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ANTTI KÄENMÄKI

Abstract. We study geometric rigidity of a class of fractals, which is slightly
larger than the collection of self-conformal sets. Namely, we shall prove that a
set of this class is contained in a smooth submanifold or is totally spread out.

1. Introduction

We study limit sets of certain iterated function systems on R
d. A self-conformal

set is a limit set of an iterated function system in which the mappings are con-
formal on a neighborhood of the limit set. To define the class of limit sets we
are interested in, we use mappings that are required to be conformal only on
the limit set. With the conformality here, we mean that the derivative of the
mapping is an orthogonal transformation. This class is larger than the collection
of self-conformal sets.

To illustrate the type of results we are interested in, we recall the following
known theorems dealing with self-conformal sets. The latter one is a generaliza-
tion of Mattila’s rigidity theorem for self-similar sets ([5, Corollary 4.3]). The
method we use in this paper delivers a new proof and generalization of these
theorems. To find other rigidity results of similar kind, the reader is referred to
[6] and [10]. Let E be a self-conformal set, Ht denote the t-dimensional Hausdorff
measure, and dimT and dimH be the topological dimension and the Hausdorff
dimension, respectively.

Theorem 1.1 (Mayer and Urbański [8, Corollary 1.3]). Suppose l = dimT(E).
Then either

(1) dimH(E) > l or
(2) E is contained in an l-dimensional affine subspace or an l-dimensional

geometric sphere whenever d exceeds 2 and if d equals 2, E is contained in an
analytic curve.

Theorem 1.2 ([3, Theorem 2.1]). Suppose t = dimH(E) and 0 < l < d. Then
either

(1) Ht(E ∩ M) = 0 for every l-dimensional C1-submanifold M ⊂ R
d or
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(2) E is contained in an l-dimensional affine subspace or an l-dimensional
geometric sphere whenever d exceeds 2 and if d equals 2, E is contained in an
analytic curve.

Our aim is to prove results of similar kind for the previously mentioned class
of limit sets. We define the class rigorously in the next chapter.

2. Class of fractal sets

We consider the sets obtained as geometric projections of the symbol space
I∞: Take a finite set I with at least two elements and set I∗ =

⋃∞
n=1

In and
I∞ = IN. If i ∈ I∗ and j ∈ I∗ ∪ I∞, then with the notation i, j we mean the
element obtained by juxtaposing the terms of i and j. The length of i, that is,
the number of terms in i, is denoted by |i|. Let X ⊂ R

d be a compact set and
choose a collection {Xi : i ∈ I∗} of nonempty closed subsets of X satisfying

(L1) Xi,i ⊂ Xi for every i ∈ I∗ and i ∈ I,
(L2) diam(Xi) → 0 as |i| → ∞.

Now the projection mapping is the function π : I∞ → X for which

{π(i)} =

∞
⋂

n=1

Xi|n

when i ∈ I∞. The compact set E = π(I∞) is called a limit set.
Since this setting is too general to study the geometry, we assume the limit set

is constructed by using the sets of the form Xi = ϕi(X), where ϕi = ϕi1◦· · ·◦ϕi|i|

for i = (i1, . . . , i|i|) ∈ I∗ and the mappings ϕi belong into the following category:

Suppose Ω′ ⊂ R
d is open and Ω is open and bounded such that Ω ⊂ Ω′ and

X ⊂ Ω. We consider mappings ϕ ∈ C2(Ω′) for which ϕ(X) ⊂ X and

(F1) there exist constants 0 < s, s < 1 for which s2 ≤ s and

s ≤ |(ϕ′(x))−1|−1 ≤ |ϕ′(x)| ≤ s

when x ∈ Ω,
(F2) the derivative of ϕ is an orthogonal transformation on E, that is,

|(ϕ′(x))−1|−1 = |ϕ′(x)|

when x ∈ E.

Here | · | denotes the usual operator norm for linear mappings. Furthermore, we
set ||ϕ′

i
|| = supx∈Ω |ϕ′

i
(x)|.

For example, each contractive conformal mapping satisfies both assumptions
(F1) and (F2). At first glance, it might feel that requiring mappings that define
the limit set to be conformal on the limit set, to be very restrictive assumption
for nonconformal mappings. In the following, we shall give an example of a
nonconformal setting.
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Figure 1. A nonconformal example.

Example 2.1. Suppose the mappings ϕ1, . . . , ϕk defined on an open set Ω′ ⊂ R
d

are conformal and contractive on an open and bounded set Ω for which Ω ⊂ Ω′.
Assume also that there is a compact set X ⊂ Ω such that ϕi(X) ⊂ X for each
i ∈ {1, . . . , k}. The limit set E associated to this setting is called a self-conformal
set. Furthermore, we require that maxi ||ϕ

′
i||

2 maxi ||(ϕ
−1
i )′|| < 1.

Next choose maxi ||ϕ
′
i|| < s < 1 and 0 < s < (maxi ||(ϕ

−1
i )′||)−1 such that

s2 < s. Suppose h : R
d → R

d is a C2 diffeomorphism such that it is conformal
on E. We assume also that

1 ≤ ||h′|| ||(h−1)′|| ≤ min

{

s

maxi ||ϕ′
i||

,
1

smaxi ||(ϕ
−1
i )′||

}

. (2.1)

Define ϕ̃i = h ◦ϕi ◦ h−1 for every i ∈ {1, . . . , k} and set Ω̃′ = h(Ω′), Ω̃ = h(Ω),

and X̃ = h(X). Since ϕ̃i(X̃) ⊂ X̃ for every i, the assumption (L1) is satisfied
for the collection {ϕ̃i(X̃) : i ∈ I∗ }. We claim that also the assumption (L2)
is satisfied and the mappings ϕ̃i satisfy the assumptions (F1) and (F2). To see
this, notice that

|ϕ̃′
i(x)| ≤ |(h′(h−1(x)))−1||h′(ϕi ◦ h−1(x))||ϕ′

i(h
−1(x))|,

|(ϕ̃′
i(x))−1| ≤ |h′(h−1(x))||(h′(ϕi ◦ h−1(x)))−1||(ϕ′

i(h
−1(x)))−1|

(2.2)

for every x ∈ Ω̃. The condition (F1), and hence also the condition (L2), can now
be verified by using (2.1). Denoting the limit set associated to this setting with
Ẽ, it is straightforward to see that Ẽ = h(E). Assumptions on h guarantee that

equations in (2.2) hold with an equality provided that x ∈ Ẽ. Therefore also
(F2) holds.

The class of limit sets obtained by this method clearly includes all the self-
conformal sets. Since the collection of mappings that generate the limit set is
not necessarily unique, we shall next give an example of a self-conformal set E
and a mapping h such that there are no conformal mappings having h(E) as the
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limit set. Let E be the usual Cantor dust on R
3, that is, E = C3, where C is

the middle third Cantor set on the unit interval. Define h : R
3 → R

3 such that
h(x, y, z) = g(z)(x, y, z), where g is an increasing C2 function with the following
properties: g′ < c1, g ≡ 1 on [0, 1

3
] and g ≡ c2 on [2

3
, 1], see Figure 1. Now,

with suitable choices of 0 < s < 1

3
, 1

3
< s < 1, c1 > 0, and c2 > 1, the mapping

h satisfies the condition (2.1). If the set h(E) were a limit set of a collection
of conformal mappings, it would be invariant with respect to these mappings.
Hence there exists a conformal mapping taking a cylinder set small enough (if Ω
is connected, then a first level cylinder would suffice) to the whole set h(E) such
that the image of a 2-dimensional affine subspace containing one side of the small
cylinder set includes sides of two first level cylinder sets located in two distinct
2-dimensional affine subspaces (the sides on the right in Figure 1). According
to Liouville’s Theorem this is not possible. Therefore, the class of limit sets
obtained by this method is strictly larger than the collection of all self-conformal
sets.

To avoid too much overlapping among the sets ϕi(X), we assume the open set
condition, that is, ϕi

(

int(X)
)

∩ ϕj

(

int(X)
)

= ∅ for i 6= j, and the existence of
%0 > 0 for which

inf
x∈∂X

inf
0<r<%0

Hd
(

B(x, r) ∩ int(X)
)

Hd
(

B(x, r)
) > 0, (2.3)

where ∂X denotes the boundary of X. These assumptions are crucial in deter-
mining the so called conformal measure, see, for example, [2], [7] and [4] . From
now on, without mentioning it explicitly, this is the setting we are working with.

As a consequence of the assumption (F1), we have the following proposition.
Observe that the assumption (F2) is not needed here.

Proposition 2.2 (Falconer [1, Proposition 4.3]). There exists a constant c > 0
such that

|ϕ′
i
(x) − ϕ′

i
(y)| ≤ c|ϕ′

i
(x)||x − y|

for every i ∈ I∗ and x, y ∈ Ω.

As a corollary, Falconer [1, Corollary 4.4] shows that there exists a bounded
function 1 ≤ K(t) ≤ K0, K(t) → 1 as t → 0, such that

|ϕ′
i
(x)| ≤ K(|x − y|) |ϕ′

i
(y)|,

|(ϕ′
i
(x))−1|−1 ≤ K(|x − y|) |(ϕ′

i
(y))−1|−1

(2.4)

for every i ∈ I∗ and x, y ∈ Ω. In the following, B(a, r) denotes the open ball
centered at a ∈ R

d with radius r > 0. The closed ball is denoted by B(a, r)
whereas the closure of a given set A is denoted with A. The boundary of A is
denoted by ∂A. Finally, we set [x, y] = {λx + (1 − λ)y : 0 ≤ λ ≤ 1}.
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Lemma 2.3. (1) If x ∈ E, then

B
(

ϕi(x), K−1
0 |ϕ′

i
(x)|r

)

⊂ ϕi

(

B(x, r)
)

for every i ∈ I∗ and 0 < r < dist(E, ∂Ω).
(2) If x ∈ X, then

ϕi

(

B(x, r)
)

⊂ B
(

ϕi(x), ||ϕ′
i
||r

)

for every i ∈ I∗ and 0 < r < dist(X, ∂Ω).
(3) There exists a constant D ≥ 1 such that

diam
(

ϕi(X)
)

≤ D||ϕ′
i
||

for every i ∈ I∗.

Proof. Take x ∈ E, i ∈ I∗, and 0 < r < dist(E, ∂Ω). Iterating (F2) and using
(2.4), we have

|ϕ′
i
(x)| ≤ K(|x − y|) |(ϕ′

i
(y))−1|−1 (2.5)

when y ∈ Ω. Let r1 > 0 be the supremum of all radii for which B
(

ϕi(x), r1

)

⊂
ϕi

(

B(x, r)
)

. Using now the Mean Value Theorem, we find, for each z, w ∈

B
(

ϕi(x), r1

)

and θ ∈ R
d, a point ξ ∈ [z, w] such that

θ ·
(

ϕ−1
i

(z) − ϕ−1
i

(w)
)

= θ ·
(

(ϕ−1
i

)′(ξ)(z − w)
)

.

Thus, choosing θ = (x − y)/|x − y|, where y ∈ ∂B(x, r) is such that ϕi(y) ∈
∂B

(

ϕi(x), r1

)

, we get, using (2.5),

r = |x − y| =
∣

∣ϕ−1
i

(

ϕi(x)
)

− ϕ−1
i

(

ϕi(y)
)
∣

∣

≤ |(ϕ−1
i

)′(ξ)||ϕi(x) − ϕi(y)|

=
∣

∣

(

ϕ′
i
(ϕ−1

i
(ξ))

)−1∣
∣|ϕi(x) − ϕi(y)|

≤ K(|ϕ−1
i

(ξ) − x|) |ϕ′
i
(x)|−1|ϕi(x) − ϕi(y)|,

(2.6)

where ξ ∈ [ϕi(x), ϕi(y)]. Hence K−1
0 |ϕ′

i
(x)|r ≤ r1, which proves the first claim.

Assume now that x ∈ X and 0 < r < dist(X, ∂Ω). Take z ∈ ϕi

(

B(x, r)
)

and
y ∈ B(x, r) for which z = ϕi(y). Applying the Mean Value Theorem, we obtain

|ϕi(x) − z| ≤ ||ϕ′
i
|| |x − y| (2.7)

from which the second claim follows immediately. Since X is compact and Ω is
open and connected, we can cover X by a finite chain of balls in Ω. We assume
that there are balls B1, . . . , Bp ⊂ Ω with X ⊂

⋃p
i=1

Bi and Bi ∩ Bi+1 6= ∅ for
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every i ∈ {1, . . . , p − 1}. Now

diam
(

ϕi(X)
)

≤

p
∑

i=1

diam
(

ϕi(Bi)
)

≤ ||ϕ′
i
||

p
∑

i=1

diam(Bi)

≤ p diam(Ω)||ϕ′
i
||

using (2.7). The proof is finished. �

Let 0 < l < d be an integer and G(d, l) the collection of all l-dimensional
linear subspaces of R

d. The orthogonal projection onto V ∈ G(d, l) is denoted
by PV . We denote the orthogonal complement of V with V ⊥ ∈ G(d, d − l) and
the projection onto that by QV = PV ⊥. We can metricize G(d, l) by identifying
V ∈ G(d, l) with the projection QV and defining for V, W ∈ G(d, l)

d(V, W ) = |QV − QW |,

where | · | is the usual operator norm for linear mappings. With this metric,
G(d, l) is compact. Furthermore, we denote V +{x} = {v+x : v ∈ V } for x ∈ R

d

and AV = {Av : v ∈ V } for a nonsingular linear mapping A : R
d → R

d.
If a ∈ R

d, V ∈ G(d, l), 0 < δ < 1, and r > 0, we set

X(a, V, δ) = {x ∈ R
d : |QV (x − a)| < δ1/2|x − a|},

X(a, r, V, δ) = X(a, V, δ) ∩ B(a, r),

Va(δ) = {x ∈ R
d : |QV (x − a)| < δ}.

Notice that the closure of X(a, V, δ) is the complement of X(a, V ⊥, 1 − δ). Salli
[9] has shown that d(V, W ) = supx∈V ∩Sd−1 dist(x, W ). Hence the set X(0, V, δ) is
an open ball in G(d, l) centered at V with radius δ1/2.

3. Geometric rigidity

For the purpose of verifying our main result, we need the following lemma. In
the lemma we study images of small angles. We work in the setting described in
the previous chapter.

Lemma 3.1. Suppose a ∈ E, i ∈ I∗, 0 < l < d, 0 < δ < 1, 1

2
≤ % < 1, and

V ∈ G(d, l). Then there exists r0 > 0 depending only on δ and % such that

ϕi

(

X(a, r, V, %δ)
)

⊂ X
(

ϕi(a), ||ϕ′
i
||r, ϕi(a)V, δ

)

whenever 0 < r < r0.

Proof. First of all, choose r0 > 0 small enough such that r0 < dist(E, ∂Ω).
Then by Lemma 2.3(2) we have ϕi

(

B(a, r)
)

⊂ B
(

ϕi(a), ||ϕ′
i
||r

)

⊂ Ω for every
0 < r < r0. Take 0 < r < r0 and x ∈ X(a, r, V, %δ). Denote V ′ = ϕ′

i
(a)V ,
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y = PV (x − a) + a, and θ = QV ′

(

ϕi(x) − ϕi(a)
)

/
∣

∣QV ′

(

ϕi(x) − ϕi(a)
)
∣

∣. Using
the Mean Value Theorem we choose ξ ∈ [x, a] such that

∣

∣QV ′

(

ϕi(x) − ϕi(a)
)
∣

∣ = θ ·
(

ϕi(x) − ϕi(a)
)

= θ ·
(

ϕ′
i
(ξ)(x − a)

)

.
(3.1)

Since ϕ′
i
(a)(y − a) ∈ V ′, we have

∣

∣QV ′

(

ϕi(x) − ϕi(a)
)
∣

∣ =
∣

∣θ ·
(

ϕi(x) − ϕi(a) − ϕ′
i
(a)(x − a)

− ϕ′
i
(a)(y − a) + ϕ′

i
(a)(x − a)

)
∣

∣

≤
∣

∣θ ·
(

ϕi(x) − ϕi(a) − ϕ′
i
(a)(x − a)

)
∣

∣

+
∣

∣θ ·
(

ϕ′
i
(a)(y − a) − ϕ′

i
(a)(x − a)

)
∣

∣

≤ |ϕ′
i
(ξ)(x − a) − ϕ′

i
(a)(x − a)| + |ϕ′

i
(a)(x − y)|

(3.2)

using (3.1) and the Cauchy-Schwartz inequality. Calculating as in (2.6), we
notice that

|ϕ′
i
(a)||x − a| ≤ K(|ϕ−1

i
(ξ′) − a|) |ϕi(x) − ϕi(a)|, (3.3)

where ξ′ ∈ [ϕi(x), ϕi(a)]. Observe that |ϕ−1
i

(ξ′) − a| ≤ K0|ϕ
′
i
(a)|−1|ϕi(x) −

ϕi(a)| ≤ K2
0 |x − a| by (2.4). Therefore, when |x − a| is small, also |ϕ−1

i
(ξ′) − a|

is small, and hence, to simplify the notation, we may replace in the following
K(|ϕ−1

i
(ξ′) − a|) with K(|x − a|). Using Proposition 2.2 and (3.3), we obtain

|ϕ′
i
(ξ)(x − a) − ϕ′

i
(a)(x − a)| ≤ |ϕ′

i
(ξ) − ϕ′

i
(a)||x − a|

≤ c|ϕ′
i
(a)||ξ − a||x − a|

≤ cK(|x − a|) |ϕi(x) − ϕi(a)||x − a|.

(3.4)

Using (3.3) we also have

|ϕ′
i
(a)(x − y)|

|ϕi(x) − ϕi(a)|
≤ K(|x − a|)

|ϕ′
i
(a)||x − y|

|ϕ′
i
(a)||x − a|

≤ K(|x − a|)(%δ)1/2 (3.5)

and hence, combining (3.2), (3.4), and (3.5), we conclude
∣

∣QV ′

(

ϕi(x) − ϕi(a)
)
∣

∣

|ϕi(x) − ϕi(a)|
≤ K(|x − a|)

(

c|x − a| + (%δ)1/2
)

.

Finally, choosing r0 ≤ δ1/2c−1
(

((% + 1)/2)1/2 − %1/2
)

so small such that K(t) ≤

(2/(% + 1))1/2 for all 0 < t ≤ r0, we have finished the proof. �

With this geometrical lemma we are able to study tangents of the limit set
E. Let m be a Borel measure on R

d, 0 < l < d, and t > 0. Take a ∈ E and
V ∈ G(d, l). We say that V is a weak (t, l)-tangent plane for E at a if

lim inf
r↓0

m
(

B(a, r) \ Va(δr)
)

rt
= 0
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for all 0 < δ < 1. We also say that V is an l-tangent plane for E at a if for every
0 < δ < 1 there exists rδ > 0 such that

E ∩ B(a, r) ⊂ X(a, V, δ)

whenever 0 < r < rδ. Furthermore, the set E is said to be uniformly l-tangential
if every point a ∈ E has an l-tangent plane and the previously mentioned rδ > 0
does not depend on a. An application of Whitney’s Extension Theorem shows
that a uniformly l-tangential set is a subset of an l-dimensional C1-submanifold,
see Proposition 3.3.

For each i ∈ I∗ and t ≥ 0 the function h 7→
∣

∣ϕ′
i

(

π(h)
)
∣

∣

t
defined on I∞ is a

cylinder function satisfying the chain rule, see [4, Chapter 2], and hence, by the
open set condition, (2.3), and [4, Theorems 2.5, 3.7, and 3.8], there exists a Borel
probability measure m on E such that for each i ∈ I∗

m
(

ϕi(E)
)

=

∫

E

|ϕ′
i
(x)|tdm(x),

where t = dimH(E). The measure m is called a conformal measure. It can be
easily shown that there exists a constant C > 0 such that

m
(

B(x, r)
)

≥ Crt (3.6)

for all x ∈ E and 0 < r < r0. Namely, take i = (i1, i2, . . .) ∈ I∞ such that
π(i) = x and n to be the smallest integer for which ϕi|n(E) ⊂ B(x, r). Now,
using (F2), (2.4), and Lemma 2.3(3), we obtain

m
(

B(x, r)
)

≥ m
(

ϕi|n(E)
)

=

∫

E

|ϕ′
i|n(x)|tdm(x)

=

∫

E

∣

∣ϕ′
i|n−1

(

ϕin(x)
)
∣

∣

t
|ϕ′

in(x)|tdm(x)

≥ K−2t
0 min

i∈I
||ϕ′

i||
t||ϕ′

i|n−1
||t

≥ D−tK−2t
0 min

i∈I
||ϕ′

i||
t diam

(

ϕi|n−1
(X)

)t
,

where t = dimH(E). The claim follows since the set ϕi|n−1
(X) is not included in

B(x, r).
We are now ready to prove the main theorem.

Theorem 3.2. Suppose t = dimH(E) and 0 < l < d. If a point of E has a weak
(t, l)-tangent plane, then E is uniformly l-tangential.

Proof. Let us first sketch the main idea of the proof: Assuming there is a point
x ∈ E with no tangent, we find for each plane W a point y ∈ E close to x such
that the angle between y − x and W is large. Since the set {ϕi(x) : i ∈ I∗} is
dense in E, we are able to, using Lemma 3.1, map this setting arbitrary close to
any given point in E. Hence, if a ∈ E has a weak tangent plane V , we obtain
an immediate contradiction, since either the image of x or the image of y is not
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included in a small neighborhood of V + {a} provided that W is chosen in the
beginning such that the image of W is close to V .

Suppose a ∈ E has a weak (t, l)-tangent plane V . Assume on the contrary
that there exists x ∈ E such that for every W ∈ G(d, l) there is 0 < δ < 1 such
that for each r0 > 0 there exists 0 < r′ < r0 for which

E ∩ B(x, r′) \ X(x, W, δ) 6= ∅. (3.7)

Take i ∈ I∞ such that π(i) = a. Then clearly ϕi|k(x) → a as k → ∞. Setting
Ak = ϕ′

i|k
(x)/|ϕ′

i|k
(x)| for all k ∈ N and using the compactness of G(d, l), we

notice (A−1

k V )k has a subsequence converging to some W ∈ G(d, l). Denoting the
subsequence as the original sequence and setting Wk = AkW , we have Wk → V
as k → ∞. Choose also 0 < δ < 1 such that (3.7) holds for this W .

Put 1/(δ + 1) < % < 1 and let r0 = r0(%, 1 − %δ) < dist(E, ∂Ω) be as in
Lemma 3.1. Then fix 0 < r′′ < r0/2 such that (3.7) remains satisfied. Choosing
y ∈ E ∩ B(x, r′′) \ X(x, W, δ) we notice that there exists 0 < η < 1 depending
only on % and δ such that

B(y, ηr′) ⊂ B(x, r′) \ X(x, W, %δ), (3.8)

where r′ = 2|x − y|. Applying Lemma 3.1 we obtain

ϕi|k

(

B(x, r′) \ X(x, W, %δ)
)

= ϕi|k

(

X(x, r′, W⊥, 1 − %δ)
)

⊂ X
(

ϕi|k(x), ||ϕ′
i|k
||r′, W⊥

k , (1 − %δ)/%
)

= B
(

ϕi|k(x), ||ϕ′
i|k
||r′

)

\ X
(

ϕi|k(x), Wk, δ − (1/% − 1)
)

(3.9)

whenever k ∈ N. Hence, using Lemma 2.3(1), (3.8), and (3.9), we have

B
(

ϕi|k(y),K−1
0 |ϕ′

i|k
(y)|ηr′

)

⊂ ϕi|k

(

B(y, ηr′)
)

⊂ B
(

ϕi|k(x), ||ϕ′
i|k
||r′

)

\ X
(

ϕi|k(x), Wk, δ − (1/% − 1)
) (3.10)

whenever k ∈ N. Since Wk → V as k → ∞, we may take k0 large enough such
that |QWk

− QV | < 2−1(δ − (1/% − 1))1/2 whenever k ≥ k0. Recalling that the
set X(0, V, δ) is an open ball in G(d, l) centered at V with radius δ1/2, we notice,
using the triangle inequality, that

X
(

ϕi|k(x), V, (δ − (1/% − 1))/4
)

⊂ X
(

ϕi|k(x), Wk, δ − (1/% − 1)
)

(3.11)

whenever k ≥ k0.
Let r > 0 and choose n to be the smallest integer for which

||ϕ′
i|n|| < D−1r/2.

By choosing r > 0 small enough we may assume that n ≥ k0. Since by (3.10)
and (3.11)

B
(

ϕi|n(y), K−1
0 |ϕ′

i|n(y)|ηr′
)

⊂ B
(

ϕi|n(x), ||ϕ′
i|n||r

′
)

\

X
(

ϕi|n(x), V, (δ − (1/% − 1))/4
)

,
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this choice gives, using (F2) and (2.4),
∣

∣QV

(

ϕi|n(x) − ϕi|n(y)
)
∣

∣ ≥ 2−1(δ − (1/% − 1))1/2|ϕi|n(x) − ϕi|n(y)|

≥ 2−1(δ − (1/% − 1))1/2K−1
0 |ϕ′

i|n(y)|ηr′

≥ 2−1(δ − (1/% − 1))1/2K−2
0 ηr′||ϕ′

i|n−1
||min

i∈I
|ϕ′

i(y)|

≥ 2−1(δ − (1/% − 1))1/2K−2
0 ηr′ min

i∈I
|ϕ′

i(y)|D−1r/2

=: λr,

where λ > 0 does not depend on r. Assuming now dist
(

ϕi|n(x) − a, V
)

≤ λr/2,
we have

dist
(

ϕi|n(y) − a, V
)

≥
∣

∣QV

(

ϕi|n(x) − ϕi|n(y)
)
∣

∣ −
∣

∣QV

(

ϕi|n(x) − a
)
∣

∣

≥ λr − λr/2 = λr/2.

Changing the roles of x and y above, we observe that there exists z ∈ {x, y} such
that

dist
(

ϕi|n(z) − a, V
)

≥ λr/2.

Since by Lemma 2.3(3)

dist
(

ϕi|n(z) − a, V
)

≤ |ϕi|n(z) − a| ≤ diam
(

ϕi|n(X)
)

≤ D||ϕ′
i|n|| < r/2,

we have
B

(

ϕi|n(z), λr/8
)

⊂ B(a, r) \ Va(λr/8).

Therefore, using (3.6),

m
(

B(a, r) \ Va(λr/8)
)

≥ C(λ/8)trt

for all r > 0. This contradicts the assumption that V is a weak (t, l)-tangent
plane of E at a. �

Let us next discuss applications of this theorem. At first, we study uniformly l-
tangential sets of R

d. Our aim is to embed each such a set into a C1-submanifold.

Proposition 3.3. If 0 < l < d and a closed set A ⊂ R
d is uniformly l-tangential,

then A is a subset of an l-dimensional C1-submanifold.

Proof. Take a ∈ A and denote the l-tangent plane associated to a point x ∈ A
with Vx. We shall prove that there exists r0 > 0 not depending on a such that

A ∩ B(a, r0) ⊂ X(x, Va, 1/2) (3.12)

whenever x ∈ A ∩ B(a, r0). From this the claim follows by applying Whitney’s
Extension Theorem to the bi-Lipschitz mapping P−1

Va
: PVa

(

A ∩ B(a, r0)
)

→ V ⊥
a

(we identify R
d with the direct sum Va + V ⊥

a ). To prove (3.12), we shall first
show that there exists r1 > 0 such that

d(Vx, Va) < 1/81/2 (3.13)



GEOMETRIC RIGIDITY OF A CLASS OF FRACTAL SETS 11

for every x ∈ A ∩ B(a, r1). Suppose this is not true. Then with any choice of
r > 0 there is x ∈ A ∩ B(a, r) for which d(Vx, Va) ≥ 1/81/2. Recalling that the
set X(0, V, δ) is an open ball in G(d, l) centered at V with radius δ1/2, we infer

X(0, Vx, 1/32) ∩ X(0, Va, 1/32) = ∅.

Hence x /∈ X(a, Va, 1/32) or a /∈ X(x, Vx, 1/32). According to the assumptions,
both cases are clearly impossible provided that r > 0 is chosen small enough.

Observe that (3.13) implies immediately that

X(x, Vx, 1/8) ⊂ X(x, Va, 1/2)

whenever x ∈ A ∩ B(a, r1). Using the assumptions, we choose r2 > 0 such that

A ∩ B(x, r2) ⊂ X(x, Vx, 1/8).

Now, defining r0 = min{r1, r2/2}, we have shown (3.12) and therefore finished
the proof.

�

The generalizations for Theorems 1.1 and 1.2 are now straightforward.

Corollary 3.4. Suppose l = dimT(E). Then either
(1) dimH(E) > l or
(2) E is contained in an l-dimensional C1-submanifold.

Proof. The claim follows from [8, Lemma 2.1], Theorem 3.2, Proposition 3.3, and
the fact that Ht(E) > 0 as t = dimH(E) (see [4, Theorem 3.8]). �

Corollary 3.5. Suppose t = dimH(E) and 0 < l < d. Then either
(1) Ht(E ∩ M) = 0 for every l-dimensional C1-submanifold M ⊂ R

d or
(2) E is contained in an l-dimensional C1-submanifold.

Proof. The claim follows from [3, Lemma 2.2], Theorem 3.2, and Proposition
3.3. �
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E-mail address : antakae@maths.jyu.fi


