
NONSYMMETRIC CONICAL UPPER DENSITY THEOREM

FOR MEASURES WITH FINITE LOWER DENSITY

ANTTI KÄENMÄKI AND VILLE SUOMALA

Abstract. We study how measures with finite lower density are distributed
around (n − m)-planes in small balls in R

n. Our result may be applied to a
large collection of Hausdorff and packing type measures.

1. Introduction

Conical density theorems are used in geometric measure theory to derive geo-
metric information from given metric information. Classically, they deal with the
distribution of the s-dimensional Hausdorff measure, Hs. The main applications
of conical density theorems deal with rectifiability, see [9], but they have been
applied also elsewhere in geometric measure theory, for example, in the study
of porous sets, see [8] and [6]. The upper conical density results, going back to
Besicovitch [1] and Marstrand [7], show that under certain conditions there is
a lot of A near k-dimensional linear subspaces of R

n. Besides Besicovitch and
Marstrand, the theory of upper conical density theorems has been developed by
Morse and Randolph [10], Federer [5], and Salli [11]. A sample result is the fol-
lowing (Salli [11, Theorem 3.1]): If V ∈ G(n, n − m), G(n, n − m) denoting the
space of all (n − m)-dimensional linear subspaces of R

n, 0 < α < 1, A ⊂ R
n,

0 < Hs(A) < ∞, and s > m, then

lim sup
r↓0

Hs
(
A ∩ X(x, r, V, α)

)

rs
≥ c (1.1)

for Hs-almost all x ∈ A, where c > 0 is a constant depending only on n, m, s,
and α. Here

X(x, V, α) = {y ∈ R
n : dist(y − x, V ) < α|y − x|},

X(x, r, V, α) = B(x, r) ∩ X(x, V, α).

Here B(x, r) ⊂ R
n is the closed ball with centre at x and radius r > 0. General-

isations of (1.1) for measures other than Hs are proved in [12, §3].
In 1988, Mattila [8] improved the above result by showing that it is not neces-

sary to fix V in (1.1). More precisely, he proved that if A ⊂ R
n, 0 < Hs(A) < ∞,
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2 ANTTI KÄENMÄKI AND VILLE SUOMALA

PSfrag replacements
x

r

δ

Figure 1. The set X(x, r, V, α) \ H(x, θ, η) when n = 3, m = 1,
and α = sin(δ/2).

s > m, and 0 < α < 1, then for a constant c > 0 depending only on n, m, s, and
α,

lim sup
r↓0

inf
C

Hs
(
A ∩ B(x, r) ∩ Cx

)

rs
≥ c, (1.2)

where the infimum is taken over all Borel sets C ⊂ G(n, n − m) for which
γn,n−m(C) > α, where γn,n−m denotes the unique Borel regular probability mea-
sure on G(n, n − m) which is invariant under the orthogonal group O(n), and
Cx = {x}+

⋃
C. As an immediate corollary to Mattila’s result, under the same

assumptions as in (1.1), we have

lim sup
r↓0

inf
V ∈G(n,n−m)

Hs
(
A ∩ X(x, r, V, α)

)

rs
≥ c (1.3)

for Hs-almost all x ∈ A, where c > 0 depends only on n, m, s, and α, see [9,
§11]. Although the constant in (1.1) is much better than that of (1.3), still (1.3)
is a significant improvement of (1.1): It shows that in the sense of the measure
Hs, there are arbitrary small scales such that almost all points of A are quite
effectively surrounded by A.

The proof of (1.2) is nontrivial and it is based on Fubini-type arguments and
an elegant use of the so-called sliced measures. Since the geometry of the cones
X(x, V, α) is simpler than that of the cones Cx in (1.2), it is natural to ask for
an elementary proof of (1.3). In [6], such a proof was given and the technique
used there does not require the cones to be symmetric. Namely, given s > m,
0 < α < 1, 0 < η ≤ 1, and A ⊂ R

n with 0 < Hs(A) < ∞, it was shown that
there is a constant c > 0 depending only on n, m, s, α, and η so that

lim sup
r↓0

inf
θ∈Sn−1

V ∈G(n,n−m)

Hs
(
A ∩ X(x, r, V, α) \ H(x, θ, η)

)

rs
≥ c (1.4)



NONSYMMETRIC CONICAL UPPER DENSITY 3

for Hs-almost all x ∈ A, see [6, Theorem 2.5]. Here Sn−1 = {x ∈ R
n : |x| = 1}

and

H(x, θ, η) = {y ∈ R
n : (y − x) · θ > η|y − x|},

see Figure 1.
In Theorem 2.3, we generalise the result (1.4) for measures with finite lower

density. The main application of this generalisation, Corollary 2.4, is a conical
density theorem for the s-dimensional packing measure, Ps. Our result may also
be applied to a large collection of Hausdorff and packing type measures which are
determined using gauges other than power functions. As far as we know, there
have been previously no conical density theorems of a similar type for other
measures than the Hausdorff measure.

We finish the introduction by setting down some notation. If µ is a measure
on R

n, r0 > 0, h : (0, r0) → (0,∞), and x ∈ R
n, the upper and lower µ-densities

at x with respect to h are given by

Dh(µ, x) = lim inf
r↓0

µ
(
B(x, r)

)

h(r)
,

Dh(µ, x) = lim sup
r↓0

µ
(
B(x, r)

)

h(r)
.

If V ∈ G(n, m), x ∈ R
n, and λ > 0, we define

Vx(λ) = {y ∈ R
n : dist(y − x, V ) ≤ λ}.

Open balls are denoted by U(x, r). If µ is a measure on R
n and A ⊂ R

n, we
use the notation µ|A for the restriction measure, that is µ|A(B) = µ(A ∩ B) for
B ⊂ R

n.

2. The results

To verify our main result, Theorem 2.3, we need the following two geometrical
lemmas. The first one is due to Erdős and Füredi [3], see also [6, Lemma 2.1].

Lemma 2.1. For given 0 < β < π, there is q = q(n, β) ∈ N such that in any set

of q points in R
n, there are always three points which determine an angle between

β and π.

For 0 < η ≤ 1 we define t(η) = (η2 + 4)1/2/η and γ(η) = 1/t(η). Notice that
t(η) ≥ 2 and η/51/2 ≤ γ(η) ≤ η/2. An easy calculation yields the following, see
[6, Lemma 2.3].

Lemma 2.2. Suppose y ∈ R
n, θ ∈ Sn−1, 0 < η ≤ 1, t ≥ t(η), and γ = γ(η). If

z ∈ R
n \

(
B(y, tr) ∪ H(y, θ, γ)

)
, then B(z, r) ∩ H(y, θ, η) = ∅.

We have now the necessary tools to prove our main result concerning the
distribution of measures with finite lower density.
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Theorem 2.3. Let 0 ≤ m < s < n and 0 < α, η ≤ 1. Then there is a constant

c = c(n, m, s, η, α) > 0 such that if h : (0, r0) → (0,∞) is a function, and µ is a

measure on R
n with Dh(µ, x) < ∞ for µ almost all x ∈ R

n, and for all 0 < r < r0

and 0 < ε < 1 one has

εsh(r) ≥ h(εr), (2.1)

then

lim sup
r↓0

inf
θ∈Sn−1

V ∈G(n,n−m)

µ
(
X(x, r, V, α) \ H(x, θ, η)

)

h(r)
≥ cDh(µ, x)

for µ almost all x ∈ R
n.

Proof. Let us first sketch the main idea of the proof: Suppose our theorem is
false. Then there is a closed exceptional set F ⊂ R

n with positive µ-measure
so that for all small scales r and for all points x of F , there are θ and V so
that µ

(
X(x, r, V, α) \ H(x, θ, η)

)
is small compared to h(r). A simple covering

argument on G(n, n− m) implies that at each small ball B = B(z, r) centred at
F , we may fix V ∈ G(n, n − m) so that the measure µ(X(x, r, V, α) \ H(x, θ, η)
is small for some θ for a set of points x ∈ F ∩ B whose measure is comparable
to h(r). This implies that for λ > 0, we may find y ∈ F ∩B so that the measure
in Vy(λr) is comparable to λmh(r). But our antithesis implies that if λ is small,
then this measure is essentially contained in at most q − 1 balls of radius λr, the
number q being determined by Lemma 2.1. Thus, there is a ball B(w, λr) ⊂ B
so that µ

(
F ∩ B(w, λr)

)
≈ λmh(r). Iterating this, we find a sequence of balls

B1 ⊃ B2 ⊃ . . . so that diam(Bk) ≈ λk and µ(F ∩ Bk) ≈ λmk. By (2.1), this
implies Dh(µ, x) = ∞ for the point x being determined by {x} =

⋂
k Bk. This

gives a contradiction since we may choose F in the beginning so that the lower
density Dh(µ, x) is finite for all points of F .

We shall now verify in detail the steps described heuristically above. Since all
the sets used in the formulation are Borel sets and there is a Borel measure ν
which equals µ for Borel sets, we may assume that µ is a Borel measure. We may
also assume that µ is finite since µ-almost all of R

n is contained in a countable
union of open balls, each of finite µ-measure. We shall prove that for any finite
collection, {V 1, . . . , V l} ⊂ G(n, n − m),

lim sup
r↓0

inf
θ∈Sn−1

i∈{1,...,l}

µ
(
X(x, r, V i, α) \ H(x, θ, η)

)

h(r)
≥ c(n, m, s, η, α, l)Dh(µ, x)

for µ-almost all x ∈ R
n from which the claim follows by the compactness of

G(n, n − m), see [6, proof of Theorem 2.5].
Set t = max{t(η), 1 + 3/α}, γ = γ(η), and take β < π so that the open-

ing angle of H(x, θ, γ) is smaller than β. Let q = q(n, β) be as in Lemma

2.1. Moreover, define c1 = 2mmm/2, c2 = 2n−mnn/2, d =
(
3c1l(q − 1)

)−1
,

λ = min{2−1ts/(m−s)d1/(s−m), 3−1t−1}, and c = c(n, m, s, η, α, l) = λn/(6c1c2`3
s).



NONSYMMETRIC CONICAL UPPER DENSITY 5

These definitions together with (2.1) guarantee the following three facts: If
0 < r < r0, k ∈ N, V ∈ G(n, n−m), z ∈ R

n, and x, y ∈ Vz(λr) with |x−y| ≥ tλr,
then

B(y, λr) ⊂ X(x, V, α), (2.2)

h
(
3(tλ)kr

)
≤ 3sdkλkmh(r), (2.3)

dλm−st−s ≥ 2s−m. (2.4)

Let 0 < M < ∞ and define

A = {x ∈ R
n : Dh(µ, x) > M and Dh(µ, x) < ∞}.

It suffices to show that

lim sup
r↓0

inf
θ∈Sn−1

i∈{1,...,l}

µ
(
X(x, r, V i, α) \ H(x, θ, η)

)

h(r)
≥ cM

for almost all x ∈ A. Suppose on the contrary that there exists a set F ⊂ A with
µ(F ) > 0 and 0 < r1 < r0 such that for every x ∈ F and 0 < r < r1, there are
i ∈ {1, . . . , l} and θ ∈ Sn−1 with

µ
(
X(x, r, V i, α) \ H(x, θ, η)

)
< cMh(r). (2.5)

Going into a subset, if necessary, we may assume that F is closed.
Choose x ∈ F such that limr↓0 µ

(
F∩B(x, r)

)
/µ

(
B(x, r)

)
= 1 and 0 < r < r1/3

such that µ
(
F ∩B(x, r)

)
≥ Mh(r). To simplify the notation, assume that r = 1

and h(1) = 1. Let B0 = B(x, 1). Suppose that Bk = B
(
xk, (tλ)k

)
has been

defined so that µ(F ∩Bk) ≥ Mdkλmk. Take xk+1 ∈ F ∩Bk which maximises the
function y 7→ µ

(
F∩B(y, (tλ)k+1)

)
in F∩Bk. There is such a point because F∩Bk

is compact and the function y 7→ µ
(
F ∩ B(y, (tλ)k+1)

)
is upper semicontinuous

on F ∩Bk. Define Bk+1 = B
(
xk+1, (tλ)k+1

)
. Our aim is to estimate the measure

µ(F ∩ Bk+1) from below. Define, for i ∈ {1, . . . , l},

C̃i =
{
x ∈ F ∩ Bk : µ

(
X(x, 3(tλ)k, V i, α) \ H(x, θ, η)

)

< cMh
(
3(tλ)k

)
for some θ ∈ Sn−1

}
.

Fix i ∈ {1, . . . , l} for which µ(C̃i) ≥ µ(F∩Bk)/l ≥ Mdkλmk/l and take a compact

Ci ⊂ C̃i with µ(Ci) > µ(C̃i)/2. We may cover the set V i⊥ ∩Bk with c1λ
−m balls

of radius tkλk+1 and hence there exists y ∈ V i⊥ ∩ Bk for which

µ
(
Ci ∩ V i

y (tkλk+1)
)
≥ 2−1c−1

1 `−1Mdkλm(k+1). (2.6)

Next we shall choose q points as follows: Choose a point y1 ∈ Ci ∩ V i
y (tkλk+1)

such that the ball B(y1, t
kλk+1) has largest µ|F measure among the balls centred

at Ci∩V i
y (tkλk+1) with radius tkλk+1. If y1, . . . , yp, p ∈ {1, . . . , q−1}, have already

been chosen, we choose yp+1 ∈ Ci ∩ V i
y (tkλk+1) \

⋃p
j=1 U(yj, (tλ)k+1) so that the
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Figure 2. Illustration for the proof of Theorem 2.3. The angle δ
formed by the points w1, w, and w2 is greater than β.

ball B(yp+1, t
kλk+1) has maximal µ|F measure among the balls centred at Ci ∩

V i
y (tkλk+1)\

⋃p
j=1 U

(
yj, (tλ)k+1

)
with radius tkλk+1. Since the set V i

y (tkλk+1)∩Bk

may be covered by c2λ
m−n balls of radius tkλk+1, using (2.6), we estimate

µ
(
F ∩ B(yq, t

kλk+1)
)
≥ c−1

2 λn−m

(
2−1c−1

1 `−1Mdkλm(k+1)

−

q−1∑

j=1

µ
(
F ∩ B(yj, (tλ)k+1)

))
.

(2.7)

According to Lemma 2.1, we may choose three points w, w1, w2 from the set
{y1, . . . , yq} such that for each θ ∈ Sn−1 there is j ∈ {1, 2} for which wj ∈
R

n \
(
B(w, (tλ)k+1) ∪ H(w, θ, γ)

)
. We obtain, using Lemma 2.2, that for each

θ ∈ Sn−1 there is j ∈ {1, 2} such that

B(wj, t
kλk+1) ⊂ B

(
w, 3(tλ)k

)
\ H(w, θ, η)

and hence (2.2) implies that also

B(wj, t
kλk+1) ⊂ X

(
w, 3(tλ)k, V i, α

)
\ H(w, θ, η), (2.8)

see Figure 2. Since w ∈ Ci there is θ ∈ Sn−1 so that µ
(
X(w, 3(tλ)k, V i, α) \

H(w, θ, η)
)

< cMh
(
3(tλ)k

)
. Choosing j ∈ {1, 2} for which (2.8) holds, we get

µ
(
F ∩ B(yq, t

kλk+1)
)
≤ µ

(
F ∩ B(wj, t

kλk+1)
)

≤ µ
(
X(w, 3(tλ)k, V i, α) \ H(w, θ, η)

)
(2.9)

< cMh
(
3(tλ)k

)
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Consequently, using (2.7), (2.9), (2.3), and the definitions of c and d, we get

q−1∑

j=1

µ
(
F ∩ B(yj, (tλ)k+1)

)
> 2−1c−1

1 `−1Mdkλm(k+1) − c2cMh
(
3(tλ)k

)
λm−n

≥ 2−1c−1
1 `−1Mdkλm(k+1) − c2cM3sdkλm(k+1)λ−n

= 3−1c−1
1 `−1Mdkλm(k+1)

= (q − 1)Mdk+1λm(k+1).

It follows that there is y ∈ {y1, . . . , yq−1} for which µ
(
F ∩ B(y, (tλ)k+1)

)
≥

M(dλm)k+1. This implies also that

µ(F ∩ Bk+1) ≥ M(dλm)k+1. (2.10)

Let z = limk→∞ xk. Since tλ ≤ 1/3, we have |z − xk| ≤
∑∞

i=k(tλ)i < 2(tλ)k.
Thus Bk ⊂ B

(
z, 3(tλ)k

)
for all k ∈ N. If (tλ)k+1 ≤ r′ < (tλ)k, then 3r′ < (tλ)k−1,

and hence, using (2.1), (2.10), and (2.4), we get

µ
(
B(z, 3r′)

)

h(3r′)
≥

(tλ)s(k−1)µ(Bk+1)

(3r′)sh
(
(tλ)k−1

) >
Mdk+1λm(k+1)

h
(
(tλ)k−1

)

= Md2λ2m
(
dλm−st−s

)k−1 (tλ)s(k−1)

h
(
(tλ)k−1

)

≥ Md2λ2m2(s−m)(k−1) −→ ∞

as r′ ↓ 0. This implies Dh(µ, z) = ∞, a contradiction since z ∈ F . �

We remark that the condition (2.1) could be weakened slightly. Namely, it
suffices to assume that there is s > m so that

h(εr)

εsh(r)

ε↓0
−→ 0 uniformly for all 0 < r < r0. (2.11)

We wrote down the proof in the case (2.1) to avoid technicalities, and also since
many natural gauge functions satisfy (2.1), see the discussion below.

Let us now consider the applications of our result. We denote hs(r) = rs as
r ≥ 0. As noted in the introduction, Theorem 2.3 is a generalisation of (1.4).
This follows from the well known fact according to which

1 ≤ Dhs
(Hs|A, x) ≤ 2s

for Hs-almost all x ∈ A provided A ⊂ R
n with 0 < Hs(A) < ∞. The most

important improvement in Theorem 2.3 compared to (1.4) is related to the s-
dimensional packing measure, Ps. See [9, §5.10] for the definition. If A ⊂ R

n

with 0 < Ps(A) < ∞, then

Dhs

(Ps|A, x) = 2s
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for Ps-almost all x ∈ A, see [9, Theorem 6.10]. Thus we get the following
corollary:

Corollary 2.4. Suppose 0 ≤ m < s ≤ n and 0 < α, η ≤ 1. Then there is a

constant c = c(n, m, s, α, η) > 0 such that

lim sup
r↓0

inf
θ∈Sn−1

V ∈G(n,n−m)

Ps
(
A ∩ X(x, r, V, α) \ H(x, θ, η)

)

rs
(2.12)

≥ c Dhs
(Ps|A, x) ≥ c 2s

for Ps-almost every x ∈ A whenever A ⊂ R
n with 0 < Ps(A) < ∞.

It is remarkable to note that it is certainly possible that the upper density
Dhs

(Ps|A, x) is infinity almost everywhere on the set A. In this case Corollary
2.4 states that also the upper density (2.12) is infinity for P s-almost every x ∈ A.

For many fractals some other gauge function than hs might be more useful
in measuring the fractal set in a delicate manner. Let h : [0,∞) → [0,∞),
h(0) = 0, and denote the Hausdorff and packing measures constructed using h
as a gauge function by Hh and Ph, respectively. See [9, §4.9] and [2, Definition
2.2] for the definitions. If A, B ⊂ R

n, 0 < Hh(A) < ∞, 0 < Ph(B) < ∞,
µ = Hh|A, and ν = Ph|B, then Dh(µ, x) ≤ lim supr↓0 h(2r)/h(r) for µ-almost
every x ∈ R

n and Dh(ν, x) ≤ lim supr↓0 h(2r)/h(r) for ν-almost every x ∈ R
n.

Thus Theorem 2.3 may be applied to measures µ and ν provided h satisfies (2.1)
and the doubling condition lim supr↓0 h(2r)/h(r) < ∞. The above estimates for

Dh(µ, x) and Dh(ν, x) may be proved by imitating the proofs of Theorems 6.2 and
6.10 in [9]. The condition (2.1) holds for functions such as h(r) = rs/ log(1/r)
or h(r) = rt log(1/r), t > s. However, some interesting (see [13, page 13] for
discussion) gauge functions such as h(r) = rm/ log(1/r) fail to satisfy (2.1) or
even the weaker condition (2.11).

In spite of all, most measures are so unevenly distributed that there are no
functions that could be used to approximate the measures in small balls. For
these measures it is natural to study upper densities such as

lim sup
r↓0

µ
(
X(x, r, V, α)

)

µ
(
B(x, r)

) .

We conclude the article with the following open problem. It is stated here in
it’s simplest form though natural generalisations arise comparing (1.1)–(1.4):
Suppose that µ is a measure on R

n whose packing dimension, dimP(µ), equals s
(see [4, §10]). If 0 < α < 1, m ∈ N with m < s, and V ∈ G(n, n − m), is it true
that

lim sup
r↓0

µ
(
X(x, r, V, α)

)

µ
(
B(x, r)

) ≥ c

for µ-almost every x ∈ R
n, where c > 0 depends only on n, m, s, and α?
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