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Abstract. Let Ω ⊂ Rn be open. Given a homeomorphism f ∈
W 1,1

loc (Ω,Rn) of finite distortion with |Df | in the Lorentz space
Ln−1,1(Ω), we show that f−1 ∈ W 1,1

loc (f(Ω),Rn) and that f−1 has
finite distortion. A class of counterexamples demonstrating sharp-
ness of the results is constructed.

1. Introduction

Suppose that Ω ⊂ Rn is an open set and let f : Ω → f(Ω) ⊂ Rn be
a homeomorphism. In this paper we address the issue of the regularity
of f−1 under regularity assumptions on f. The starting point for us is
the following very recent result from [7].

Theorem 1.1. Let Ω ⊂ R2 be an open set and f ∈ W 1,1
loc (Ω,R2) be a

homeomorphism of finite distortion. Then f−1 ∈ W 1,1
loc (f(Ω),R2) and

has finite distortion. Moreover,∫

f(Ω)

|Df−1| =
∫

Ω

|Df |.

Above, a homeomorphism f ∈ W 1,1
loc is of (or has) finite distortion if

its Jacobian Jf is strictly positive almost everywhere on the set where

|Df | does not vanish. Recall that g ∈ W 1,p
loc (Ω,Rn), 1 ≤ p < ∞, means

that g is locally p-integrable and that the coordinate functions of g have
locally p-integrable distributional derivatives. The results are new even
in the case when we simply assume that Jf > 0 a.e.

One can then expect for an analog of Theorem 1.1 in space. In such a
result, one should assume that f ∈ W 1,p

loc (Ω,Rn) be a homeomorphism of
finite distortion, but is not a priori clear whether the critical exponent p
is one as in the plane or some larger number. After some experimental
computations, the reader should soon get convinced that the critical
case should be p = n − 1. An example showing that no smaller value
of p can work is given in Section 6 below.
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Our first result gives a rather complete analog of Theorem 1.1 in
space.

Theorem 1.2. Let Ω ⊂ Rn be an open set. Suppose that f : Ω → Rn

is a homeomorphism of finite distortion such that |Df | ∈ Ln−1,1(Ω).
Then f−1 ∈ W 1,1

loc (f(Ω),Rn) and has finite distortion. Moreover,∫

f(Ω)

|Df−1(y)| dy =

∫

Ω

| adj Df(x)| dx.

Here Ln−1,1(Ω) is a Lorentz space. Recall that

Ln−1(Ω) ⊂ Ln−1,1(Ω) ⊂
⋂

p>n−1

Lp(Ω).

We do not know whether the conclusion of Theorem 1.2 holds if only
|Df | ∈ Ln−1(Ω). Notice that L1,1(Ω) = L1(Ω) and thus Theorem 1.2
encompasses Theorem 1.1. Our proof of Theorem 1.2 is different from
the proof of the planar case in [7]; the main new point is the use of the
coarea formula.

The assumption that f have finite distortion cannot be dropped from
Theorem 1.2. Indeed, consider g(x) = x+u(x) on the real line, where u
is the usual Cantor ternary function. Let h = g−1. Then h−1 fails to be
absolutely continuous. By setting f(x) = (h(x1), x2, · · · , xn) we obtain
a Lipschitz homeomorphism whose inverse fails to be of the class W 1,1

loc .
Except for the planar result from [7], all the related results that we

know of (cf. [14], [10]) assume that f ∈ W 1,n
loc and that Jf > 0 almost

everywhere. These are substantially stronger assumptions than what
we have: they guarantee that the class of null sets for the Lebesgue
measure is preserved under f and that the so-called distributional Ja-
cobian coincides with Jf . All these properties may fail in our setting.

As in [7], it is natural to inquire if a stronger condition than being
of finite distortion would result in higher regularity of the inverse. To
this end, we consider the inequality

|Df(x)|n ≤ K(x)Jf (x)

to be satisfied almost everywhere in Ω for some measurable function
K with 1 ≤ K(x) < ∞ almost everywhere. We prove in Section 4,
under the assumptions of Theorem 1.2, that f−1 ∈ W 1,n

loc (Ω) provided
K ∈ Ln−1(Ω). This conclusion is shown to be sharp in Section 6. As
in the planar case, there is no interpolation: under the assumptions
of Theorem 1.2, no better regularity than W 1,1

loc is to be expected even
when K ∈ Lq(Ω) with q < n − 1 close to n − 1. On the other hand,
we show in Section 4 that we gain improved regularity for f−1 if we
assume that |Df | ∈ Lp(Ω) for some p > n− 1 and that K ∈ Lq(Ω) for
some 0 < q < n− 1. The obtained formula is shown to be sharp.

The paper is organized as follows. Section 2 fixes notation and in-
troduces some preliminary results. We prove Theorem 1.2 in Section
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3. Section 4 deals with higher regularity of f−1. We describe a general
procedure for producing homeomorphisms of finite distortion in Section
5. In the final section, Section 6, we then use the general procedure to
single out concrete examples that show the sharpness of our results.

2. Preliminaries

Let e1, ..., en be the canonical basis in Rn. For x ∈ Rn we denote by
xi, i ∈ {1, . . . , n}, its coordinates, i.e. x =

∑n
i=1 xiei. We write Hi for

the i-th coordinate hyperplane

Hi = {x ∈ Rn : xi = 0}
and denote by πi the orthogonal projection to Hi, so that

πi(x) = x− xiei, x ∈ Rn.

Since Hi is in fact a copy of Rn−1, the Hausdorff measure on Hi can
be identified with the Lebesgue measure and we can write dz instead
of dHn−1(z) for integration over Hi. The euclidean norm of x ∈ Rn is
denoted by |x|. The closure and interior of a set A are denoted by A
and A◦, respectively.

Given a square matrix B ∈ Rn×n, we define the norm |B| as the
supremum of |Bx| over all vectors x of unit euclidean norm. The
adjugate adj B of a regular matrix B is defined by the formula

B adj B = I det B,

where det B denotes the determinant of B and I is the identity matrix.
The operator adj is then continuously extended to Rn×n.

We use the symbol |E| for the Lebesgue measure of a measurable set
E ⊂ Rn. A mapping f : Ω → Rn is said to satisfy the Luzin condition
(N) on E if |f(A)| = 0 for every A ⊂ E such that |A| = 0.

We say that a function f : Ω → Rn has the ACL-property or that
it is absolutely continuous on almost all lines parallel to coordinate
axes if the following happens: For every i ∈ {1, . . . , n} and for almost
every y ∈ Hi the coordinate functions of f are absolutely continuous
on compact subintervals of π−1

i (y) ∩ Ω.
If f : Ω → R is a measurable function, we define its distribution

function m(·, f) by

m(σ, f) = |{x : |f(x)| > σ}|, σ > 0,

and the nonincreasing rearrangement f ? of f by

f ?(t) = inf{σ : m(σ, f) ≤ t} .

The Lorentz space Ln−1,1(Ω) is defined as the class of all measurable
functions f : Ω → R for which∫ ∞

0

t
1

n−1 f ?(t)
dt

t
< ∞ .

For an introduction to Lorentz spaces see e.g. [13].
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Let f ∈ W 1,1
loc (Ω,Rn) and E ⊂ Ω be a measurable set. The multiplic-

ity function N(f, E, y) of f is defined as the number of preimages of y
under f in E. We say that the area formula holds for f on E if

(2.1)

∫

E

η(f(x)) |Jf (x)| dx =

∫

Rn

η(y) N(f, E, y) dy

for any nonnegative Borel measurable function on Rn. It is well known
that there exists a set Ω′ ⊂ Ω of full measure such that the area formula
holds for f on Ω′. Also, the area formula holds on each set on which
the Luzin condition (N) is satisfied. This follows from [2, 3.1.4, 3.1.8,
3.2.5], namely, it can be found there that Ω can be covered up to a set
of measure zero by countably many sets the restriction to which of f
is Lipschitz continuous. For more explicit statements see e.g. [5], [6].

Notice that the area formula holds on the set where f is differen-
tiable (approximate differentiability would be also enough), and thus
in particular the image of the set of all critical points has zero measure
(this is a version of the Sard theorem).

3. Weak differentiability of the inverse

In what follows, Ω ⊂ Rn will be an open set.
The following coarea formula is crucial for our proof of Theorem 1.2.

Lemma 3.1. Let h be a continuous mapping with |Dh| ∈ Ln−1,1(Ω).
Suppose that |h| = 1 on Ω. Let E ⊂ Ω be a measurable set. Then∫

∂B(0,1)

H1

({x ∈ E : h(x) = z}) dHn−1(z) =

∫

E

| adj Dh| dx.

Proof. If h is Lipschitz, the formula can be found in Federer [2, 3.2.12].
In the general case, we cover the domain of h up to a set of measure
zero by countably many sets of the type {h = hj} with hj Lipschitz. It
remains to consider the case that E = N with |N | = 0. By the co-area
formula [9] applied to πi ◦ u,∫

Hi

H1

({x ∈ N : πi(h(x)) = y}) dHn−1(y) = 0.

Since this holds for all i = 1, . . . , n, we conclude that

H1

({x ∈ N : h(x) = z}) = 0

for Hn−1-a.e. z ∈ ∂B(0, 1). This concludes the proof. ¤
The following lemma will give us the W 1,1

loc -regularity of f−1.

Lemma 3.2. Let f ∈ W 1,1(Ω,Rn) be a homeomorphism of finite dis-
tortion, and suppose that |Df | ∈ Ln−1,1(Ω). Then there exists g ∈
L1(f(Ω)) such that for each ball B = B(y0, r0) ⊂ f(Ω) we have

(3.1)

∫

B

|f−1(y)− c| dy ≤ Cr0

∫

B

g(y) dy,
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where

c = −
∫

B

f−1(y) dy

and C = C(n).

Proof. We fix y′ = f(x′) ∈ B. Denote

h(x) =
f(x)− y′

|f(x)− y′| .

If y′′ = f(x′′) ∈ B and co({y′′, y′}) is the line segment connecting y′

and y′′, then f−1(co({y′′, y′})) is a curve connecting x′ and x′′ and thus

(3.2) |x′′ − x′| ≤ H1

(
f−1(co({y′′, y′}))

)
.

We have

(3.3) y ∈ co{y′′, y′} =⇒ y − y′

|y − y′| =
y′′ − y′

|y′′ − y′| .

Hence, if r = |y′′ − y′|, then

|f−1(y′′)− f−1(y′)| ≤ H1

(
f−1(co({y′′, y′}))

)

≤ H1

({
x ∈ f−1(B) : h(x) = y′′−y′

r

})
.

Given r > 0, using Lemma 3.1 we estimate
(3.4)∫

B∩∂B(y′,r)
|f−1(y′′)− f−1(y′)| dHn−1(y

′′)

≤
∫

B∩∂B(y′,r)
H1

({
x ∈ f−1(B) : h(x) = y′′−y′

r

})
dHn−1(y

′′)

≤ rn−1

∫

∂B(0,1)

H1

({
x ∈ f−1(B) : h(x) = z

})
dHn−1(z)

≤ rn−1

∫

f−1(B)

| adj Dh(x)| dx

≤ Crn−1

∫

f−1(B)

| adj Df(x)|
|f(x)− f(x′)|n−1

dx,

where the last inequality follows using the chain rule, the formula
| adj(AB)| ≤ C| adj A|| adj B| and the estimate

∣∣∣adj D
z − y′

|z − y′|
∣∣∣ ≤ C

|z − y′|n−1
.

There is a set Ω′ ⊂ Ω of full measure such that the area formula (2.1)
holds for f on Ω′. We define a function g : f(Ω) → R by setting

g(f(x)) =

{ | adj Df(x)|
Jf (x)

if x ∈ Ω′ and Jf (x) > 0,

0 otherwise.
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Since f is a mapping of finite distortion, we have

(3.5) | adj Df(x)| = g(f(x)) Jf (x) a.e. in Ω.

Hence

(3.6)

∫

f−1(B)

| adj Df(x)|
|f(x)− f(x′)|n−1

dx =

∫

f−1(B)∩Ω′

g(f(x)) Jf (x)

|f(x)− f(x′)|n−1
dx

=

∫

B

g(y)

|y − y′|n−1
dy.

Using (3.4) and (3.6) we estimate

|B| |f−1(y′)− c| ≤
∫

B

|f−1(y′′)− f−1(y′)| dy′′

=

∫ 2r0

0

(∫

B∩∂B(y′,r)
|f−1(y′′)− f−1(y′)| dHn−1(y

′′)
)

dr

≤ C

∫ 2r0

0

rn−1
(∫

B

g(y)

|y − y′|n−1
dy

)
dr

≤ Crn
0

∫

B

g(y)

|y − y′|n−1
dy.

Integrating with respect to y′ and then using Fubini’s theorem on the
right-hand side (as in the standard proof of the 1-1 Poincaré inequality),
we obtain (3.1). It remains to show that g ∈ L1(f(Ω)). But by the
area formula for f on Ω′ and (3.5) we have∫

f(Ω)

g(y) dy =

∫

Ω′
g(f(x)) Jf (x) dx =

∫

Ω

| adj Df(x)| dx < ∞.

¤
Proof of Theorem 1.2. By Lemma 3.2 the pair f, g satisfies a 1-Poincaré
inequality in f(Ω). From [3, Theorem 9] we then deduce that f−1 ∈
W 1,1

loc (f(Ω),Rn).
Suppose that f−1 is not a mapping of finite distortion. Then we can

find a set Ã ⊂ f(Ω) such that |Ã| > 0 and for every y ∈ Ã we have
Jf−1(y) = 0 and |Df−1(y)| > 0. Since f−1 satisfies the ACL-property
we may assume without loss of generality that f−1 is absolutely contin-
uous on all lines parallel to coordinate axes that intersect Ã and that
f−1 has classical partial derivatives at every point of Ã.

We claim that we can find a Borel set A ⊂ Ã such that |A| > 0 and
|f−1(A)| = 0. We divide Ẽ := f−1(Ã) into three sets: E1 consists of
the points at which f is differentiable with Jf 6= 0, E2 consists of the
points at which f is differentiable with Jf = 0 and E3 consists of the
points of non-differentiability for f. From [11] we know that |E3| = 0
and by the Sard theorem we have |f(E2)| = 0. Suppose that x ∈ E1.
Then f−1 is differentiable at f(x) and Jf−1(f(x))Jf (x) = 1. However

this is not possible since Jf−1 = 0 on Ã. It follows that E1 = ∅. Now we
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can find a Borel set A ⊂ f(E3) such that |A| = |f(E3)|. From E1 = ∅
and |f(E2)| = 0 we obtain |A| = |Ã| > 0.

Clearly, there is i ∈ {1 . . . , n} such that the subset of A where
∂f−1(y)

∂yi
6= 0 has positive measure. Without loss of generality we will

assume that ∂f−1(y)
∂yi

6= 0 for every y ∈ A. Set E := f−1(A). Then

|E| = 0 as E ⊂ E3. Since |Df | ∈ Ln−1,1(Ω), by the coarea formula
from [9] we have

(3.7)

∫

Hi

H1

({x ∈ E : πif(x) = z})dz = 0,

whereas, by the Fubini theorem,∫

Hi

H1(A ∩ π−1
i (z)) dz = |A| > 0.

Therefore there exists z ∈ Hi with

H1

(
E ∩ f−1(π−1

i (z))
)

= H1

({x ∈ E : πif(x) = z}) = 0,

and
H1(A ∩ π−1

i (z)) > 0.

Applying the one-dimensional area formula to the absolutely continu-
ous mapping

t 7→ f−1(z + tei)

we obtain

0 <

∫

A∩π−1
i (z)

∣∣∣∂f−1

∂yi

(y)
∣∣∣ dH1(y)

=

∫

Rn

N(f−1, A ∩ π−1
i (z), x) dH1(x)

=

∫

E∩f−1(π−1
i (z))

N(f−1, A ∩ π−1
i (z), x) dH1(x)

= 0 ,

which is a contradiction.
We have proven that f ∈ W 1,1

loc (f(Ω),Rn) has finite distortion and
we are left to verify that∫

f(Ω)

|Df−1(y)| dy =

∫

Ω

| adj Df(x)| dx.

To this end, we claim that there is a Borel set A ⊂ f(Ω) so that f−1

is differentiable on A with Jf−1 > 0 and so that |Df−1(y)| = 0 a.e. on
f(Ω)\A. Since f−1 is a mapping of finite distortion, we have Jf−1(y) =
0 ⇒ |Df−1(y)| = 0 and therefore we can restrict our attention to the
set where Jf−1 > 0. We divide Ã := {y : Jf−1(y) > 0} into three sets:
A1 consists of the points y such that f is differentiable at f−1(y) and
Jf (f

−1(y)) > 0, A2 consists of the points y such that f is differentiable
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at f−1(y) and Jf (f
−1(y)) = 0 and A3 consists of the points such that f

is not differentiable at f−1(y). Since A2 is an image of a set of critical
points of f , by the Sard theorem we have |A2| = 0. From (2.1) and the
almost everywhere differentiability of f (see [11]) we have

∫

A3

Jf−1(y)dy = |f−1(A′
3)| ≤ |f−1(A3)| = 0,

where A′
3 is a subset of full measure in A3 for which the area formula

holds, see the explanation around (2.1). Since Jf−1 > 0 on A3, this
implies that |A3| = 0. We may thus choose a desired Borel set A from
within A1. Since f is differentiable at f−1(A) with Jf > 0 we obtain
that f−1 is differentiable at A. Notice also that, by the construction
of A, Jf (x) = 0 a.e. in Ω \ f−1(A). Because f has finite distortion also
Df(x) = 0 and adj Df(x) = 0 a.e. in Ω \ f−1(A).

Applying (2.1), the fact that f−1 satisfies the Luzin condition (N)
on A, the formula for the derivative of the inverse mapping and basic
linear algebra we deduce that

∫

f(Ω)

|Df−1(y)| dy =

∫

A

|Df−1(y)| dy

=

∫

f−1(A)

|Df−1(f(x))| Jf (x) dx =

∫

f−1(A)

|(Df(x))−1|Jf (x) dx

=

∫

f−1(A)

| adj Df(x)| dx =

∫

Ω

| adj Df(x)| dx.

¤

4. Higher regularity of the inverse mapping

We prove two results on the improved integrability of Df−1. For the
sharpness of our conclusions see Section 6.

Theorem 4.1. Let Ω ⊂ Rn be an open set. Suppose that f : Ω → Rn is
a homeomorphism of finite distortion such that |Df | ∈ Ln−1,1(Ω) and
K ∈ Ln−1(Ω). Then f−1 ∈ W 1,n

loc (f(Ω),Rn) and f−1 is a mapping of
finite distortion.

Proof. From Theorem 1.2 we already know that f−1 ∈ W 1,1
loc and that

f−1 is a mapping of finite distortion. Therefore it is enough to prove
that

∫
f(Ω)

|Df−1|n is finite.

By the proof of Theorem 1.2, we only need to consider the integral
over the set A where f−1 is differentiable with Jf−1 > 0. Arguing as at
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the end of the proof of Theorem 1.2 we conclude that∫

f(Ω)

|Df−1(y)|n dy =

∫

f−1(A)

|(Df(x))−1|nJf (x) dx

=

∫

f−1(A)

| adj Df(x)|n
Jf (x)n−1

dx ≤
∫

f−1(A)

|Df(x)|(n−1)n

Jf (x)n−1
dx

≤
∫

Ω

K(x)n−1 dx.

¤
Theorem 4.2. Let p ∈ (n − 1,∞], 1 < q < n and set a = (q−1)p

p+q−n
(for

p = ∞ we set a = (q − 1)). Let Ω ⊂ Rn be an open set and suppose
that f ∈ W 1,p

loc (Ω,Rn) is a homeomorphism of finite distortion such that

Ka ∈ L1(Ω). Then f−1 ∈ W 1,q
loc (f(Ω),Rn).

Proof. We reason as in the proof of Theorem 4.1 and use Hölder’s
inequality to conclude that∫

f(Ω)

|Df−1(y)|qdy ≤
∫

f−1(A)

| adj Df(x)|q
Jf (x)q−1

dx

≤
∫

f−1(A)

|Df(x)|n−qK(x)q−1 dx

≤ ‖Df‖n−q
Lp(Ω)

(∫

Ω

K(x)a dx
) p+q−n

p
.

¤

5. General construction

5.1. Canonical transformation. Let Q0 = [−1, 1]n be the unit cube
in Rn. If c, r ∈ Rn, r1, . . . , rn > 0, we use the notation

Q(c, r) := [c1 − r1, c1 + r1]× · · · × [cn − rn, cn + rn].

for the interval with center at c and halfedges ri, i = 1, . . . , n. If
Q = Q(c, r), the affine mapping

ϕQ(y) = (c1 + r1y1, . . . , cn + rnyn)

is called the canonical parametrization of the interval Q. Let P , P ′ be
concentric intervals, P = Q(c, r), P ′ = Q(c, r′), where

0 < ri < r′i, i = 1, . . . , n.

We set

ϕ
P,P ′

(t, y) = (1− t)ϕ
P
(y) + tϕ

P ′
(y), t ∈ [0, 1], y ∈ ∂Q0.

This mapping is called the canonical parametrization of the rectangular
annulus P ′ \ P ◦. It has the following properties:

(i) ϕ
P,P ′

(0, y) = ϕP (y), y ∈ ∂Q0,
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(ii) ϕ
P,P ′

(1, y) = ϕ
P ′

(y), y ∈ ∂Q0,

(iii) ϕ
P,P ′

(·, y) is affine on [0, 1], y ∈ ∂Q0,

(iv) ϕ
P,P ′

is a bilipschitz homeomorphism of [0, 1]× ∂Q0 onto P ′ \P ◦.

Now, we consider two rectangular annuli, P ′ \P ◦, and P̃ ′ \ P̃ ◦, where
P = Q(c, r), P ′ = Q(c, r′), P̃ = Q(c̃, r̃) and P̃ ′ = Q(c̃, r̃′), The mapping

h = ϕ
P̃ ,P̃ ′

◦ (ϕ
P,P ′

)−1

is called the canonical transformation of P ′ \ P ◦ onto P̃ ′ \ P̃ ◦.

¡
¡

@
@

@
@

¡
¡ P ′

P -h

¡
¡

@
@

@
@

¡
¡ P̃ ′

P̃

Fig. 1. The canonical transformation of P ′ \ P ◦ onto P̃ ′ \ P̃ ◦ for n = 2

From now on we consider the case when

r1 = · · · = rn−1 = a, rn = b,

r′1 = · · · = r′n−1 = a′, r′n = b′,

We will use the notation e.g. Q(c, (a, b)) for Q(c, r) with r as above.
Let us estimate the action of ϕ

P,P ′
in one of the sides {yi = ±1}. For

t ∈ [0, 1] fixed we denote

a′′ = (1− t)a + ta′,

b′′ = (1− t)b + tb′

ã′′ = (1− t)ã + tã′,

b̃′′ = (1− t)b̃ + tb̃′.

The image of the side has the shape of a pyramidal frustum. We must
distinguish two cases, according to the position of the first variable.
Case A. We will represent the possibilities

ϕ
P,P ′

(t, 1, z2, . . . , zn), ϕ
P,P ′

(t,−1, z2, . . . , zn),

. . .

ϕ
P,P ′

(t, z1, . . . zn−2, 1, zn), ϕ
P,P ′

(t, z1, . . . zn−2,−1, zn)

by

ϕ(t, z) = ϕ
P,P ′

(t, 1, z), z = (z2, . . . , zn).
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Then the matrix of Dϕ(t, z) is



a′ − a, 0, 0, . . . , 0
(a′−a)z2, a′′, 0, . . . , 0
(a′−a)z3, 0, a′′, . . . , 0

. . .
(b′−b)zn, 0, 0, . . . , b′′




and (Dϕ(t, z))−1 can be computed as



1
a′−a

, 0, 0, . . . , 0
− z2

a′′ ,
1
a′′ , 0, . . . , 0

− z3

a′′ , 0, 1
a′′ , . . . , 0

. . .

− zn

b′′
b′−b
a′−a

, 0, 0, . . . , 1
b′′




.

Also,

(5.1) Jϕ(t, z) = (a′ − a)(a′′)n−2b′′.

Case B. A representative is

ϕ(t, z) =
(
(ϕ

P,P ′
)n(t, z, 1), (ϕ

P,P ′
)1(t, z, 1), . . . , (ϕ

P,P ′
)n−1(t, z, 1)

)
,

z = (z1, . . . , zn−1).

The purpose of the permutation of coordinates is that this leads to a
triangular matrix which is easier to handle. The matrix of Dϕ(t, z) is




b′ − b, 0, 0, . . . , 0
(a′−a)z1, a′′, 0, . . . , 0
(a′−a)z2, 0, a′′, . . . , 0

. . .
(a′−a)zn−1, 0, 0, . . . , a′′




and (Dϕ(t, z))−1 can be computed as



1
b′−b

, 0, 0, . . . , 0

− z1

a′′
a′−a
b′−b

, 1
a′′ , 0, . . . , 0

− z2

a′′
a′−a
b′−b

, 0, 1
a′′ , . . . , 0

. . .

− zn−1

a′′
a′−a
b′−b

, 0, 0, . . . , 1
a′′




.

Also,

Jϕ(t, z) = (b′ − b)(a′′)n−1.

Let

h = ϕ
P̃ ,P̃ ′

◦ (ϕ
P,P ′

)−1

be a canonical transformation of P ′ \ P ◦ onto P̃ ′ \ P̃ ◦. We have

Dh(ϕ(t, z)) = Dϕ̃(t, z)
(
Dϕ(t, z)

)−1
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In case A this is

(5.2)




ã′−ã
a′−a

, 0, 0, . . . , 0(
ã′−ã
a′−a

− ã′′
a′′

)
z2,

ã′′
a′′ , 0, . . . , 0(

ã′−ã
a′−a

− ã′′
a′′

)
z3, 0, ã′′

a′′ , . . . , 0
. . .(

b̃′−b̃
a′−a

− b̃′′
b′′

b′−b
a′−a

)
zn, 0, 0, . . . , b̃′′

b′′




and in case B

(5.3)




b̃′−b̃
b′−b

, 0, 0, . . . , 0(
ã′−ã
b′−b

− ã′′
a′′

a′−a
b′−b

)
z1,

ã′′
a′′ , 0, . . . , 0(

ã′−ã
b′−b

− ã′′
a′′

a′−a
b′−b

)
z2, 0, ã′′

a′′ , . . . , 0
. . .(

ã′−ã
b′−b

− ã′′
a′′

a′−a
b′−b

)
zn−1, 0, 0, . . . , ã′′

a′′




.

Remark 5.1. We observe that the inverse of a canonical transforma-
tion between two rectangular annuli is again canonical and a superpo-
sition of two canonical transformations is again a canonical transfor-
mation if the domain of the outer transformation coincides with the
range of the inner transformation.

5.2. Construction of a Cantor set. By V we denote the set of 2n

vertices of the cube [−1, 1]n. The sets Vk = V × . . . × V, k ∈ N, will
serve as the sets of indices for our construction. If w ∈ Vk and v ∈ V,
then the concatenation of w and v is denoted by w∧v.

Lemma 5.2. Let n ≥ 2. Suppose that we are given two sequences of
positive real numbers {ak}k∈N0, {bk}k∈N0,

a0 = b0 = 1;(5.4)

ak < ak−1, bk < bk−1, for k ∈ N;(5.5)

Then there exist unique systems {Qv}v∈S
k∈N Vk , {Q′

v}v∈S
k∈N Vk of inter-

vals

(5.6) Qv = Q(cv, (2
−kak, 2

−kbk)), Q′
v = Q(cv, (2

−kak−1, 2
−kbk−1))

such that

Q′
v, v ∈ Vk, are nonoverlaping for fixed k ∈ N,(5.7)

Qw =
⋃

v∈V
Q′

w∧v for each w ∈ Vk, k ∈ N,(5.8)

cv =
1

2
v, v ∈ V,(5.9)

cw∧v = cw +
n−1∑
i=1

2−kakviei + 2−kbkvnen,(5.10)

w ∈ Vk, k ∈ N, v = (v1, . . . , vn) ∈ V.
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Proof. The centers and edge lengths of the intervals are given by (5.6),
(5.9) and (5.10). The properties (5.7) and (5.8) are evidently satisfied.

¤

Fig. 2. Intervals Qv and Q′
v for v ∈ V1 and v ∈ V2 for n = 2.

Remark 5.3. The construction leads to the Cantor set

E =
⋂

k∈N

⋃

v∈Vk

Qv

which is clearly a product of n one-dimensional Cantor sets, say E =
Ea × Ea × . . .× Ea × Eb.

5.3. Construction of a mapping. The following theorem will en-
able us to construct various examples connected with the theory of
mappings of finite distortion. A similar construction was used in [7,
Example 7.1] for n = 2 for specific sequences. The usual constructions
of the type in [8], [12] and [4] based on “cubical” Cantor constructions
are not suitable for us.

Theorem 5.4. Let n ≥ 2. Suppose that we are given four sequences
of positive real numbers {ak}k∈N0, {bk}k∈N0, {ãk}k∈N0, {b̃k}k∈N0,

a0 = b0 = ã0 = b̃0 = 1;(5.11)

ak < ak−1, bk < bk−1, ãk < ãk−1, b̃k < b̃k−1, for k ∈ N;(5.12)

Let the systems {Qv}v∈S
k∈N Vk , {Q′

v}v∈S
k∈N Vk of intervals be as in Lemma

5.2, and similarly systems {Q̃v}v∈S
k∈N Vk , {Q̃′

v}v∈S
k∈N Vk of intervals be

associated with the sequences {ãk} and {b̃k}. Then there exists a unique
sequence {fk} of bilipschitz homeomorphisms of Q0 onto itself such that

(a) fk maps each Q′
v \ Qv, v ∈ Vm, m = 1, . . . , k, onto Q̃′

v \ Q̃v

canonically,
(b) fk maps each Qv, v ∈ Vk, onto Q̃v affinely.

Moreover,

(5.13) |fk − fk+1| . 2−k, |f−1
k − f−1

k+1| . 2−k.

The sequence fk converges uniformly to a homeomorphism f of Q0 onto
Q0.
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Proof. The mapping fk is uniquely determined by its properties. Since
the change from fk to fk+1 proceeds only within the intervals Qv,
v ∈ Vk, and similarly for the inverse, and since the diameters of these
intervals are at most C2−k, the sequence fk converges uniformly to a
continuous mapping and the same holds for the sequence f−1

k . Hence
the limit mapping is a homeomorphism. ¤

The construction above is symmetric, i.e. the inverse of the con-
structed mapping can be constructed by the same procedure if we
replace the corresponding sequences. Also, the construction behaves
well with respect to superposition. Namely, the following follows easily
from Remark 5.1.

Remark 5.5. Let n ≥ 2 and suppose that we are given four sequences
of positive real numbers {ak}k∈N0 , {bk}k∈N0 , {ãk}k∈N0 {b̃k}k∈N0 which
satisfy the assumptions of the previous theorem. Denote the mapping
constructed in the proof of Theorem 5.4 by f and by g the map which
is constructed by the same procedure with the role of ak, bk and ãk, b̃k

interchanged. Then g = f−1.

Remark 5.6. Let n ≥ 2 and suppose that we are given six sequences of
positive real numbers {ak}k∈N0 , {bk}k∈N0 , {ãk}k∈N0 {b̃k}k∈N0 , {˜̃ak}k∈N0

{˜̃bk}k∈N0 . Suppose that f is constructed by Theorem 5.4 applied to

{ak}k∈N0 , {bk}k∈N0 in the domain and {ãk}k∈N0 {b̃k}k∈N0 in the range; g

is constructed by Theorem 5.4 applied to {ãk}k∈N0 , {b̃k}k∈N0 in the do-

main and {˜̃ak}k∈N0 {˜̃bk}k∈N0 in the range, and finally h is constructed by
Theorem 5.4 applied to {ak}k∈N0 , {bk}k∈N0 in the domain and {˜̃ak}k∈N0

{˜̃bk}k∈N0 in the range. Then h = g ◦ f .

6. Construction of counterexamples

We begin by showing the sharpness of the regularity of f−1 obtained
from Theorem 4.2.

Example 6.1. Let p ∈ (n−1,∞), 1 < q < n, ε > 0 and set a = (q−1)p
p+q−n

.

There is a homeomorphism f : Q0 → Q0 of finite distortion such that
f ∈ W 1,p(Q0, Q0) and Ka ∈ L1(Q0), but f−1 /∈ W 1,q+ε

loc (Q0, Q0).

Proof. Let α ≥ β > 0, δ ≥ γ > 0. Use Theorem 5.4 for

ak =
1

(k + 1)α
, bk =

1

(k + 1)β
, ãk =

1

(k + 1)γ
and b̃k =

1

(k + 1)δ
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to obtain the sequence {fk} and the limit mapping f . For fixed t ∈ [0, 1]
we denote

a′′k = (1− t)ak + tak−1,

b′′k = (1− t)bk + tbk−1,

ã′′k = (1− t)ãk + tãk−1,

b̃′′k = (1− t)b̃k + tb̃k−1.

Since 1
kω − 1

(k+1)ω ∼ 1
kω+1 for every ω > 0, it is easy to check that

ãk−1 − ãk

ak−1 − ak

∼ ã′′k
a′′k
∼ kα−γ,

b̃k−1 − b̃k

bk−1 − bk

∼ b̃′′k
b′′k
∼ kβ−δ,

b̃k−1 − b̃k

ak−1 − ak

∼ b̃′′k
a′′k
∼ kα−δ,

ãk−1 − ãk

bk−1 − bk

∼ ã′′k
b′′k
∼ kβ−γ,

bk−1 − bk

ak−1 − ak

∼ b′′k
a′′k
∼ kα−β.

Let us fix v ∈ Vk and write Q = Qv, Q′ = Q′
v. Let ϕQ,Q′ be the

canonical parametrization of Q′ \ Q and S be one of the sides of Q0.
We will estimate Df in the pyramidal frustum F := ϕQ,Q′([0, 1] × S).
In Case A we have (see (5.2))

|Df | ∼ max{kα−δ, kβ−δ} ≤ kα−γ,

in Case B (see (5.3))

|Df | . max{kα−γ, kβ−δ, kβ−γ} = kα−γ.

In both cases we have

|Df−1| & kδ−β

Jf ∼ k(n−1)α−(n−1)γ+β−δ,

and therefore

Kf =
|Df |n

Jf

. kα−γ−β+δ.

Let ϕ be the canonical parametrization of F (which can be viewed as
the restriction of ϕQ,Q′ to [0, 1]× S). From (5.1) we have

Jϕ(t, z) ∼ 2−knk−(n−1)α−β−1.
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Thus

(6.1)

∫

F

|Df |p dx =

∫

[0,1]×S

|Df(ϕ(t, z))|p Jϕ(t, z) dt dz

. 2−kn

(
kα−γ

)p

k(n−1)α+β+1
,

∫

f(F )

|Df−1|q+ε dx & 2−kn

(
kδ−β

)q+ε

k(n−1)γ+δ+1
,

∫

F

Ka dx . 2−kn

(
kα−γ−β+δ

)a

k(n−1)α+β+1
.

We also estimate (recall that Q = Qv, v ∈ Vk)

(6.2)

∫

Q

|Dfk|p dx . 2−kn

(
kα−γ

)p

k(n−1)α+β+1
.

Now, we need to distinguish two cases. First suppose that p ≤ n. Since
a < p we can choose η > 0 small enough such that

(6.3) (n− 1)η < ε
(1

a
− 1

p

)
and η < 1 +

1

a
− n

p
.

Set

α =
1

p
, β = 1− n− 1

p
, γ = η and δ = 1 +

1

a
− n

p
.

It is easy to check that all these expressions are positive and moreover
that α ≥ β and γ ≤ δ, so that with the help of (6.3) it is not difficult
to verify that

(6.4)

(n− 1)α + β + p(γ − α) = pη > 0,

(n− 1)α + β + a(β − α + γ − δ) = aη > 0,

(n− 1)γ + δ + (q + ε)(β − δ) = (n− 1)η + ε
(1

p
− 1

a

)
< 0.

We consider k < m. From (6.2) and (6.4) we infer that
∫

Q0

|Dfk −Dfm|p dx .
∫

{fk 6=fm}

(|Dfk|p + |Dfm|p
)
dx

.
∑

v∈Vk

∫

Qv

|Dfk|p dx +
m∑

j=k+1

∑

v∈Vj

∫

Q′v\Qv

|Df |p dx

+
∑

v∈Vm

∫

Qv

|Dfm|p dx

.
m∑

j=k

(
jα−γ

)p

j(n−1)α+β+1
. k−pη → 0 .
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It follows that the sequence {fk} converges to f in W 1,p and, in par-
ticular, f ∈ W 1,p(Q0,Rn). From (6.4) we also find out that

∫

Q0

|K|a .
∑

k∈N

(
kα−γ−β+δ

)a

k1+(n−1)α+β
< ∞,

∫

Q0

|Df−1|q+ε &
∑

k∈N

k(q+ε)(δ−β)

k1+(n−1)γ+δ
= ∞.

Now let us return to the second case, i.e. p > n. In this case we set

α =
1

n
, β =

1

n
, γ =

1

n
− 1

p
+ η and δ =

1

n
+

1

a
− 1

p

where η is chosen sufficiently small to fullfill η < 1
a

and (6.3). The
computations in this case are similar to the computations above and
therefore we leave them to the reader. ¤

We deduce that the p-integrability of K, p < n − 1, guarantees no
improvement on the regularity of f−1 if we only assume that |Df | ∈
Ln−1,1(Ω).

Corollary 6.2. Let 0 < δ < 1. There is a homeomorphism f : Q0 →
Q0 of finite distortion such that |Df | ∈ Ln−1,1(Q0) and Kn−1−δ ∈
L1(Q0), but f−1 /∈ W 1,1+δ(Q0, Q0).

Proof. Set q = 1+ δ
2

and ε = δ
2
. We can clearly find η > 0 small enough

such that for p = n− 1 + η we have a = (q−1)p
p+q−n

> n − 1 − δ; therefore

the statement easily follows from the previous example. ¤

Our final example shows the criticality of the exponent p = n− 1 in
a strong sense.

Example 6.3. Let n ≥ 3 and ε > 0. There exists a mapping of
finite distortion f : Q0 → Q0 such that f ∈ W 1,n−1−ε(Q0, Q0) and
K ∈ Ln−1−ε(Q0), but f−1 /∈ W 1,1

loc (Q0, Q0).

Proof. Choose l ∈ N big enough such that

(6.5) εl > 2(n− 1− ε)

and set

ak =
1

(k + 1)l
, bk =

1

2
+

1

2(k + 1)
, ãk =

1

2
+

1

2(k + 1)
, b̃k =

1

k + 1
.

We can use Theorem 5.4 to obtain our mapping f . Similarly as in
Example 6.1 we easily obtain

∫

Q0

|Df |n−1−ε ≤ C
∑

k∈N

1

k1+(n−1)l
k(n−1−ε)l ≤ C

∑

k∈N

1

k1+lε
< ∞ and
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∫

Q0

Kn−1−ε ≤ C
∑

k∈N

1

k1+(n−1)l

( kln

kl−1kl(n−2)k−1

)n−1−ε

+ C
∑

k∈N

1

k1+(n−1)l+1

( kln

kl(n−1)

)n−1−ε

≤ C
∑

k∈N

1

k1+εl−2(n−1−ε)
< ∞.

We claim that f−1 does not satisfy the ACL-property and therefore
f−1 /∈ W 1,1

loc (Q0, Q0). It is clear from the construction in Theorem 5.4
that there are Cantor sets Ea, Eb, Eã and Eb̃ such that f−1 maps
the Cantor set Eã × Eã × . . . × Eã × Eb̃ onto the Cantor set Ea ×
Ea × . . . × Ea × Eb. Clearly H1(Ea) = H1(Eb̃) = 0, H1(Eb) > 0,
H1(Eã) > 0 and it is not difficult to check that for every ỹ ∈ [−1, 1]n−1

such that ỹ ∈ Eã × . . . × Eã there exists y ∈ Ea × . . . × Ea such that
f−1({ỹ} × Eb̃) = {y} × Eb. It follows that f−1(ỹ, ·) does not satisfy
the Luzin condition (N) and therefore cannot be absolutely continuous
there. Since Hn−1(Eã × . . . × Eã) > 0 we obtain that f−1 does not
satisfy the ACL-property. ¤
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lä, P.O. Box 35 (MaD), FIN-40014, Jyväskylä, Finland
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