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Abstract

We establish an essentially sharp growth condition on the quasi-
hyperbolic metric of a domain Ω ⊂ Rn su�cient for the global higher
integrability of the derivative of a quasiconformal mapping f : Ω′ → Ω.

1 Introduction

Recall that a homeomorphism f : Ω′ → Ω with Ω,Ω′ ⊂ Rn isK-quasiconformal
if f ∈W 1,n

loc (Ω′) and |Df |n ≤ KJf (x) holds for almost every x ∈ Ω′. Suppose
that we are given two domains Ω′,Ω ⊂ Rn, n ≥ 2, and a quasiconformal
mapping f : Ω′ → Ω. What can be said about the global higher integra-
bility of Df in this case? In other words, under which conditions does the
inequality ∫

Ω′
|Df |nϕ(|Df |)dx <∞ (1.1)

hold with an unbounded increasing function ϕ? This problem is well-known
and it was considered already, for example, in [AK] where the following
important result was established. If Ω satis�es the growth condition

kΩ(y, y0) ≤ φ
( d(y, ∂Ω)
d(y0, ∂Ω)

)
+ C0 (1.2)

on the quasihyperbolic metric kΩ with the function φ(t) = C log 1
t , then∫

Ω′
|Df |pdx <∞

for some p > n. Here the exponent p depends only on n, C and the dilatation
K = K(f). In this paper we prove an extension of this theorem. We show
that (1.2) implies (1.1) provided that φ satis�es certain conditions formulated
in the following. We also give a sharp estimate for ϕ in this case.
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of Professor Pekka Koskela. Mathematics Subjects Classi�cation (2000). Primary 30C65.
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De�nition 1.1. We say that a decreasing function φ :]0, 1] →]0,∞[ is of

logarithmic type, if there exist positive constants t0 and β such that φ satis�es

the following conditions for all t ≤ t0:

φ(t) is twice di�erentiable and − φ′(t)t is a decreasing function; (1.3)

φ(t) ≤ βφ(
√
t). (1.4)

Note that, for example, a function of the form

φ(t) =
{
C(log 1

t )
s1(log log 1

t )
s2 ...(log(m) 1

t )
sm + C, t < am;

C, t ≥ am,

where C > 0, m ∈ Z+, am = 1/ exp(m−1)(e), s1 ≥ 1, s2, ..., sm ≥ 0, is of
logarithmic type.

Theorem 1.2. Let Ω ⊂ Rn be a bounded domain satisfying (1.2) for some

�xed point y0 ∈ Ω and for all y ∈ Ω, where φ is of logarithmic type satisfying∫
0

dt

(−φ′(t)t)n−1t
= ∞. (1.5)

If Ω′ ⊂ Rn and f : Ω′ → Ω is K-quasiconformal, then∫
Ω′
|Df |nϕ(log(e+ |Df |))dx <∞ (1.6)

where

ϕ(r) = exp
(
C1

∫
[φ−1(C2r), t1]

dt

(−φ′(t)t)n−1t

)
(1.7)

for all su�ciently large r. Here t1 < 1 and the constants C1 and C2 depend

only on β,K and n.

We will show in Section 3 that this result is essentially sharp at least in
R2. Indeed, for a given φ there exists a domain Ω satisfying (1.2) and a
(quasi)conformal mapping f : B2 → Ω such that inequality (1.6) fails with
large constants C1, C2.

If, for example, φ(t) = C(log 1
t )

n
n−1 , then Theorem 1.2 implies the global

integrability condition∫
Ω′
|Df |n(log(e+ |Df |))pdx <∞

with some p > 0 depending only on C, K and n. Note that if φ(t) =
C(log 1

t )
s with some s > n

n−1 , then the integral
∫
Ω′ |Df |nϕ(log(e+ |Df |))dx

can be made to diverge with any unbounded increasing function ϕ by choos-
ing Ω,Ω′ and f suitably, see Section 3. Indeed, the exponent n

n−1 is the limit
for the divergence condition (1.5) to hold for functions of this scale.
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As another example, let us consider the classical situation when Ω is a Hölder
domain, i.e. it satis�es (1.2) with φ(t) = 1

ε log 1
t . Now, by Theorem 1.2,∫

Ω′ |Df |n+Cεn
<∞. This result is essentially equivalent with [AK, Theorem

1.2]. In particular, the dependency on the constant ε is sharp at least in R2,
see Section 3.

In [AK] the problem at hand was considered also from the viewpoint of
uniform continuity of the (quasi)conformal mapping f . Astala and Koskela
concluded that, for univalent functions in the unit disk, the higher integra-
bility of the derivative is equivalent to Hölder continuity. More precisely,∫
∆ |Df |

pdx <∞ for some p > 2 if and only if the inequality |f(x)−f(x′)| ≤
M |x−x′|α holds for all x, x′ ∈ ∆ with some constants M <∞, α ≤ 1. Here
∆ denotes the unit disk. The �if� part of this result has a counterpart which
holds also in the general case. It is formulated in the following.

Corollary 1.3. Let ψ :]0, 1[→]0, 1[ be an increasing bijection and let u :=
ψ−1. Suppose that log( 1

u(t)) is of logarithmic type and that∫
0

( u(t)
u′(t)

)n−1dt

tn
= ∞. (1.8)

If f : Bn → Rn is a K-quasiconformal map such that the inequality

|f(x)− f(x′)| ≤ ψ(|x− x′|) (1.9)

holds for all x, x′ ∈ Bn su�ciently close to each other, then∫
Bn

|Df |nϕ(log(e+ |Df |))dx <∞

where

ϕ(r) = exp
(
C1

∫
[ψ(exp(−C2r)), t1]

( u(t)
u′(t)

)n−1dt

tn

)
for all su�ciently large r. Here t1 < 1 and the constants C1 and C2 depend

only on β,K and n.

Note that this result is optimal at least in R2 by the example given in
Section 3. Considering the special case of a Hölder continuous f , Corollary
1.3 implies a result which is essentially equivalent with [AK, Corollary 1.4].

2 Proofs of the results

For the proof of Theorem 1.2 we need some preliminary results. As in [AK],
we will use the average derivative (introduced in [AG]) to estimate the dis-
tortion properties of a quasiconformal mapping in terms of the Jacobian.
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De�nition 2.1. Let f be a quasiconformal mapping in a proper subdomain

Ω ⊂ Rn and set B(x) = B(x, d(x, ∂Ω)/2). Then the average derivative is

de�ned by

af (x) = exp
( 1
n|B(x)|

∫
B(x)

log Jf (y)dy
)
, x ∈ Ω.

Recall that the counterpart of the Koebe distortion theorem holds for af :

Lemma 2.2 ([AG]). If f is K-quasiconformal in a domain Ω ⊂ Rn, then

c1
d(f(x), ∂fΩ)
d(x, ∂Ω)

≤ af (x) ≤ c2
d(f(x), ∂fΩ)
d(x, ∂Ω)

,

where c1, c2 depend only on n and K.

We need also the following result proven in [AK, Theorem 3.4].

Lemma 2.3 ([AK]). There exists ε = ε(n,K) > 0 such that whenever f is

K-quasiconformal in a domain Ω ⊂ Rn, the estimate

c1

∫
Q
af (x)pdx ≤

∫
Q
|Df |pdx ≤ c2

∫
Q
af (x)pdx

holds for all cubes Q in any Whitney decomposition of Ω and for all −ε <
p < n+ ε. Here the constants c1, c2 depend only on n,K and p.

Here a Whitney decomposition refers to a decomposition of Ω into cubes
so that the interiors of the cubes are pairwise disjoint and the inequality
diam(Q) ≤ dist(Q, ∂Ω) ≤ 4 diam(Q) holds for each cube Q in the de-
composition. See [S] for the construction and properties of the Whitney
decomposition.

Since we will use Jensen's inequality in the proof of Theorem 1.2, we show
in the next lemma that a certain function is convex.

Lemma 2.4. Let φ be of logarithmic type and let p > n. Then there are

constants C1, C2, depending on p, and a function ϕ :]0,∞[→]0,∞[ so that

ϕ(r) = exp
(
C1

∫
[φ−1(C2r), t1]

dt

(−φ′(t)t)n−1t

)
for all su�ciently large r, and the inverse function of

θ(t) := tn/pϕ(log(e+ t1/p))

is convex.
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Proof. Denote ϑ := θ−1. Since ϑ′′(θ(t)) = − 1
θ′(t)3 θ

′′(t) and θ(t) is an in-

creasing function, it su�ces to show that θ′′(t) < 0 for all t > 0. This is
trivially true for t < t0 when we choose ϕ(r) to be constant for all r < r0.
On the other hand, notice that ϕ′(r) = ϕ(r) C1C2

(−φ′(φ−1(C2r))φ−1(C2r))n for all

su�ciently large r, where C1C2
(−φ′(φ−1(C2r))φ−1(C2r))n is a decreasing function by

(1.3). Hence ϕ′′(r) ≤ ϕ′(r) ≤ αϕ(r) with any α > 0 provided that C1C2

is chosen small enough depending on α. This estimate combined with a
straightforward calculation implies θ′′(t) < 0 for su�ciently large t, and
hence the claim follows. �

In [N] the generalized dimension of the boundary of a domain Ω satisfying
(1.2) is estimated. These estimates imply the next lemma which is crucial for
the �nal arguments in this paper. We denote by |A| the Lebesgue measure
of a set A ⊂ Rn.

Lemma 2.5. Let Ω ⊂ Rn be a bounded domain satisfying the conditions of

Theorem 1.2 and set

Ωj := {z ∈ Ω : d(z, ∂Ω) < 2−j}.

Then there is an integer j0 and a positive constant C(β, n) such that

∞∑
j=j0

|Ωj \ Ωj+1| exp
(
C(β, n)

∫
[2−j ,2−j0 ]

dt

(−φ′(t)t)n−1t

)
<∞.

Proof. Given a sequence (aj) of positive numbers with
∞∑
j=1

aj < ∞, set

rm =
∞∑
j=m

aj . Then

∞∑
j=1

aj√
rj
<∞. (2.1)

To see this notice that √
rj +

√
rj+1 < 2

√
rj

and hence

aj√
rj

=
(√rj −

√
rj+1)(

√
rj +√

rj+1)
√
rj

< 2(
√
rj −

√
rj+1).

We set aj = |Ωj \ Ωj+1|. By [N] we know that there is an integer j0 and a
positive constant C̃(β, n) such that

|Ωj | ≤ C exp
(
− C̃(β, n)

∫
[2−j ,2−j0 ]

dt

(−φ′(t)t)n−1t

)
(2.2)
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for all j > j0. Combining (2.1) and (2.2) we obtain that

∞ >

∞∑
j=j0

|Ωj \ Ωj+1|√
|Ωj |

≥ C
∞∑
j=j0

|Ωj \ Ωj+1| exp
(1

2
C̃(β, n)

∫
[2−j ,2−j0 ]

dt

(−φ′(t)t)n−1t

)
.

�

Proof of Theorem 1.2.

Let W be a Whitney decomposition of Ω′ and let Q ∈ W. Denote by x0 the
center of Q. Let ε = ε(n,K) be as in Lemma 2.3 and set p = n+ ε

2 . De�ne
the function θ as in Lemma 2.4 and choose the constants C1, C2 so small
that θ−1 is convex. Then we have by Jensen's inequality that

1
|Q|

∫
Q
|Df |nϕ(log(e+ |Df |))dx = θ(θ−1(

1
|Q|

∫
Q
|Df |nϕ(log(e+ |Df |))dx))

≤ θ(
1
|Q|

∫
Q
|Df |pdx). (2.3)

By Lemma 2.3 we obtain

θ(
1
|Q|

∫
Q
|Df |pdx) ≤ θ(

c1
|Q|

∫
Q
af (x)pdx) (2.4)

with a constant c1 depending only on n and K. As in [AK, 3.4] we have that
af (x) ≤ Caf (y) for all x, y ∈ Q, and hence

θ(
c1
|Q|

∫
Q
af (x)pdx) ≤ θ(c2af (x0)p) ≤ c3af (x0)nϕ(log(e+ c4af (x0))). (2.5)

Applying Lemma 2.3 again, we obtain that

c3af (x0)nϕ(log(e+ c4af (x0))) ≤
c5
|Q|

∫
Q
|Df |nϕ(log(e+ c6af (x)))dx. (2.6)

Since the inequalities (2.3), (2.4), (2.5) and (2.6) hold for all cubes Q ∈ W,
we arrive at∫

Ω′
|Df |nϕ(log(e+ |Df |))dx ≤ c5

∫
Ω′
|Df |nϕ(log(e+ c6af (x)))dx. (2.7)

Combining (2.7) and Lemma 2.2 we write∫
Ω′
|Df |nϕ(log(e+ |Df |))dx ≤ c5

∫
Ω′
|Df |nϕ

(
log

(
e+ c7

d(f(x), ∂Ω)
d(x, ∂Ω′)

))
dx

≤ c5

∫
Ω′
KJfϕ

(
log

(
e+ c7

d(f(x), ∂Ω)
d(x, ∂Ω′)

))
dx

≤ c8

∫
Ω
ϕ
(

log
(
e+ c7d(y, ∂Ω)

1
d(f−1(y), ∂Ω′)

))
dy
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where c8 = c8(n,K) and c7 = c7(n,K). Furthermore, since Ω is bounded and

kΩ′(x, x0) ≥ log d(x0,∂Ω′)
d(x,∂Ω′) and quasiconformal maps are quasi-isometries for

large distances in the quasihyperbolic metrics (see [GO, p. 62]), we deduce
that

c8

∫
Ω
ϕ
(

log
(
e+ c7d(y, ∂Ω)

1
d(f−1(y), ∂Ω′)

))
dy

≤ c8

∫
Ω
ϕ
(

log
(
e+ c7

d(y, ∂Ω)
d(f−1(y0), ∂Ω′)

exp(kΩ′(f−1(y), f−1(y0)))
))
dy

≤ c8

∞∑
j=j0

∫
Ωj\Ωj+1

ϕ
(
CkΩ(y, y0)

)
dy + C̃

for su�ciently large j0. Here Ωj is de�ned as in Lemma 2.5 and the constant
C depends only on n and K. Finally, we choose j0 so large that 2j0 ≥
d(y0, ∂Ω) and φ(2−j0) ≥ C0 and thus by combining (1.2), (1.4) and (1.7)
with the previous calculations, we obtain the following chain of inequalities:∫

Ω′
|Df |nϕ(log(e+ |Df |))dx ≤ c8

∞∑
j=j0

∫
Ωj\Ωj+1

ϕ
(
CkΩ(y, y0)

)
dy + C̃

≤ c8

∞∑
j=j0

∫
Ωj\Ωj+1

ϕ
(
Cφ

( d(y, ∂Ω)
d(y0, ∂Ω)

)
+ CC0

)
dy + C̃

≤ c8

∞∑
j=j0

∫
Ωj\Ωj+1

ϕ
(
2Cφ(2−4j)

)
dy + C̃

≤ c8

∞∑
j=j0

∫
Ωj\Ωj+1

ϕ
(
2Cβ2φ(2−j)

)
dy + C̃

≤ c8

∞∑
j=j0

|Ωj \ Ωj+1| exp
(
C1

∫
[φ−1(C22Cβ2φ(2−j)), t1]

dt

(−φ′(t)t)n−1t

)
+ C̃.

The last sum above converges by Lemma 2.5 if C2 ≤ 1
2Cβ2 and C1 ≤ C(β, n)

and t1 = 2−j0 . This completes the proof. �

Note that as a by-product we establish an essentially sharp integrability
condition for the quasihyperbolic metric kΩ in the domain Ω satisfying (1.2)
with some φ. Indeed, suppose that the assumptions of Theorem 1.2 hold.
Then the estimates above imply∫

Ω
ϕ(kΩ(y, y0))dy <∞

with the function

ϕ(r) = exp
(
C1

∫
[φ−1(C2r),t1]

dt

(−φ′(t)t)n−1t

)
.
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This improves on [KN], where the case φ(t) = C(log 1
t )

n
n−1 was considered.

Proof of Corollary 1.3. It follows from (1.9) that

d(f(x), ∂Ω) ≤ ψ(1− |x|). (2.8)

for all x ∈ Bn su�ciently close to the boundary. Combining (2.8) with the
quasi-isometry property of f we obtain

kΩ(f(x), f(0)) ≤ C(K,n)kBn(x, 0)

= C(K,n) log
1

1− |x|

≤ C(K,n) log
1

ψ−1(d(f(x), ∂Ω))

≤ C(K,n)β log
1

ψ−1(d(f(x),∂Ω)
d(f(0),∂Ω) )

for all x su�ciently close to the boundary ∂Bn. Thus we conclude that
Ω = f(Bn) is a bounded domain which satis�es the growth condition (1.2)
with the function

φ(t) = C(β,K, n) log
1

ψ−1(t)
. (2.9)

The claim now follows by Theorem 1.2. The assumption (1.8) guarantees
that also the divergence condition (1.5) holds. �

3 Sharpness of the results

To show the essential sharpness of Theorem 1.2, we construct a simply con-
nected domain Ω ⊂ R2 such that (1.2) holds, but the integral∫

B2

|Df |2ϕ(log(e+ |Df |))dx (3.1)

diverges for some (quasi)conformal f : B2 → Ω with

ϕ(r) = exp
(
C̃1

∫
[φ−1(C̃2r), t1]

dt

−φ′(t)t2
)
. (3.2)

Let φ be a function satisfying the conditions of Theorem 1.2 and let c =
c(β) ≥ 1. By condition (1.3) we can take j0 to be the smallest integer such
that c

−φ′(r)r ≤
1
16 for all r ≤ 2−j0 . Let α :]0, 1[→]0,∞[,

α(t) =
c

−φ′(t)
.
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Let Qj0 = {x ∈ R2 : |xi| < 2−j0−1 for i = 1, 2}, and denote the side length
of Qj0 by rj0 = 2−j0 . Let Ωj0 be the α(rj0)-neighborhood of the coordinate
axes in Qj0 . Let Qj0+1 = Qj0\Ωj0 . Now Qj0+1 consists of 4 squares with side
lengths rj0+1 = 1

2rj0(1 −
2c

−φ′(rj0 )rj0
). Denote the components of Qj0+1 by

Qlj0+1. Let Ωj0+1 be the union of the α(rj0+1)-neighborhoods of the centered
coordinate axes in the squares Qlj0+1. Then let Qj0+2 = Qj0+1 \ Ωj0+1.

Now Qj0+2 consists of 42 squares with side lengths rj0+2 = (1
2)2rj0(1 −

2c
−φ′(rj0 )rj0

)(1 − 2c
−φ′(rj0+1)rj0+1

). De�ne for every k ≥ j0 + 2 the sets Ωk

and Qk accordingly. Now the set Ωk consists of the α(rk)-neighborhoods of
the centered coordinate axes in the squares Qlk, l = 1, 2, ..., 4k−j0 , with side
lengths

rk = rj0(
1
2
)k−j0

k−1∏
i=j0

(1− 2c
−φ′(ri)ri

).

A trivial estimation ri ≤ 2−i implies

rk ≥ 2−k
k−1∏
i=j0

(1− 2c
−φ′(2−i)2−i

) ≥ 2−k exp
(
− 4c

∫
[2−k,2−j0 ]

dt

−φ′(t)t2
)

(3.3)

since −φ′(t)t is a decreasing function and
∏

(1 − ai) ≥ exp(−2
∑
ai) for

0 < ai ≤ 1
8 .

De�ne a domain Ω̃ by setting

Ω̃ =
∞⋃
k=1

Ωk.

Now, the domain Ω̃ must be modi�ed slightly to make it simply connected.
This can be done easily by closing certain gates in the construction. We
leave this task to the reader. The resulting domain Ω is simply connected
and hence there exists a conformal mapping f : B2 → Ω. Furthermore, a
straightforward calculation shows that the growth condition (1.2) holds in Ω
provided that c is chosen large enough depending only on β.

Next we show that the integral (3.1) diverges. Notice �rst that af (x) =
|f ′(x)| for the conformal mapping f and hence Lemma 2.2 implies∫

B2

|Df |2ϕ(log(e+ |Df |))dx ≥
∫
B2

|Df |2ϕ
(

log
(
e+ C0

d(f(x), ∂Ω)
d(x, ∂B2)

))
dx

=
∫

Ω
ϕ
(

log
(
e+ C0d(y, ∂Ω)

1
d(f−1(y), ∂B2)

))
dy

=
∫

Ω
ϕ
(

log
(
e+ C0d(y, ∂Ω) exp(kB2(f−1(y), 0))

))
dy. (3.4)
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By the quasi-isometry property of f we deduce that∫
Ω
ϕ
(

log
(
e+ C0d(y, ∂Ω) exp(kB2(f−1(y), 0))

))
dy

≥
∫

Ω
ϕ
(

log
(
e+ C0d(y, ∂Ω) exp(CkΩ(y, y0))

))
dy

≥
∞∑

j=j0+1

4j−j0rjα(rj)ϕ
(

log
(
e+ C0

α(rj)
2

exp(C
j−1∑
i=j0

ri
α(ri)

)
))
. (3.5)

Notice that properties (1.3) and (1.4) imply α(r) ≥ r2 for all small r. Com-
bining this estimate with (1.3), (3.3) and the assumption c

−φ′(r)r ≤
1
16 we

obtain that

∞∑
j=j0+1

4j−j0rjα(rj)ϕ
(

log
(
e+ C0

α(rj)
2

exp(C
j−1∑
i=j0

ri
α(ri)

)
))

≥
∞∑

j=j0+1

c4j−j0r2j
−φ′(rj)rj

ϕ
(

log
(
e+ C̃0r

2
j exp(C

j−1∑
i=j0

−φ′(2−i)2−i)
))

≥
∞∑

j=2j0

c4−j0

−φ′(rj)rj
exp

(
− 8c

∫
[2−j ,2−j0 ]

dt

−φ′(t)t2
)
ϕ
(
C̃φ(2−j)

)
. (3.6)

The last sum diverges by (1.3) and (1.5) when the constants C̃1, C̃2 in (3.2)
are chosen large enough. The desired conclusion then follows by combining
(3.4), (3.5) and (3.6).

Note that if the divergence condition (1.5) fails for the function φ, then
for any given increasing, unbounded function g we �nd a domain Ω, by
the construction above, satisfying (1.2) and a (quasi)conformal mapping f :
B2 → Ω such that ∫

B2

|Df |2g(|Df |)dx = ∞.

This example shows also the essential sharpness of Corollary 1.3 in R2.
Indeed, since the domain Ω satis�es the growth condition (1.2), the qua-
siconformal mapping f : B2 → Ω has the modulus of continuity ψ(t) =
Cφ−1(C log 1

t ) (see [HK] for a detailed discussion), and in this case Theorem
1.2 and Corollary 1.3 give us essentially equivalent results.

Let us point out that this example also shows the essential sharpness of
the integrability condition of the quasihyperbolic metric in the domain Ω
discussed at the end of Section 2.

We promised to discuss further the special case of a Hölder domain Ω satis-
fying (1.2) with the function φ(t) = 1

ε log 1
t . Indeed, the construction above
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with the choice α(t) = cεt, where c is large enough but independent of ε,
gives us exactly such a domain. The calculations above imply that∫

B2

|Df |2ϕ(log(e+ |Df |))dx = ∞

for the function ϕ(t) = exp(C̃ε2t), when the constant C̃ is chosen large
enough independently of ε. Thus we see that the dependency on the constant
ε implied by Theorem 1.2 is sharp.
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