I" with appropriate

tail estimates (Theorem 7).
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We consider two cases. The first case

(C1) g = yo € RY, bi(z) == bi(z), 635(z) == 045(z), X, = Y,
is related to the Brownian motion and the second case

(C2) 7y = €% € (0,00)%, bi(y) := 2 — 15 52() 5,.(y) = 2 and

eYi 2 j=1"1 eYi
Xt = eY;&’

is close to the geometric Brownian motion. In both cases we have

E sup [|Xi]]” < o0 (2.3)
te[0,7

for any p > 0 (cf. [10, Corollary 2.2.1, p. 101]).

To summarize the above, we start with the process X by choosing the matrix o and
the vector b such that the matrix & and the vector b satisfy the required conditions
above. In this way we obtain the process Y and deduce properties of the process X
from the properties of Y.

To handle both of these cases simultaneously, we define functions @, : R? — R for
1=1,...,d by

1, in case (C1)
Qi(z) ==
x;, in case (C2).

In what follows we assume, for some ¢ € [2,00) and C' > 0, that
[f(@)] < C(A+]z]]"), = € E, (2.4)

where the f : F — R is a Borel-function and the set E' is defined by

RY, in case (C1)
(0,00)¢, in case (C2).

E =

Through function the f we define the function g on R by

f(y), in case (C1)
f(e¥), in case (C2).

9(y) ==

Applying Theorem 7 to the stochastic differential equation

= Z5+ Z] 1 fo Uzy W) AW, in case (C1)
fO (2 j=1 z]( )) du+ Z] 1 fO UU dWJ in case (02)
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gives a transition density I'g such that we can define the function G € C*°([0, T') x R%)
by

Gltoy) = [ To(T=t.9.€)g(e)de, 0< 1< T

so that
(& + 55010 (667 W)) 525 ) Clty) =0 ()
d d ~ d ~ o~ 2
(% — D e (% Zj:l U%(Q)) a%i + % Zk,lzl (UUT<y>)kl ﬁ) G(t,y) =0 (C2).
(2.5)
Now we can define the function F on E by
G(t,x), in case (C'1
IV I )
G(t,log(z)), in case (C2).
Assumption (2.4) together with Theorem 7 implies that for 0 <¢ < 7" < T
0 q :
Q)| | F(t,2) < Cape(1 4 llall"), 2 € B i=1d (26)
and
82
QUG |50 F(t:0)] < Cam 1+ el 2 € By ij=1Looide (1)
il
Let
0 1 o2
=== A 2.
A 8t + 2 klzl kl(x) 6mkml ( 8)
where
d
Ap(x) = Z ok (z)o(x). (2.9)
j=1

From the definition of F' and equation (2.5) it follows that
AF(t,z) =0o0n [0,T) x E. (2.10)

Moreover, 1t6’s formula gives that

d t
F(t,X;) = F(0,Xo) + Z/ iF(u, Xu)dej, a.s.t€[0,7).
0

T
k=1 k

Finally, Theorem 7 gives that

F(t,X;) — f(Xr)in L*ast /' T
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and
d

F(X7)=F(0,Xo) + Y /OT iF(u,Xu)dxjj a.s.

T
k=1 k

3. RESULTS

In the rest of the paper we assume the setting from Chapter 2. We start this chap-
ter by stating our main result Theorem 1. It implies that under certain conditions
the convergence rate for the supremum of the approximation error is bounded by
n~Y2, when one optimizes over all deterministic time-nets of cardinality n + 1. Two

examples where Theorem 1 is applied to are presented in Chapter 4.

Theorem 1. Assume that for all x € E

oo | S ey

b;(x)] < C1Qi(x) and Ay(z) > C%Qf(:v) fori e {1,...,d} and some fized C; > 0.

<y where g +r =s, q,r,s € {0,1,2},

Moreover, assume that

2

0? C
s;,}gJE Ana(X)) Ags(Xy) axamﬁF(t,Xt) < (T——2t)29 0 €0,1), for some Cy > 0.
(3.1)
Then
n d tInt 2\ =
i 0 0 D,
E sup / (—F(U,Xu) — ——F(t) | X, )) dx* < =,
tE0.T] | i= ; 8 ne \OT, Iy, P n
where
1 n
i\ T8 =0, gelo,31
Tf:: <T<1—<1—1>15>> and & 0,2)
" =0 BE (20_]—71)7 S [%71)
and Dy > 0 depends at most on 3,C1,Csy,d and T.
In addition, assume that
ir(lf | H?*(u) = Cy > 0, (3.2)
ue(r,s
for some 0 <r < s<T, where H is defined by
) d 2 92
H =E Aap( X)) A (X, Flu, X,)—F(u, X,), 0,7).
(=T 3 AwslXa)An(Xa) 5 Flu, Xo) 5 = Pl X, u € 0.7)

a,(,1,k=1

(3.3)
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Then we have the following two cases:

(L1) In the case that 6 € [0,3/4), we have, for any sequence of time-nets 0 =ty <

ty<...<t?=T withsup,_, (" —1t",) <C;/n, C; >0, that

77777

1
n d t’-l/\t a a . 2\ 2
liminf /2 | E sup / (—F u, X —F(ti1, Xy, )qu
n—oo t€[0,T) i:l; n 8:1:k ( ) (9% ( ! ! 1)
(3.4)
1
> —.
=D,
(L2) If 6 € [3/4,1), then we have that
1
n d tf/\t a 8 5 . 2\ 2
liminf/n | E sup / (—F u, X —F(t,_, X8 )qu
n— oo t€[0,7) — 1; 8 At axk ( ) axk ( 1 ti71)
(3.5)
1
> —.
=D,

The constant Dy > 0 depends at most on C1,Cy, Cy,d and T.

Remark 2. (1) In the case that the process (Xi)icjo,r) does not have a drift, it
follows from Doob’s inequality that inequalities (3.4) and (3.5) can be replaced
by

1
2\ 2

1
liminf \/n > Fg

n—oo

0 k
8IS [ (G g ax
k=1

i=1

(2) In (L2) we have the lower bound only for time-nets 0. Compared to (L1)
this does not seem natural, since larger 8 should correspond to a worse ap-
prozimation. We need this restriction for technical reason (but believe that it
can be removed).

(3) Under the setting of the Chapter 2 the assumptions in Theorem 1 which con-
cern the estimates of the matrices A and o and the vector b by the functions

Q; are always satisfied for some C7 > 0.
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(4) It follows by a simple calculation that

= Z (Z O_O‘m )Uﬁn(Xu)a;ixﬁF(uaXu>> .

m,n=1 ,B=1

Now because of (2.7) we have that H?*(u) € [0,00), foru € [0,T).
(5) If the matriz A defined in (2.9) is a diagonal matriz, then

H(u) =B ) Aca(Xu)Ags(X)

a,B=1

2

o2
0xo1p

F(u, X,)

|

considered for the upper bound in Theorem 1. In the 1-dimensional case our

and thus it is equivalent to the function

2

Ana(Xi) App(X1)

sup £ F(t, Xy)

a?ﬁ

Talp

function H is the same as the function H controlling the approximation error

in [5].

Now turn to the proof of Theorem 1. We deal with a multi-step approximation
error i.e. the stochastic 1ntegra1 Zk ) fT d F(u X, )dXP* is approximated by the
stochastic integral 3¢ S j; " 8x 7 1,Xti_1)dX1’f. In order to estimate the
multi-step error we need to have information about the one-step error occurring in
a time interval [t;_1,t¢;]. Here Proposition 3 and Proposition 4 below are needed.
Proposition 3 gives the upper bound for the one-step error. It is an extension of
Temam [12] for the upper estimate and replaces the limit arguments by the inequality
(3.6), which can be applied to any fixed time-net to upper bound the approximation
error. From Proposition 4 we get the lower bound for the one-step error. In the
proof of Proposition 4 we use the same principal decomposition as in Temam [12],

but apply it to non-equidistant nets.

Proposition 3. If for allx €

88
—~ ~ O
q r )
aa:ﬁ axa

) q+T:S, Q7Ta56{07172}7
T
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|b;i(z)] < C5Q;(x) and Au(x) > C%Qf(m) fori € {1,...,d} and for some C5 > 0,

then for 0 < a < u <T it holds

d d o 2
N o 2
M E (axkF u, Xy, &%F(a X )) or(Xy) (3.6)
=1 k=1
u 2 2
< D3/ sup E | Ana(Xt)Ass(Xy) F(t, X) ] dt,
a o,f l’axg

where D3 > 0 depends at most on Cs,d and T

Proof. To keep the notation simple, we allow in the following that the constant
C > 0 may change from line to line.
Set
v aF(aX) d and ¢ (u, x) aF(u:n) " (x)
0= | =— ,x) = | =— o .
Using this notation the assertion can be re-written as
2
] .

u 2

d d
) E¢n(w,X,) <D | supE

=1 k=1 a of

A (Xt)Aﬁﬁ(Xt)

F(t, Xy)

0r473
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Lemma 10 allows us to use the stopping argument from Lemma 9, which implies

that

Eé7, (u, X,,) = / E (Adp) (v, X,) dv+2/ ( ¢kle))b (X,)dv.

(3.8)
To prove our theorem we need to compute an upper bound for A¢?,(u,x) and for

5292 (u, )by, (z). First we consider the term A¢Z:

‘A¢il(u> x)‘ (3.9)

= 20 (u, x) (Adk) (u,x) + Z Z ((Ta] — dwi(u, :c)) (aﬁj(x)%q&kl(u,x))‘
a,B=1 j=1 Lo B
< g, @) + (Ad(u, x))* +

+ = Z Z |:<0'ocj agbkl(u 95)) + (Uﬁj(x)ai%ﬁbkl(u’m)) ]

a,@l]l

d d

= o(u,2) + (Agw)® (w,2) +d D> (U‘”(x)é%

a=1 j=1 @

2
Pra(u, x)) :
Hence equation (3.8) implies that

Ed?(u, X,) < / B (v, X,)dv + / "E (Ad)? (v, X, )dv

+dZZ/ <% ¢k,(v X ))zdv

a=1 j=1

+Z/ ‘( vX))b(Xv)

where the right-hand side is finite because of Lemma 10. From Gronwall’s Lemma

dv,

(see Theorem 8 in Appendix) it follows that

B, (u, X.) < [ [ E o) X, )do+ (3.10)

;d:lzd:/ (Uocy —acbkl(U,Xv))de

7=1

+d
+§d:/ IE‘ 02,(v, X,)bm(X,)

dv] elu=a),
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To continue we need to find an upper bound for the above expression. We start with
Aoy and have, by definition, that

2

Abw(u, ) = (£—mp<u, a:)) (@) +

P13 (5@ (5w -t

a,B=1
0 0?
— F
* <8xﬁakl(x)> ((’%axk (u,x))

+(Zowt) (52 Fon)
outr) (552 rtwn)

0x,x Ty,

Taking the derivative with respect to zj, in the partial differential equation (2.10) we
get that

d

0 0 1 o?
THEFW LU) + = CM;I Aa/@(lC)mF(U7$)

1 & 0
) Z <8xk ) Gscang(u’@'

a,B=1

Now we can replace the derivative with respect to ¢t and the third order derivatives

in the formula for A¢y(u, z) by second order derivatives:
1 <& 5> 0 i
Ao (u, x) = 5 Z [Aag(x) (8$al’60_kl<$>> (8—%F(u x) — Ua)

o) (onto)) (52w

+ Anp(z) (a%akl(:c)> (c%ijxkF(u’ x))

«

e (&) (0]

It follows from the definition of the matrix A and the assumption on the matrix o

that

|Aus(z)] < CQa(2)Qp(x)
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and

0

Qa(I)Qﬁ<x)
a—%Aaﬁ(x) —

Qr()

Now we can bound the function (A¢kz)2 (u,x) from the above by

<C

(Apw)? (u,z) < C [(—F u, T) )QQi(x) (3.11)

2
For <aaj(x)%¢kl(u,x)) we get that

(O'aj (@%@bkz(% x)) 2

[e%

< 202 (x) (ai%akl(@y (a%F(u z) — v§>2 +202 ()07 () (%F(u,x))Q

_C<Qﬂ@<§%FWJﬁ—¢)'+Q3@Qﬂ@(aZ;£W%@>j-

(3.12)

The term including b,, can be bounded as follows:

Ké%%w@ﬂmww

<2 %F(u x) — |akl(x)| |by ()] X
X (‘%akl(m‘) (%F(u, x) — vfj) + |ow ()] afmxkF(u,x) )
<C zF(u,x) 0" Qr(2)Q () X
Qr(7) 0
X (Qm(w) &EkF( x) — vy |+ Qr(x) 8wmka<u’x) )
B, ) s ik ?
<0<55wa> <>+@Am@<>&Mmew>),
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(3.13)

where we used that

0 0?

8_xkF(u , L) — 2(2)Qum () 8xmxkF<u’x)
< 9 r k2 2 2 2 0 F ’
<oz, (u, ) — vy | Q(z) + Qp(z)Qr, () py—— (u, )

Now the expectation of ¢%,(u, X,) can be bounded by

Eor, (u, X,) < C/ (—F(U X,) — >2Q§(Xv)dv

u 2
+C/ Sué)]EQi(Xv)Q%(XU) (8_

2
F(v, X, dv,
P X)) do
where we use (3.10), (3.11), (3.12) and (3.13). From the above and (3.7) we get

d

(51 Flux - )2Q2<Xu>

u d 2
< C/ E) (iF(v,Xv) - v{;) Q3 (X,)dv+

k=1
u ) 82 2
#0 [ smBQUXIQHN) (o F(0X)) o
Gronwall’s lemma (Theorem 8) gives
d 2
Z]E (—F u, X,) — ) Qz(xu)] (3.14)
=1

62
0413

u 2
< eC(u—a)C’/ sup]EQZ(XU)Q%(XU)( F(U,Xv)) dv
a Oéﬂ

and the assertion follows from (3.7). O

Proposition 4. If for all x € £

as
5 ~— 0
q v
0z, 05,

and
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forie{1,...,d} and for some Cy > 0, then for 0 < a <t < T it holds that

i]E (i (aiF(t,Xt) — %F(a,X&) oij(X ) / H?(u)du

j=1

—D4/at </aus;EIEQ§(XU)Q§(XU) 82 F(v, X,) dv) X

2\ 2
X (suplEQi(Xu)Q%(Xu) s Fu, Xu) ) +
a,B

2
a—F(U,Xv)

d
0ra13 !

du,

+ /a sup EQ2(X,)Q%(X,)

where the function H s defined in Theorem 1 and D4 > 0 depends at most on Cy,d
and T.

Proof. To abbreviate the notation we assume again that C' > 0 may change from

line to line. We let

o = (&EiF(u7 X.) — v;) 0ij(Xu),
where u € [a,?] and v} := 2-F(a, X,). 1td’s formula gives that, a.s.,

t 2
ij _ 0
t 8t$i

+ Z / [ @IawzF(u,Xu)aij(Xu)

+ ( 9 plu,x,) - vg> io—ij(Xu)} du

F(u, Xy,)0:;(Xy,)du

I, oz,
d 4 g
+ZZ/ {ax X F<u7XU)O-7,]<Xu>
a=1n=1"% e
7 ¢ 8xa0” Tan
d . 5 )
T3 a%:1/a 3xgxaxiF<u’ Xu)oii(Xu) + c%axiF(u’ Xu)a—%aij (Xu)+
0? o
- 8mxlF(u’XU)8_%0ij(X“>+

0 ; o
+ <0$ F(u, X,) — va> maij(Xu)} Anp(Xy)du.
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From the above we deduce

%

S (52 r x5 + (Lm0 12 o)

a=1 =1
X > F(u, Xy)ow(u, X,) + iF(uX) 80 (Xu) | Aup(Xy) | d
x5y, s Au)Tkj Ty oz, (’9azﬁ & aplu) | G

and, using the equality AF = 0 (cf. (2.8) and (2.10)), we get that

d d 62 8 | a
= Z Z <axasz(U/7 XU)O'” (X'u,> + (asz(U, Xu) — Ua) a—xao-zj (Xu)> Uan(Xu)qu

a=1 n=1
d
T2 Q;I AaplX) 8xasz(u’ X“)a_:%aij<X“) * 8xﬂxiF(u’ Xu)a—%aij(Xu)

A “ 8xﬁxaa” u
d
1 0 92
- 5;;1 [a_%Aaﬁ(Xu)axﬁxaF(u,X Jou (X )} du

+Zba(Xu) |: 0 'F(U’Xu)o-ij(XU)

0 D\ 0
+ <8xiF(u’ X,) — va> aTUij(Xu)] du.

(67

Let
Sn ::inf{uZa: ‘gbﬁf’ > N or ||X,|| > N for some i,j € {1,...,d}}/\t

for N =1,2,.... Because of Sy "t a.s. as N — oo and Lemma 10 one has that

d d 2 d d 2
u () - pmYon(Xa)
-1 i=1 j=1 i=1

J
Using the partial integration formula for semi-martingales, we get

d

d
ZE(Z¢?N> ZzE [ S s+ S w [,
j=1 i=1

@ k=1 i,k=1 a



16 MIKA HUJO

Because of the choice of the stopping time Sy, the expected value of the ”dW'-terms”

vanishes. For the rest, we obtain as main term

SN d 2 2
Ef7 Y Anl)An(X) 5 Flu X 50 Fu, X)du

Nyl 0L o X; T,

and (after some computation) terms of the type

E/SNA (Xu)ris (X)L (%) (2P, x0) = o) =2 P, X,)d
. af u)Okj U 81’501] u al’k Uu 0%;76, U, Aqy)QU

and

]E/GSN (83 Flu, X,) — >%(X Yoo (X.0) <aiip(” X,) - >ai 045 (X

Ly
Using the assumptions on the matrix ¢ and the vector b we can bound these terms

by

Ans( X))o (X )ia»(X ) iF(u X,) —o* > F(u, X,)
af u )Y kj u al',g i 8$k u a axaxi s A
Qi(X,) | 0 Wl 02
< CQQ(XU)QB(XU)Qk(XU)Q X (%ckF(u , Xu) — v, xasz(%Xu)
0 & 0?
S CQk(Xu) 8_:1:,€F(u’ Xu) — U, Qa(Xu)Qz(Xu) GmaxlFm’ Xu)
and
0 0 N\ 0
‘ (6—%F(u X.) — ) 0k (Xu)ba (X4) (8xiF(u’ X.) — U;) 3_%Uij(X“)
< CQu(X.) a‘sz(u X,) =8| Qi) | P X,) =]
Holder’s inequality and (3.14) give
0 k 0?
EQk(Xu) Dz, (u, Xu) — v, (Xu)Qi(Xu) ((hal’ZF(u’Xu)
) o . 2\ 2 ) ) 82 2 %
< | EQx(Xu) 8_%F<U’Xu) — Ug i}}g EQa'<Xu)Q,8’(Xu) 8xa/xﬁ/F<u’Xu)

04,76/ al'a/l‘ﬁ/

gC(/usuplEQi,(Xv)Q%,(XU) ” F(v, X,)

X (Sup EQi’ (Xu)Q%’ (Xu>

a/’ﬁ/
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Moreover

(uv XU) - US

F(u, X,) — v

o ) (EQ?(XU)

2 2

dv

Ly,

0 0
v 2 P(u X)) —
ox,, (1, Xu) = v

F(u, X,) — pe

7

§<EQﬂX0

F(v, X,)

<o [ swpEQ(X)QAX
<C [ s EQAX)QHX) | 5

and the assertion follows by N — oco. a

Proof of Theorem 1.
Also in this proof, we use the same notation for different constants. First we consider
the upper bound for the approximation error. Let e € (0,7). Using Doob’s inequality

together with Holder’s inequality we see that

S

2

n_ d tint 9 5 k
E sup / (—F u, X —F(ti—1, Xy, ) dXF*
te[0,7—¢] |5 ; tiant \OTy, (1, Xu) = oz, (i1, X,
n d tint o 9 9 %
< |E sup / (—FuX ——F(t; 1, X )kaudu +
tel0.7—<] |55 ; b \OT, ( ) oz, (tic1, Xy, ) (X.)
0 2
+ sup Z / (_F(U X ) _F(ti—l, Xti_l)) O-kl(Xu)deL
tE [0,T—¢] i=1 1=1 1AL —1 &Ek
tNT'—e 8 o\ 3
= Z / AT —e a_'CEkF X ) a_xkF(ti_l’Xti—l) |bk(Xu)| du +
=1 k=1 1
n d tiNT—e d 9 P o\ 1
+ 2 E Z Z/ Z (_F(U, Xu) - _F(tilthil)) O—k’l<Xu)dW£
i=1 1=1 Yti-1AT—¢ 8xk axk
1
d \/_ n t; a 8 9 i 1
< T|E —F(u, X, —F(ti_1, Xs. b(X,)|2d
> ; Zz_l: /til (9xk, (uu ) axk ( 1 t; 1) | k( )’ U +
n_ d tiANT—e d 9 P o\ 1
i=1 =1 Yti-1AT—e dxy, Oz,

N



18 MIKA HUJO

Inequality (3.14) gives that

B; < 01\/_2 (Z/ (O_xkF u, X,) — aikF( i 1,Xt“))2Qg(Xu)du>

[NIES

[N

1 B

<fcz(; / | spEeix)er) (%Fw,xv))zdvdu)

For B, the Ito-isometry and the orthogonality of stochastic integrals give

Zz/t AT—e (8_3;]6F(u X,) — %F(tz‘—h){ti_l)) ow(X)dW!

i=1 =1 Jti—1AT—¢€

A

i=1 [=1

2
B3 = 4E

2

tinT—e 4 T 0 o T
/ Z a—F(U; Xu) — 8_F(ti—17Xti_1) O-kl(Xu)dWi

tifl/\T—E k=1 b xk} xk

2
n d t; NT—e

du

d P o T
Z a—xkF(u X ) a_xkFOfifl:Xtifl)- Jkl(Xu)

n d d t: 2
i a a
< 4d § ) / .,IE (—&E Fu, X,) — axkF(tz'—hXti_l)) o (X,) du.

Letting € \, 0 we get by monotone convergence that

1
2\ 2

nd tint P P
B ZZ/ (a0 = it X axt

d e 2\ 2
gﬁc%(Z/ / sup]EQ2 (X,)Q3(Xy) (mF(U,Xv)) dv) +

<4dzn: d Z/ (—F u, Xy,) — %F(ti1,Xt21))20kz(Xu)2du>é.

=1 =

The assertion for the upper bound follows from Proposition 3 and Lemma 11 in
Appendix.

Now we continue with the lower bound of the approximation error. Let [A, B] be
a subinterval of (r, s) such that

(B—A)Cp _ Cu

0<- 8 20
(T—B)» ~ 4

(3.15)

where C is taken from (3.2) and the constant Cg > 0 satisfies (cf. (3.14))

d;E (a%ﬂu X,) a%p(a X )) B(X,) < Cs / ﬁdv (3.16)
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for A < a < u < B. Let us now consider the approximation error inside the interval
[A, B]. Denote I,, := {i: A <t <t? < B} and denote in both cases for the lower
estimate (cf. Theorem 1 cases L1 and L2) the sequence of time-nets by (¢7')?_,. Note
that for large n the set I, is not an empty set because, in both cases, we have that
sup;—;,,(t7 —ti 1) < C:/n. Now on [A, B] we get that

2

a n k
ZZ/ (8—%}7 u, X,) — amkF(ti_l,Xt?_l)) dxP"

i€ly, k=1
i K} 2\ 2
el =1 1 k’ 1
( 2\ 3

Zz/n (3_%F  X) = aikF(t?—let?l)) b (X du

i€ly k=1

This implies that

E

>3

iel, k=1 7 ti-

B [ 5 (gt - X)) ety

iel, =1 11k1

d tm
; ) 0 n
2 (G o gt X ki

i€ly k=1

ZZ/ Z (3_%]7 u, Xo) = %F(t?pXt?l)) ox(Xu)dW,,

iel, =1 11k1

o 2
(B-A)> leE/ (8—%F(u,xu)—a—%F(t“,Xt¢_l)) b2 (X,)du.

i€l

o 5,
— F(u, X,)) — —F{" ;. X dxk
(55l = P4 X)) d!

2

1
2

2
-E

2

1
2

Now (3.15) and (3.16) give that

(B — AZdZE/

n
i€l

BAZ//i ——=—dvdu

i€l

t U H2<U)
<> /t 1 dvdu.

n tn

a 2
Flu. X P Xom 2(X
(axk (U ) 8xk (tl—lﬁ tz‘l)) bk;( U)du

i€l



20 MIKA HUJO

Let us now consider the lower bound for

ZZ/ Z (—F u, X)) 8ikF(t§‘_1,Xt?_l)) or (X, )dW!

zEIllzlkl

1
2\ 2

Using the Ito-isometry, for 0 < a < b < T, we get that

Zj:/ Zd: (axk (t, X;) — %F(a X )) ow(Xy)dW} 2
_ ZE/: (zd: <8%F(t X,) — %F(a X )) o—kz(Xt))th.

Assuming b — a < 1, Proposition 4 implies that
b pt ) b pt U 1 % 1 %
B3 > /a /a H*(u)dudt — D4/a /a (/a —(T — U)zadv) (—(T — u)29) dudt
b t u 1
/ / H2 Ydudt — 2Dy\'b — a/ / g dudt.

Considering the multi-step error for the approximation we get that

d tn
L0 o . .
Y (a—xkF(u X,) — axkF(t“,Xt?l)) dx*

icl, k=17t

2

E

2

Sl 0
=gk ZZ / Z (%F w Xu) = 5 F(t?_l,thl)) (X)W,
i€l, =1 “%-1 k=1 k k
a 2
(B—A)> dZ]E/ (—F(u X,) — =—F(" |, Xpm 1)) b3 (X,)du
icly, i, \OT; Oy, "
1
Z —

n t'n,

i€l
—Z/ / HQ ddt

i€l

Zz/nﬁ(t”_t) 7 \/_Z/ / ————dudt.

’ieln ti_

et [ —
Z / H?(u)dudt — C / / L “dudt]
t t" t"

In the case L1 for our lower estimates [5, Remark 6.6] implies that

C
/t" /n dudt — \/_n1/2+€

ZEI
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for some £ > 0. In the case L2, Lemma 11 gives

1 C
ddt<——.
/ / =

The term containing H? can be bounded from below as

e H2 —qn
liminfn ) / (t;-t)#dt > lim inf Z2 Z 1)

n—o0 4 n n—o0
lEIn i—1 'LEI

2
.. .Cu nun
2 liminf == (E (t; —ti1)>

i€l
_Cn

(g - Ay

This proves the estimate. O

4. EXAMPLES

In this chapter we give two examples as an application of our results. For simplicity,

we consider a diffusion

—:1:0—1-2/ 0 (X)dWI, i=1,....d

in the case (C2). Let 0 =ty <t; <--- <t, =T be any deterministic time-net on

[0,7]. By (t))™, we denote the time-net

j==)

N |

)

(tﬂ)z 0= (T (1—(1—2)IB>) and F=9 belo
n o Be(20-1,1), ec[i 1)

where 6 is from Theorem 1 equation (3.1).

N[ =

Example 5. For a Furopean digital option with strike price K > 0,
flz) =1 ?ZIAM,ZK(:B), where A1, ..., g >0,

the approzimation rate is n~'/* if equidistant time-nets are used [12, Theorem 2.1].

Theorem 1 gives that this option can be approzimated by the rate n='/2, more precisely
2\ 3

<D1
_\/ﬁ

[ sup
t€[0,T7]

n d t9 At O 0 8 k
>3, (i 00— e ) ) ax:

i=1 k=17t
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and
1
2\ 3

1
. < liminf v/n

2 n—oo

d
—F(u,X,) — —F(t? |, X5 )) dxk
1 k= 1/‘3 (axk’ O B

for all 5 € (1/2,1). Assumption (3.1) follows from [12, Proposition 3.3] for 6 = 3/4
and (3.2) is due to [12, equation (4.2)].

=

Example 6. If d > 2, (0y;){,_, is a diagonal matriz, and if o,;(x) = o4(x;), then
the transition density of the process Y can be written as the product of the transition

densities of the process Y, i.e

tyf HFYltywéz

Assume that f(x) = H?Zl fi(z;), where the functions f; are of at most polynomial
growth. The definition of F' implies that

F(t,x) =[] Filt, ;)
with
E(t, ZL‘Z) = /Rryz(T — t, IOg Z;, §Z)fz(e§’)dfl,

and the second order derivatives of the function F' can be written as

d ) ‘
axixj 8522$1E(t’ xl) an:l,m;ﬁl FM<t7 mm)a 7 = j

Assume that there exist C > 0 and 0; € [0,1) for alli=1,...,d such that

2

Fit, X )} < ﬁ (4.1)

g

{Qz(Xt)ﬁa

Theorem [3, Theorem 2.3] gives that

1
2\ 2
sup (T — )Vt (]E aii(Xt)iFi(t,Xt) ) < 0 (4.2)
t€[0,T) Oz,
if and only if
1
t o2 2 2
sup (T —t)* / E |07(X.) Fi(u, Xy)| du| < oo, (4.3)
tel0,T) 0 Oz x;
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where o € [0,1/2). Now we assume, without loss of generality, that 0; € (1/2,1).
For a = 3 we get that

E Aaa(Xt)Aﬁﬁ(Xt>( ~ F(t’Xt>)2]

0,13

B 82 27] d
=E |02.(X7) B(t, X7) I[I EE.xmP

0r,T
L ara 4 m=1m#«a

< E |o5q(X7)

82 27] d )
F(t, X7) I Elfm(x)

m=1,m#«

0T oLy,

which is at most of order (T — t)?%». For a # (3 we get that

02 2
B | (60 455(0X0) (o F (0.0 ]
9 : 9 ’
<E |02,(X]) %F(taXta) E O%,B(Xtﬁ) 8_%F(t7Xtﬂ) X
d
X H E | fin (X717
m=1m7#a,m#3

The implication (4.3) = (4.2) implies, for n; :== (6; —1/2) € (0,1/2), that

1
2\ 2
)<oo.

Using [3, Lemma 5.2] one can remove the factor \/t, so that

sup (T —t)"/t <]E

te[0,T)

0
Uz'z'(Xt) %Fi(t» Xt)

)

2 2

sup (T — t)2e )R ‘Aw(Xt)Aﬁﬂ(Xt) F(t,X,)| < oo.
tel0,T) Orazps
Putting all estimates together, we find a 6 € [0,1) such that
0? ? D
E | Aoa(X:)Ags(Xy) <8wa:c5F(t’Xt)) < m.
Looking at the above computations, one can take 6 := max {0y, ...,04,1/2} without

the assumption 0; € (1/2,1).
Let us now consider a simple example of mizing different type of options. Assume,

for the dimension d = 3, that o is a 3 X 3 matriz defined by

0, @#J,

Tiy V=17,

oij(x) =
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and that xo = (1,1,1). Define the pay-off function f by

f(l’l,l’zywza) = fl(xl)f2($2)f3($3) = (331 - K1)+ (I2 - Kz)i ]l[Ks,oo)(x?»)?

where K; > 0,1 =1,2,3 and o € (0, %) For Fy one can compute

? G )

Fi(t,z) = exp |—
0r11, it ) VT —tV 2 P 2

and
D) Q X —2 i — 1 (1 /2 log(Kl))2
|: %( t) e Fl(t X1>:| = —21;2611 [ t :| )

This implies that one can choose 07 = }L. For Fy, we can choose 6 = 3*42‘“ and for

Fs, 05 =3 (cf. [8, Lemma 1 and Lemma 2]). Now Theorem 1 gives that

1

n d
E sup

t€[0,T]

t.ﬁ/\t a a 3
/t (a—%F(U Xu) = a—%F(ti—pthl)) X,

AL

<D
_\/ﬁ

=1 k=1

forall B € (1/2,1). Under the assumptions of this example we have that

)=FE Z <o—aa am()()a(92 F(u,Xu))2

o1 Talp

ZES (02 (x)- L F(u,m)Q

0T Ty

2

[ EIF (X)),

m#a

Fu, X)

OL’Z'Oé

3
Z]E|X"‘

Since fi1, fo and f3 are not almost surely linear and since

2

62

4
u— E|X7 1
aro

Fa(qu3>

is continuous and increasing [6, proof of Proposition 2.1] the result from [5, Theorem

4.6] implies
2

> 0.

2

0% aTa

sup B |X2)*
uel0,T)

Fo(u, X¢)

Moreover,

lim B (Fa(u, X7))* = Ef2(X7) > 0.
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Hence Theorem 1 gives that

n d 2

7 At
A (5Pl ) - P X))

1
— < liminf B
oS im inf v/n sup » or, oz,

2 n—00 t€[0,]

i=1 k=1
If we take f(x1,22) = fi(x1) fo(x2), then we can choose 0 = 05 < 3/4 and get

n d 2

tEAL 8 a N
L F(u, X)) — —F(t; 1, X ax*
Z/t;il/\t (axk (4 %) Oz, (i, Xor >>

1
. < liminfv/n | E sup
i=1 k=1

2 n—00 te[0,T)

W7 = 1i1) < Cfn.

for any sequence of time-nets with sup,_,

APPENDIX

Theorem 7 (Theorem 8. p. 263 [1], Theorem 5.4. p. 149 [2]). For b, & with 667
uniformly elliptic, there exists a transition density ' : (0,T] x R? x R? — [0,00) €
C™ such that P(Y; € B) = [, I(t,y,£)d¢, for t € (0,T] and B € B(RY), where
Y = (Yi)icp1 s the strong solution of the SDE (2.2) starting from y: Moreover, the

following are satisfied:

(i) For (s,y,&) € (0,T] x R? x R? one has

0(5,5.6) = 2 30 61wy (y)

k=1 j=1

(ii) For a € {0,1,2,...} and multi-indices b and c there exist positive constants

C and D, depending only on a,b,c and d, such that

Qo IblHlel C _pliv=en?

0t dby 0°¢ L., 5)' = jdratipl )2 © ’

where ||-|| is the Euclidean norm.

Theorem 8 (Gronwall’s Lemma, [11]). If, for to <t <t;, ¢(t) > 0 is a continuous

function such that
t
o(t) < K+ L/ o(s)ds
to

forty <t <t where K,L >0, then
(b(t) S KeL(t—to)

Ontogtgtl.

N

N
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Lemma 9. Let 0 < a <b< T and define

dr(u, ) = (%F(u x) — vk) op(x), we0,T), x € FE,
k

k

where v 1s an F,-measurable random variable and assume that

0
%gb%l (Uv XU)bm<Xu)

u€la,b]

d
E sup [qbzl(u,Xu) + I(Acbil) (UvXu)| + Z

]<oo.

m=1

Then for s € [a,b] one has

E? (s, X.) =Ed%(a, X.) + / B (AG) (u, X,)dut

/]EZ( %UX))b (X.)du.

Proof. By Itd’s formula we obtain

B, X.) = Bala, Xa) + / (AG2) (u, X,)du

a

Define

and
Spi=min{S;",m e {1,...,d}}.

This implies that

/Sn zd: [ D, X >r<fij<xu>du <n

Jj=1

and

S’n
E / £¢il(u,XU)amj(Xu)de =0,

m

forne N, me{l,...,d} and j € {1,...,d}. Dominated convergence gives
]EQZSZI(S:XS) = lim Eqbiz(Smen)

Sh
= lim []Eﬁl(a,Xa)Jr]E / (Adzy) (u, X,)du+

n—oo
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d Sh a

Lemma 10. If for allx € E
88

o7 5 ()
o,on Y

Qi(x)
= wan )

for some C > 0, then for all0 <a <b<T andk,l € {1,...,d} we have that

7q+r:S7 q7r7S€{07172}7

E sup o (u, X,) < oo,

u€la,b]
a 2
E sup Qm(Xu)_Cbk:l(U, Xu) <00, m= ]., R ,d,
u€(a,b] 8xm
6 2
E Sup Qm(Xu)_¢kl(u7Xu) <00, m= 1, . ,d,
u€(a,b] a‘Tm
and
E sup |(Ad}) (u, X,)| < oo,
u€[a,b]
where
Dual2) = (o Flu ) — 0 F(a, X)) o), u € [a, 1]
U, r) = 9., U, T) — 35— a ) I .
k?l ) 8$k ) 6:Ek ) kl

Proof. This proof uses the same notation for different constants. Equation (2.6)

implies that the random variable ¢3,(u, X,) can be bounded by

. X) = (ol X,) = 5 Fla. X)) ohi(X,)

Ty, L,

<C (;F(u,XU) - ;F(G,Xa)) Qr(X)

Ly, Ly,

8 2 a 2 2 Xu
<o (Jor g roxo] s rox| G59)
q\2 Qz(Xu)>

<o s (x| (1+ )
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Applying Holder’s inequality we get that

Qr(Xu)
sup (1+ |1 X,]|%)? sup (1 "
uela b u€lab] Q7 (Xa)

<C|(E sup (14 [|X.]|)* E sup (1—|— :
< ue[a,b]( il )) ( u€la,b] Ci(Xa)

Equation (2.3) gives that Esup,c,, (1 + ||X,||9)* is finite. In the case (C1) it is

E sup gbil(u,Xu) < CE

u€la,b]

trivial that the latter term is finite. Let us now turn to the case (C2). Theorem 7

implies that
E(X*) 7 = Ee " (4.4)

= / e Py (u, yo, y)dy
Rd

1 u
< C exp {—pylg + QEPQ} < 00

for all p € [0,00) and some C' > 0 and D > 0. Holder’s inequality now implies that

Qi(Xu>)2 QiH(X,)
E 1 2114+ E
o (14 55) <2 (14 m e S

1 1
1 2
<214+ [E sup (XF)?® (E ) :
( u€la,b) (X§)8

which is finite by (2.3) and (4.4).

Straightforward calculation gives that

2

E sup
u€|a,b]

Qn%0) () (1. X,)

82

0Ty,

=E sup {an(Xu) F(u, Xy)ow(Xy)+

u€la,b

+ (%F(u,XU) — iF(Cl,Xa)) (%%) (Xu)

axk m

)

and this is finite by equations (2.3) and (2.7) and the above argument.

2]
2
+

2

<c (E up Q4 (X)X | 50—

u€la,b] Tk

F(u, Xy,)

iF(u, Xu) — iF(a, X,)

2

u€(a,b]
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Holder’s inequality together with the above gives that

[ sup
u€la,b)

Qm(X.) (%%) (1, X.)

=2 sup
u€la,b)

Qm(Xu) O (u, Xy) (%%z) (u, Xy)

1
2\ 2
)<oo.

<2 (]E sup |og(u, Xu)lz) (]E sup Q2 (X,)

u€la,b| u€la,b)

(%qm) (u, X,)

For the last part of the proof, equation (3.9) gives that

E sup |(Adf) (u, X,)| < oo

u€la,b
if
E sup (Aop)’ (u, X,,) < oo.
u€la,b)
This follows from equation (3.11) and the above arguments. O

Lemma 11. Assume that a Borel-measurable function ¢ : [0,T) — [0, 00) satisfies

p(u) < ﬁ’ u € [0,7),

for some C > 0 and some 0 € [0,1). Then there ezists a constant C' > 0 such that

ti’a u /
S [ Peasast
n

tZ'ETnB
where
8= (T <1— (1—3) )) and B 02)
" i=0 Be20-1,1), 61 1)
Proof. Lemma follows from [4, Lemma 4.14, Proposition 4.16]. O

REFERENCES

[1] A. Friedman. Partial Differential Equations of Parabolic Type. Prentice-Hall, 1964.
[2] A. Friedman. Stochastic Differential Equations and Applications. Academic Press, Vol. 1, 1975.
[3] C. Geiss and S. Geiss. On approximation of a class stochastic integrals and interpolation.

Stochastics and Stochastic Reports, Vol. 76, No. 4, August 2004, pp. 339-362.



30 MIKA HUJO

[4] S. Geiss. On quantitative approximation of stochastic integrals with respect to the geometric
brownian motion. Report Series: SFB Adaptive Information Systems and Modelling in Econo-
mics and Management Science, Vienna University, 43, 1999.

[5] S. Geiss. Quantitative approximation of certain stochastic integrals. Stochastics and Stochastic
Reports, Vol. 73,2002, pp. 241-270.

[6] S. Geiss. On the approximation of stochastic integrals and weighted BMO. Stochastic Processes
and Related Topics, Eds. R. Buckdahn, H.J. Engelbert, M. Yor. Stochastics Monographs. 2002.

[7] S. Geiss and M. Hujo. Interpolation and approximation in Ls(7y). Preprint 290, Department of
Mathematics and Statistics, University of Jyvaskyld, 2004.

[8] E. Gobet and E. Temam. Discrete time hedging erros for options with irregular payoffs. Finance
and Stochastics, Vol. 5, 2001, pp. 357-367.

[9] 1. Karatzas, S. Shreve. Brownian Motion and Stochastic Calculus. Springer, 1988.

[10] D. Nualart. The Malliavin calculus and related topics. Springer-Verlag, 1995.

[11] D. Revuz, M. Yor: Continuous martingales and Brownian motion. Springer-Verlag, 1991.

[12] E. Temam. Analysis of error with malliavin calculus: Application to hedging. Mathematical
Finance, Vol. 13, No. 1, January 2003, pp. 201-214.

[13] R. Zhang. Couverture approchée des options Européennes. PhD thesis, Ecole Nationale des

Ponts et Chaussées, Paris, 1998.

DEPARTMENT OF MATHEMATICS AND STATISTICS, P.O. Box 35 (MAD), FIN-40014 UNI-
VERSITY OF JYVASKYLA, FINLAND,

E-mail address: humika@maths. jyu.fi



