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Abstract

We de�ne the class of weakly mean porous sets and prove a sharp
dimension estimate for the sets in this class. Using this geometric tool,
we establish an essentially sharp dimension bound for the boundaries
of generalized Hölder domains and John domains.

1 Introduction

In this paper we consider the following problem. Suppose that we are given
the growth condition

kΩ(xo, x) ≤ φ(
d(x, ∂Ω)
d(x0, ∂Ω)

) + C0 (1)

on the quasihyperbolic metric kΩ of a domain Ω, where φ is a decreasing
function and x0 is a �xed point in Ω. Under which conditions on the function
φ, can we prove a generalized Hausdor� dimension estimate for the boundary
∂Ω, and what is the sharp dimension estimate in this case?

Let us comment on the history of this problem. Recall that a domain Ω
satisfying condition (1) with the function φ(t) = C log 1

t is called a Hölder
domain (see e.g. [SS1]). It is well known that for a Hölder domain Ω ⊂
Rn we have the estimate dimH(∂Ω) < n. This was proven by Smith and
Stegenga [SS2] using ideas of Jones and Makarov [JM]. They established
this result by applying Marcinkiewicz integrals. Later Koskela and Rohde
[KR] proved a sharp extension of this result using a di�erent technique.
They introduced the concept of mean porosity and, as an application of
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this concept, they proved the sharp dimension estimate for the boundary
of a Hölder domain. In this paper, we de�ne a generalized version of mean
porosity and, by applying this concept, we will prove a sharp generalized
Hausdor� dimension estimate for the boundary of a domain Ω satisfying
condition (1) with some decreasing function φ. For example, if a domain
Ω ⊂ Rn satis�es condition (1) with φ(t) = (log 1

t )
s, then we will obtain a

dimension bound when s ≤ n
n−1 , whereas the boundary can have positive

volume when s > n
n−1 . In particular, for s = n

n−1 , we prove that H
h(∂Ω) = 0

for the gauge function h(t) = tn(log 1
t )
C .

Notice that the geometric problem introduced above can be considered also
from the viewpoint of uniform continuity of quasiconformal mappings. In-
deed, if f : Bn −→ Rn is a uniformly continuous quasiconformal mapping
de�ned in the unit ball with a modulus of continuity ψ, then the image
domain f(Bn) satis�es condition (1) with a corresponding function φ (see
Section 5). For conformal mappings in the plane, the sharp condition for
the function ψ implying m2(∂f(B2)) = 0 is already known by [JM]. We
will prove an extended result for quasiconformal mappings in Rn with n ≥ 2
and, moreover, we will prove a sharp dimension estimate for ∂f(Bn).

An easier question, related to our main problem, concerns John domains. It
is well known that the Hausdor� dimension of the boundary of a usual c-John
domain is strictly smaller than n, see [T], [MV], [KR]. But what can be said
about the dimension of the boundary of a ϕ-John domain (see Section 6 for
de�nition) with some function ϕ that is not linear? We will prove a sharp
dimension estimate for the boundary of a general ϕ-John domain.

We obtain the results above by establishing a sharp dimension bound for
sets satisfying a certain porosity condition. Roughly speaking, we require
that, if we consider dyadic annuli Ak(x), k = 1, 2, ..., centered at some point
x ∈ E, then at least half of the annuli contain ` �holes� of size α. Here ` and
α are some functions depending on the scale k. Moreover, we require that
these cubes or �holes� can be picked for each point x from a single disjoint
collection of cubes in the complement of E that does not depend on the
point x. Thus our porosity condition is not strictly pointwise (as porosity
conditions are in general). Nevertheless, our de�nition of generalized mean
porosity works well from the viewpoint of our applications.

The paper is organized as follows. After establishing some notation and
de�nitions in Section 2, we introduce the porosity condition in Section 3 and
prove also the basic dimension estimate. Section 4 contains an application of
generalized mean porosity to the domains satisfying a quasihyperbolic growth
condition. In Section 5 we prove a corresponding result for the boundaries of
image domains under uniformly continuous quasiconformal mappings. We
discuss the properties of ϕ-John domains in Section 6 and, �nally, in Section
7 we construct examples of sets showing the sharpness of the dimension
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estimates proven in this paper.

2 Notation and de�nitions

Throughout this paper we denote by Rn, n ≥ 1, the euclidean space of
dimension n. The Lebesque measure of a set E ⊂ Rn is denoted by |E|,
although we sometimes write mn(E) to emphasize the dimension n. We
de�ne a neighborhood of E by E+ r := {z ∈ Rn : d(z,E) < r}, where r > 0
and d(z,E) is the euclidean distance between z and E.

We set Z+ := {1, 2, 3, ...}. For x ∈ Rn we denote by Ak(x) the set

Ak(x) = {y ∈ Rn : 2−k < |x− y| < 2−k+1},

where k ∈ Z+. We denote by ]I the number of elements in the set I.

For a cube Q ⊂ Rn we denote by l(Q) the edge length and by d(Q) the
diameter of Q. The radius of a ball B ⊂ Rn is denoted by r(B). We denote
by pB, p > 0, a ball with the same center as B but with radius pr(B). We
write Bn ⊂ Rn for the unit ball centered at the origin with radius 1.

Let γ ⊂ Rn be an injective curve and let x, y ∈ γ. We denote by γ(x, y) the
subcurve of γ connecting y to x. We write l(γ) for the euclidean length of
the curve γ.

2.1 Generalized Hausdor� measure

Let h be a function de�ned for all t ≥ 0, monotonic increasing for t ≥ 0,
positive for t > 0 and continuous from the right for all t ≥ 0. De�ne h(G)
for an open nonempty set G ∈ Rn by h(G) = h(d(G)), where d(G) is the
diameter of G in the euclidean metric, and h(∅) = 0.

Now the set function

Hh(E) = lim sup
δ→0

Hh
δ (E),

where

Hh
δ (E) = inf{

∞∑
i=1

h(Bi) : E ⊂
∞⋃
i=1

Bi, d(Bi) ≤ δ},

is a measure on Rn. It is called the Haudor� measure corresponding to the
premeasure h, or simply h-measure.

Following C. A. Rogers [R, p. 78], we write

g ≺ h,
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and say that g corresponds to a smaller generalized dimension than h, if

h(t)/g(t) → 0 as t→ 0.

Note also the following result (see [R, p. 79]). Let f, g, h be premeasures
such that f ≺ g ≺ h. If 0 < Hg(E) <∞, then Hh(E) = 0 and Hf (E) = ∞.

3 Generalized mean porosity

We de�ne the generalized mean porosity as follows.

De�nition 3.1. Let E ⊂ Rn be a compact set. Let α :]0, 1[−→]0, 1[ be a

continuous function such that

α(t)
t

is an increasing function (2)

and let ` : Z+ −→ Z+ be a function. Let Q be a collection of pairwise disjoint

cubes Qi ⊂ Rn \ E. We de�ne for each such a collection Q and for every

k ∈ Z+ a function

χQk (x) =


1, if one can �nd cubes Qki (x) ∈ Q, i = 1, ..., `(k),
such that Qki (x) ⊂ Ak(x) and l(Qki (x)) ≥ α(2−k) for all i;
0, otherwise.

Let

SQj (x) =
j∑

k=1

χQk (x).

We say that a set E is weakly mean porous with parameters (α, `), if there
exists a collection Q as above and an integer j0 ∈ Z+ such that

SQj (x)
j

>
1
2

(3)

for all x ∈ E and for all j ≥ j0.

In De�nition 3.1 the property (2) can be described as follows. We require,
that as one reduces the scale, the size of the �holes� does not increase in
proportion to the scale. Note that when α(t)/t is a constant and `(k) ≡ 1
our de�nition is equivalent with the de�nition of mean porosity in [KR].
Indeed, for a mean porous set E, we can take Q to be the collection of
the Whitney decompositions of all cubes in the Whitney decomposition of
Rn \ E. The fact that this collection satis�es condition (3) is shown in the
proof of [KR, Theorem 2.1].
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The parameter `(k) controls the number of �holes� in each annulus. It is
important for our applications that we use a general ` that allows us to use
the contribution from several �small� holes in a single set Ak(x) \ E.
We could also de�ne the porosity condition of De�nition 3.1 in a pointwise
way (i.e. allow the collection Q to depend on the point x), as porosity
conditions are de�ned in general. Then, however, we could prove a dimension
estimate for the set E only in the case that `(k) is bounded from above. We
do not know whether it is possible to prove a sharp dimension bound for sets
satisfying such a pointwise porosity condition with an unbounded parameter
`. However, in our applications we will �nd the collection Q independently
of x, and thus De�nition 3.1 works well for us.

The constant 1
2 in condition (3) plays a technical role only and could be

replaced with any positive constant without essential e�ect on the dimension
estimates. In fact, if we replace it with a constant κ > 0, then the constant
C(n) in Corollary 3.5 is replaced with κC(n). Note also that our porosity
condition is uniform in the sense that j0 is independent of x.

In order to prove a dimension estimate for weakly mean porous sets we
need the following well-known consequence of the Hardy-Littlewood maximal
theorem, see [Bo].

Lemma 3.2. Let B be a collection of balls B ⊂ Rn and let p ≥ 1. Then∫
Rn

( ∑
B∈B

χpB(x)
)k
dx ≤ (C1kp

n)k
∫
Rn

( ∑
B∈B

χB(x)
)k
dx

for all k ≥ 1, where C1 = C1(n).

Next we introduce the main result of this paper. It is an estimate on the
generalized Hausdor� dimension of weakly mean porous sets.

Theorem 3.3. Let E ⊂ Rn be a weakly mean porous set with parameters

(α, `). Then Hh(E) <∞ for each premeasure h, which satis�es

h(2−j) ≤ 2−jn exp
(
C(n) inf

Ij
{
∑
k∈Ij

`(k)α(2−k)n

(2−k)n
}
)

(4)

for all j > j0, where the in�mum is taken over all index sets Ij that satisfy

Ij =
j⋃
i=1

Ii with Ii ⊂ Ii+1 ⊂ {1, 2, ..., i+1} so that
]Ii
i
> 1/2 for all j0 ≤ i ≤ j.

Proof. Let Q0 = {(x1, ..., xn) : −1 ≤ xj ≤ 1}. We can assume that E is
a subset of the cube Q0. If this is not the case, we can subdivide E into a
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�nite number of compact sets Ej so that each set �ts into the cube Q0. We
can also assume that Q ⊂ E + 1 for all Q ∈ Q.
Let j > j0, and for each k ≤ j let N(k) be the smallest integer such that

N(k) ≥ 2−jα(2−k)
2−kα(2−j)

. By property (2), N(k) ≥ N(k+1). Now we de�ne Qj by

subdividing the cubes of the collection Q in the following way: If Q ∈ Q and
there is 1 < k ≤ j such that α(2−k) ≤ l(Q) < α(2−k+1), then each edge of
the cube Q is divided into N(k) parts. As for a cube Q with l(Q) ≥ α(2−1),
divide each edge into N(1) parts. Hence Q is subdivided into N(k)n cubes

that have edge lengths of at least 1
2

2−kα(2−j)
2−j . Let Qj be the collection of

cubes acquired in this manner from the cubes Q ⊂ Q with l(Q) ≥ α(2−j).

Denote the largest ball B ⊂ Q by B(Q). Let

Bj = {B(Q) : Q ∈ Qj}.

Let x ∈ E + 2−j . We choose x′ ∈ E such that d(x, x′) < 2−j . Let k < j
satisfy χk(x′) = 1. By De�nition 3.1 there are cubes Qi ∈ Q, i = 1, ..., `(k),
in the annulus Ak(x′) such that α(2−k) ≤ l(Qi). Hence from the annulus
Ak(x′) we �nd disjoint balls Bi ∈ Bj , i = 1, ..., `(k)N(k)n, such that r(Bi) ≥
1
4

2−kα(2−j)
2−j .

Let Ij consist of all the indices k ≤ j for which χk(x′) = 1. Then, by
De�nition 3.1, the index set Ij satis�es

Ij =
j⋃
i=1

Ii with Ii ⊂ Ii+1 ⊂ {1, 2, ..., i+1} so that
]Ii
i
> 1/2 for all j0 ≤ i ≤ j,

where the number of indices in the set Ii is denoted by ]Ii.

By enlarging the balls B ∈ Bj we have that∑
B∈Bj

χ
C1(n) 2−j

α(2−j)
B

(x) ≥ inf
Ij
{
∑
k∈Ij

`(k)N(k)n}

≥ (
2−j

α(2−j)
)n inf

Ij
{
∑
k∈Ij

`(k)α(2−k)n

(2−k)n
},

when the constant C1(n) is large enough. Hence we have the estimate

1
Gj

(
α(2−j)

2−j
)n

∑
B∈Bj

χ
C1(n) 2−j

α(2−j)
B

(x) ≥ 1, (5)

where

Gj = inf
Ij
{
∑
k∈Ij

`(k)α(2−k)n

(2−k)n
}.
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Next we use inequality (5) to estimate the Lebesgue measure of a neighbor-
hood of E. For all 0 < t < 1 and Q > 0 we have that

|E + 2−j | exp(
Gj
Q

) ≤
∫
E+2−j

∑
i≥0

1
i!
Gij
Qi
dx

≤ |E+1|
( ∑

0≤i<1/t

1
i!
Gij
Qi

)
+

∑
i≥1/t

1
i!
Gij
Qi

∫
R2

( 1
Gj

(
α(2−j)

2−j
)n

∑
B∈Bj

χ
C1(n) 2−j

α(2−j)
B

(x)
)ti
dx.

By Lemma 3.2 we thus deduce that

|E + 2−j | exp(
Gj
Q

)

≤ |E + 1|
( ∑

0≤i<1/t

1
i!
Gij
Qi

)

+
∑
1/t≤i

1
i!
G

(1−t)i
j

Qi

(
C2(n)tiC1(n)n(

α(2−j)
2−j

)n(
2−j

α(2−j)
)n

)ti ∫
R2

( ∑
B∈Bj

χB(x)
)ti

≤ |E + 1|
( ∑

0≤i<1/t

1
i!
Gij
Qi

+
∑
1/t≤i

G
(1−t)i
j

(
C3(n)ti

)ti
Qii!

)
. (6)

By the inequality ii ≤ eii! we have that

|E + 1|
( ∑

0≤i<1/t

1
i!
Gij
Qi

+
∑
1/t≤i

G
(1−t)i
j

(
C3(n)ti

)ti
Qii!

)

≤ |E + 1|
( ∑

0≤i<1/t

1
i!
Gij
Qi

+
∑
1/t≤i

G
(1−t)i
j (i!ei)t

(
C3(n)t

)ti
Qii!

)

≤ |E + 1|
( ∑

0≤i<1/t

1
i!
Gij
Qi

+
∑
1/t≤i

ttiG
(1−t)i
j

(
C3(n)e

)ti
Qi(i!)1−t

)
. (7)

By Hölder's inequality we obtain

|E + 1|
( ∑

0≤i<1/t

1
i!
Gij
Qi

+
∑
1/t≤i

ttiG
(1−t)i
j

(
C3(n)e

)ti
Qi(i!)1−t

)

≤ |E + 1|
( ∑

0≤i<1/t

1
i!
Gij
Qi

+
( ∑

1/t≤i

t
ti
t

)t( ∑
1/t≤i

Gij
(
C3(n)e

) ti
1−t

Q
i

1−t i!

)1−t)
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≤ |E + 1|
( ∑

0≤i<1/t

1
i!
Gij
Qi

+ (
1

1− t
)t exp

(
Gj

(
C3(n)e

) t
1−t

( 1− t

Q
1

1−t

)))
. (8)

Now

|E + 1|
( ∑

0≤i<1/t

1
i!
Gij
Qi

+ (
1

1− t
)t exp

(
Gj

(
C3(n)e

) t
1−t

( 1− t

Q
1

1−t

)))

≤M(n) exp(
Gj
2Q

), (9)

when we choose t = 1
2 , constantM(n) big enough and constant Q = C3(n)e.

Thus, by combining (6), (7), (8), (9), we arrive at

|E + 2−j | exp(
Gj
2Q

) ≤M(n),

and hence
|E + 2−j | exp(C(n)Gj) ≤M(n), (10)

where C(n) = 1
2C3(n)e .

The desired dimension estimate follows from inequality (10) by a standard
calculation using the Besicovich covering theorem. We show this in the
following.

Let A be the collection of all the balls of radii 2−j with centers in the set E.
By the Besicovich covering theorem we can choose balls Bi ∈ A, i = 1, ...,mj

such that E ⊂
⋃mj

i=1Bi and

mj∑
i=1

χBi(x) < P (n) (11)

for all x ∈ Rn. By (10) and (11) we have that

M(n)
exp(C(n)Gj)

≥ |E + 2−j | ≥ mjΩn(2−j)n
1

P (n)
,

and hence

mj ≤
M(n)P (n)2jn

Ωn exp(C(n)Gj)
.

Let h be a premeasure satisfying (4). Then, for the generalized Hausdor�
measure Hh(E), we obtain the estimate

Hh(E) ≤ lim sup
j→∞

{mjh(2−j)} ≤ lim sup
j→∞

{mj2−jn exp(C(n)Gj)}

≤ lim sup
j→∞

{R(n)2jn exp(−C(n)Gj)2−jn exp(C(n)Gj)}
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≤ R(n) <∞.

�

Note the following special cases of Theorem 3.3. If we have for arbitrarily
large j that

Gj = inf
Ij
{
∑
k∈Ij

`(k)α(2−k)n

(2−k)n
} ≥ Cj

with some constant C, then it follows from Theorem 3.3 that dimH(E) < n.
Note that this happens, for example, if we have the parameters α(t) = ct
and `(k) ≡ 1, in other words, if the set E is mean porous.

If Gj → ∞ as j → ∞, then mn(E) = 0, and Theorem 3.3 will also give us
a generalized dimension estimate with the gauge function h. However, if Gj
is bounded, i.e. there is M ∈ R such that Gj < M for all j, then Theorem
3.3 does not give us a dimension estimate. Indeed, in this case the set E can
have positive Lebesgue measure, see Section 7.1.

Let us also point out that, in fact, we proved more than what we claim in
Theorem 3.3. Indeed, we proved inequality (10), which is a stronger condition
for the set E than the claimed generalized Hausdor� dimension estimate.

In the next remark we show that in certain cases the index set Ij of Theorem
3.3 can be given explicitly.

Remark 3.4. If it holds for the parameters in Theorem 3.3 that

p(k) :=
`(k)α(2−k)n

(2−k)n
(12)

is increasing as a function of k, then (for even j)

inf
Ij
{
∑
k∈Ij

`(k)α(2−k)n

(2−k)n
} =

j/2∑
k=1

`(k)α(2−k)n

(2−k)n
≥ Cj

with some constant C.

If however p(k) is decreasing as a function of k, then (for even j0)

inf
Ij
{
∑
k∈Ij

`(k)α(2−k)n

(2−k)n
} =

∑
k∈Jj

`(k)α(2−k)n

(2−k)n
,

where

Jj = {j0
2

+ 1,
j0
2

+ 2, ..., j0} ∪ {i ∈ {j0 + 1, ..., j} such that i is odd}.

Moreover, for all j > j0 we have that∑
k∈Jj

`(k)α(2−k)n

(2−k)n
≥ 1

2

j∑
k=j0

`(k)α(2−k)n

(2−k)n
.
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By combining Theorem 3.3 and Remark 3.4 we obtain the following corollary.

Corollary 3.5. Let E ⊂ Rn be a weakly mean porous set with parameters

(α, `) such that p(k) (de�ned by (12)) is a decreasing function of k and

∞∑
k=j0

`(k)α(2−k)n

(2−k)n
= ∞.

Then mn(E) = 0 and Hh(E) <∞ for each premeasure h, which satis�es

h(2−j) ≤ 2−jn exp
(
C(n)

j∑
k=j0

`(k)α(2−k)n

(2−k)n
)

for all j > j0.

Note that this corollary is sharp by an example given in Section 7.1.

4 A quasihyperbolic growth condition

Let Ω ⊂ Rn be a domain. We recall that the quasihyperbolic distance
between two points x1, x2 ∈ Ω is de�ned as

kΩ(x1, x2) = inf
γ

∫
γ

ds

d(x, ∂Ω)

where the in�mum is taken over all recti�able arcs joining x1 to x2 in Ω.

De�nition 4.1. Let φ :]0, 1] −→]0,∞[ be a continuous and decreasing func-

tion. We say that a bounded domain Ω ⊂ Rn satis�es a quasihyperbolic

growth condition with a function φ, if there is a point x0 ∈ Ω and a constant

C0 such that

kΩ(x0, x) ≤ φ(
d(x, ∂Ω)
d(x0, ∂Ω)

) + C0 (13)

for all x ∈ Ω.

Note that for a bounded domain we can always choose the point x0 so that
d(x,∂Ω)
d(x0,∂Ω) ≤ 1 for all x ∈ Ω, and hence the domain of φ can be assumed to be

]0, 1]. We recall that if a domain Ω satis�es condition (13) with a function
φ(t) = C log(1

t ), then Ω is called a Hölder domain (see [SS1]). Thus we can
say that domains de�ned in De�nition 4.1 are generalized Hölder domains.
It is well known that the Hausdor� dimension of the boundary of a Hölder
domain is strictly smaller than n. This is shown in [JM], [SS2] and [KR].
In this section we prove a corresponding dimension estimate for domains
satisfying (13) with a function φ which satis�es certain conditions formulated
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below. To indicate how fast decreasing functions φ allow for a generalized
dimension estimate, let us already point out that, for φ(t) = (log 1

t )
s we will

obtain a dimension bound when s ≤ n
n−1 , whereas the boundary can have

positive volume when s > n
n−1 .

De�nition 4.2. We say that a decreasing, continuously di�erentiable func-

tion φ :]0, 1] →]0,∞[ is of logarithmic type, if it satis�es the following con-

ditions:

−φ′(t)t is a decreasing function; (14)

φ(t) < βφ(
√
t) for some β <∞ and for all t < t0. (15)

Note that, for example, a function of the form

φ(t) =
{
C(log 1

t )
s1(log log 1

t )
s2 ...(log(m) 1

t )
sm + C, t < am;

C, t ≥ am,

where C > 0, m ∈ Z+, am = 1/ exp(m−1)(e), s1 ≥ 1, s2, ..., sm ≥ 0, is of
logarithmic type.

Lemma 4.3. Let φ be a function of logarithmic type. Then

φ(ab) ≤ β(φ(a) + φ(b))

for all a, b ∈]0, 1[ for which ab < t0.

Proof. Either a ≤
√
ab or b ≤

√
ab, and hence we obtain β(φ(a) + φ(b)) ≥

βmax{φ(a), φ(b)} ≥ βφ(
√
ab) > φ(ab). �

Lemma 4.4. Let φ be a function of logarithmic type. Then there is t1 ∈]0, 1[
such that the inequality

βφ(tk+1) ≤ 2−k(
1
t
)k

holds for all t < t1 and every k ∈ Z+.

Proof. We show �rst that there is t̃1 such that

φ(t) ≤ 1
t

(16)

for all t < t̃1. Suppose that (16) is false. Then for each j ∈ Z+ there is
t20 ≤ tj ≤ t0 such that φ(t2

j

j ) > ( 1
tj

)2
j ≥ ( 1

t0
)2

j
. By iterating condition (15),

we obtain φ(t2
j

j ) < βjφ(tj) ≤ βj+1φ(t0), and hence ( 1
t0

)2
j
< βj+1φ(t0). This

is a contradiction with a large j, and thus property (16) is proved.

Let k ∈ Z+. Applying property (15) twice, we have that

βφ(tk+1) ≤ β3φ(t
k+1
4 )
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for all t < t20. Then, by property (16), we obtain

β3φ(t
k+1
4 ) ≤ β3(

1
t
)

k+1
4

for all t < t̃21. A simple calculation yields

β3(
1
t
)

k+1
4 ≤ 2−k(

1
t
)k

for all t < 1
4β6 . This proves the claimed inequality for all t < t1 = min{t20, t̃21, 1

4β6 }.
�

The next theorem extends a result by Smith and Stegenga in [SS1, Theorem
3] given for Hölder domains. For an intermediate result see [KOT, Lemma
4.6].

Theorem 4.5. Let Ω ⊂ Rn be a bounded domain that satis�es the quasihy-

perbolic growth condition with the function φ of logarithmic type. Then there

is a constant Cφ <∞ such that

kΩ(x, x0) ≤ βφ(
l(γ(x, x1))
d(x0, ∂Ω)

) + Cφ (17)

for all x1 ∈ Ω, where γ is a quasihyperbolic geodesic connecting x0 to x1,

and x ∈ γ.

Proof. Assume that (17) is false. Then for each constant Cφ there is a point
x1, a geodesic γ connecting x0 to x1, and a point y0 ∈ γ for which

βφ(
l(γ(y0, x1))
d(x0, ∂Ω)

) + Cφ < kΩ(x0, y0). (18)

Let L = l(γ(y0, x1)). De�ne points yk ∈ γ(yk−1, x1) recursively so that
l(γ(yk−1, yk)) = 2−kL for all k ∈ Z+. Let

δk = sup{d(x, ∂Ω) : x ∈ γ(yk, x1)}.

We can choose the constant Cφ so large that
δ0

d(x0,∂Ω) < t0. Then, by combin-

ing (13), (18) and Lemma 4.3, we obtain the following chain of inequalities
for all x ∈ γ(y0, x1):

βφ(
L

d(x0, ∂Ω)
) + Cφ < kΩ(x0, y0) ≤ kΩ(x0, x) ≤ φ(

d(x, ∂Ω)
d(x0, ∂Ω)

) + C0

≤ βφ(
d(x, ∂Ω)

L
) + βφ(

L

d(x0, ∂Ω)
) + C0.

12



Hence

Cφ − C0 ≤ βφ(
δ0
L

).

Now we can choose the constant Cφ so large that Cφ ≥ C0 and the ratio
δ0/L is so small that, by Lemma 4.4,

βφ((
δ0
L

)k+1) ≤ 2−k(
L

δ0
)k (19)

for all k ∈ Z+.

We show by induction that δk−1/L ≤ (δ0/L)k for all k ∈ Z+. This is trivially
true if k = 1, so assume that it is true for some k ≥ 1. By combining the
induction assumption, Lemma 4.3 and the inequalities (18) and (19), we
obtain for all x ∈ γ(yk, x1) that

βφ(
L

d(x0, ∂Ω)
) + Cφ + βφ((

δ0
L

)k+1)

≤ kΩ(x0, y0) + 2−k(
L

δ0
)k ≤ kΩ(x0, y0) + 2−kL/δk−1

≤ kΩ(x0, y0) + kΩ(yk−1, yk) ≤ kΩ(x0, x)

≤ φ(
d(x, ∂Ω)
d(x0, ∂Ω)

) + C0 ≤ βφ(
d(x, ∂Ω)

L
) + βφ(

L

d(x0, ∂Ω)
) + C0.

Now we have that

βφ((δ0/L)k+1) + Cφ − C0 ≤ βφ(
δk
L

)

which proves the induction hypothesis.

Since δ0/L < 1 and the inequality

0 < d(x1, ∂Ω) ≤ δk ≤ L(
δ0
L

)k+1

holds for all k ∈ Z+, we have a contradiction which proves the theorem. �

For the proof of the main theorem of this section we need one more lemma
concerning the geometric properties of the Whitney decomposition. For the
exact construction of this decomposition we refer the reader to [S].

Lemma 4.6. Let Q0 ⊂ Rn be a cube that has sides parallel to the coordinate

planes, and let the edge length of Q0 be 2−m. Let Q̃ ⊂ Q0 be a cube sharing

a part of a face with Q0. Let l(Q̃) = c2−m with c < 1. Let W be the Whitney

decomposition of Q0. Then, there is a cube Q ∈ W for which Q ⊂ Q̃ and

l(Q) ≥ c2−m

D(n) . Moreover, there are at least 2i(n−1) cubes Qj ∈ W for which

Qj ⊂ Q̃ and l(Qj) ≥ c2−m−i

D(n) . Here D(n) = 1 + 8
√
n.
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Proof. Recall that each Whitney cube Qkj ∈ W has sides parallel to the

coordinate planes and the edge length of Qkj is 2−k. The collection {Qkj :
j = 1, ..., Nk} is called the kth generation of the cubes. It follows from the
construction of the Whitney decomposition that the inequality

2−k
√
n ≤ d(Qkj , ∂Q0) ≤ 4 · 2−k

√
n (20)

holds for each cube in the kth generation. Thus we see that there must be a
cube Q ∈ W such that Q ⊂ Q̃ and l(Q) ≥ c2−m

1+8
√
n
as otherwise the inequality

(20) would fail for some cube near the center of Q̃.

To prove the second part of the lemma let i ∈ Z+ and subdivide the cube Q̃
into 2in cubes with equal side lengths of at least c2−m−i. Of these subcubes
at least 2i(n−1) cubes share a face with the cube Q0 and, by inequality (20),

from each subcube we �nd a cube Qj ∈ W such that l(Qj) ≥ c2−m−i

D(n) . �

We recall also the following property of the Whitney decomposition. Let W
be the Whitney decomposition of a domain Ω ⊂ Rn. Pick a cube Q0 ∈ W,
and set q(Q0) = 0. For any two adjacent (i.e. sharing at least a part of
a face) Whitney cubes, join their centers by an interval, and let q(Q) be
the number of intervals in the shortest chain joining the centers of Q0 and
Q. We can remove the redundant intervals so that the resulting collection
of intervals is a tree. We denote the set of cubes connecting Q to Q0 by
chain(Q0, Q), and the number of cubes in chain(Q0, Q) by ]chain(Q0, Q).
Note that now q(Q) + 1 = ]chain(Q0, Q) ≤ CkΩ(z0, z) for any z0 ∈ Q0 and
z ∈ Q for which kΩ(z0, z) > constant.

The next theorem extends the result given for Hölder domains in [KR, The-
orem 5.1]. We show that the boundary of a generalized Hölder domain is
weakly mean porous with appropriate parameters.

Theorem 4.7. Let Ω ⊂ Rn be a bounded domain that satis�es the quasihy-

perbolic growth condition with the function φ of logarithmic type. Then there

is a constant c > 0 such that the boundary of the domain Ω is weakly mean

porous with parameters C1(n)α(t) and C2(n)`(k), where (for small t)

α(t) =
c

−φ′(t)
and `(k) ≥ 2−k

α(2−k)
.

Proof. By scaling we can assume that d(x0, ∂Ω) ≥ 1. Let x ∈ ∂Ω and let j
be a large integer. Choose a point

y ∈ B(x, 2−j−1) ∩ Ω,

and let γ be the quasihyperbolic geodesic connecting y to x0. Choose w ∈ γ
such that

l(γ(w, y)) = 2−j−1.

14



Then w ∈ B(x, 2−j). Moreover, Lemma 4.5 implies the estimate

kΩ(w, x0) ≤ βφ(
2−j−1

d(x0, ∂Ω)
) + Cφ. (21)

De�ne for each k a function

χk(x) =

{
1, if

∫
Ak(x)∩γ

dt
d(t,∂Ω) ≤

2−k

α(2−k)
;

0, otherwise.

Let

Sj(x) =
j∑

k=1

χk(x).

We prove �rst that
Sj(x)
j

>
1
2

(22)

for all j > j0 ∈ Z+.

For those Ak(x), 1 ≤ k ≤ j, for which χk(x) = 0, we have that∫
Ak(x)∩γ

dt

d(t, ∂Ω)
>

2−k

α(2−k)
. (23)

Suppose that the assertion
Sj(x)
j > 1

2 fails for some large j. Then by (23) we
have that

kΩ(w, x0) >
j∑

k=1

|χk(x)− 1| 2−k

α(2−k)
,

which is by property (14) at least

j/2∑
k=1

−φ′(2−k)2−k

c
≥ 1
c
(φ(2−j/2)− φ(

1
2
)).

This number is greater than βφ( 2−j−1

d(x0,∂Ω))+Cφ, when we choose j big enough
and

c <
1
β3
.

Hence we have a contradiction with inequality (21), which proves (22).

Next we de�ne a collection Q of disjoint cubes in Ω in the following way. Let
W be the Whitney decomposition of the domain Ω. Then let Q consist of
all the cubes in the Whitney decompositions of the cubes Q ∈ W. We show
that

χQk (x) ≥ χk(x) (24)
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for all k ∈ Z+ with parameters C1(n)α(2−k) and C2(n)`(k).

Consider k ∈ Z+ such that χk(x) = 1. Then∫
Ak(x)∩γ

dt

d(t, ∂Ω)
≤ 2−k

α(2−k)
.

Choose y ∈ γ ∩Sn−1(x, 2−k+1) and z ∈ γ ∩Sn−1(x, 2−k) such that γ(y, z) ⊂
Ak(x). Let Qy, Qz ∈ W such that y ∈ Qy and z ∈ Qz. Now

]chain(Qy, Qz) ≤
c02−k

α(2−k)
(25)

with some constant c0 depending only on n.

For each Qi ∈ chain(Qy, Qz), let Q̃i ⊂ Rn be the largest cube such that it

has sides parallel to the coordinate planes and Q̃i ⊂ Qi ∩ Ak(x). Now Q̃i
shares at least one part of a face with Qi. Moreover

]chain(Qy ,Qz)∑
i=1

d(Q̃i) ≥ 2−k. (26)

Combining (25) and (26) we have that∑
i:d(Q̃i)≥α(2−k)/2c0

d(Q̃i) ≥
2−k

2
. (27)

Applying Lemma 4.6 and inequality (27) we see that from these cubes Q̃i,

for which d(Q̃i) ≥ α(2−k)/2c0, we �nd at least c02−k

α(2−k)
cubes Q ∈ Q such

that l(Q) ≥ α(2−k)
2c0D(n)

√
n
. Thus we have proven (24) with constants C1(n) =

1
2c0D(n)

√
n
and C2(n) = c0/2. The claim follows immediately from (22) and

(24). �

Note that property (14) for the function φ implies property (2) in De�nition
3.1 for the function α(t) = c

−φ′(t) . Also note that, for a Hölder domain,

−φ′(t)t is a constant, and by Theorem 4.7 the boundary of such domain is
mean porous (this result is equivalent with [KR, Theorem 5.1]).

Corollary 4.8. Let Ω ⊂ Rn be a bounded domain that satis�es the quasihy-

perbolic growth condition with the function φ of logarithmic type satisfying∫
0

dt

(−φ′(t)t)n−1t
= ∞.

Then mn(∂Ω) = 0 and Hh(∂Ω) <∞ for each premeasure h, which satis�es

h(2−j) ≤ 2−jn exp
(
C(β, n)

∫
[2−j ,2−j0 ]

dt

(−φ′(t)t)n−1t

)
for all j > j0, where the constant C(β, n) depends only on β and n.
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Proof. Combining Theorem 4.7 and Corollary 3.5, we conclude thatHh0(∂Ω) <
∞, for each premeasure h0 which satis�es for all j > j0

h0(2−j) ≤ 2−jn exp
(
C(n)

j∑
k=j0

(
c

−φ′(2−k)2−k
)n−1

)
,

where the constant c depends only on β. It is easy to see that the inequality

C(n)
j∑

k=j0

(
c

−φ′(2−k)2−k
)n−1 ≥ 1

2
C(n)cn−1

∫
[2−j ,2−j0 ]

dt

(−φ′(t)t)n−1t

holds for all j > j0. Hence the claim follows, when we choose the constant
C(β, n) = 1

2C(n)cn−1. �

Note that this corollary is sharp by an example in Section 7.2.

Remark 4.9. Let Ω ⊂ Rn be a bounded domain that satis�es the quasihyper-

bolic growth condition with the function φ(t) = 1
ε (log 1

t )
s with 1 ≤ s ≤ n

n−1 .

Then, by Corollary 4.8, mn(∂Ω) = 0 and Hh(∂Ω) < ∞ for the gauge func-

tion

h(t) = tn exp
( C

(n− (n− 1)s)
(log

1
t
)n−(n−1)s

)
when s < n

n−1 , and for the gauge function

h(t) = tn(log
1
t
)C

when s = n
n−1 . Here the constant C depends on ε, n and s.

If n
n−1 < s, then the boundary of the domain Ω can have positive Lebesgue

measure, see Section 7.2.

5 Uniform continuity of quasiconformal mappings

The connection between uniform continuity of quasiconformal mappings and
the concept of generalized mean porosity comes from the following observa-
tion.

Theorem 5.1. Let ψ :]0, 1[−→]0, 1[ be an increasing, continuously di�eren-

tiable bijection, and let u(t) := ψ−1(t). Assume that log
(

1
u(t)

)
is of logarith-

mic type. Let f : Bn −→ Ω ⊂ Rn be a K-quasiconformal map such that the

inequality

|f(tω)− f(ω)| ≤ ψ(1− t) (28)
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holds for all ω ∈ Sn−1 and 0 < t < 1. Then there is a constant c >
0 such that ∂f(Bn) is weakly mean porous with parameters C1(n)α(t) and

C2(n)`(k), where

α(t) =
cu(t)
u′(t)

and `(k) ≥ 2−k

α(2−k)
.

Let us already remark that this theorem could be considered as a special
case of Theorem 4.7. Indeed, at the end of this section we discuss the con-
nection between the uniform continuity of a quasiconformal mapping f and
the quasihyperbolic growth condition in the image domain f(Bn).

Proof of Theorem 5.1. Let ω ∈ ∂Bn. De�ne functions χk and Sj as in the
proof of Theorem 4.7. We prove that

Sj(f(ω))
j

>
1
2

(29)

for all su�ciently large j ∈ Z+.

Let j0 ∈ Z+ such that 2−j0 < d(f(0), ∂f(Bn)). Let j > 2j0 and let j0 ≤
k ≤ j such that χk(f(ω)) = 0. The curve γ = f([0, ω]) intersects the
two boundary components of Ak(f(ω)) in two points a = f(taω) and b =
f(tbω), say. The quasihyperbolic distance kΩ(a, b) of a and b is at least

2−k

α(2−k)
. As quasiconformal maps are quasi-isometries for large distances in

the quasihyperbolic metrics (see [GO, p. 62]), the quasihyperbolic distance

kBn(taω, tbω) is at least C 2−k

α(2−k)
, provided c is small enough. Here C depends

on K and n.

Consider the largest t < 1 with

|f(tω)− f(ω)| = 2−j .

It follows from (28) that 2−j ≤ ψ(1− t), and equivalently

log
1

1− t
≤ log(

1
u(2−j)

). (30)

On the other hand

log
1

1− t
= kBn(0, tω) ≥

∑
kBn(taω, tbω) ≥

∑
C

2−k

α(2−k)
, (31)

where the summation is over all j0 ≤ k ≤ j with χk(f(ω)) = 0.

Suppose that the assertion
Sj(f(ω))

j > 1
2 fails for some large j. Then, by

combining (30) and (31), we obtain that (the summation indices follow from
assumption (14))

log(
1

u(2−j)
) ≥ C

j/2∑
k=j0

2−ku′(2−k)
cu(2−k)
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≥ C
1
c

(
log(

1
u(2−j/2)

)− log(
1

u(2−j0)
)
)
.

This contradicts property (15) when we choose j large enough and the con-
stant

c <
C

2β
,

and thus (29) is proved. To prove the claim we can choose the collection Q
and the constants C1, C2 similarly as in the proof of Theorem 4.7. �

Corollary 5.2. Let f : Bn −→ Ω ⊂ Rn be a K-quasiconformal map and

suppose

|f(x)− f(x′)| ≤ ψ(|x− x′|)

for all x, x′ ∈ Bn. Assume that the function u = ψ−1 satis�es the conditions

in Theorem 5.1 and that ∫
0
(
u(t)
u′(t)

)n−1dt

tn
= ∞. (32)

Then mn(∂f(Bn)) = 0 and Hh(∂f(Bn)) < ∞ for each premeasure h which

satis�es

h(2−j) ≤ 2−jn exp
(
C

∫
[2−j ,2−j0 ]

(
u(t)
u′(t)

)n−1dt

tn

)
for all j > j0. Here the constant C depends only on β, K and n.

Proof. The claim follows by combining Theorem 5.1, Corollary 3.5, and a
similar argument as in the proof of Corollary 4.8. �

Remark 5.3. Consider the case n = 2. With a change of variable (u(t) =
ψ−1(t)) we have that ∫

0
(
u(t)
u′(t)

)
dt

t2
=

∫
0
(
ψ′(u)
ψ(u)

)2udu

=
∫

0
((logψ(u))′)2udu =

∫
0
(
(logψ(u))′

(log u)′
)2
du

u
.

This integral diverges if and only if the integral∫
0
(
(logψ(u))

(log u)
)2
du

u

diverges.

By Remark 5.3 we see that, in the case n = 2, condition (32) is equivalent
with the assumption of [JM, Theorem C.1]. Jones and Makarov proved in
this paper that this condition, implying m2(∂f(B2)) = 0, is sharp. We
will show in Section 7.2 that also the dimension estimate of Corollary 5.2 is
essentially sharp.
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Remark 5.4. Let f : Bn −→ Ω ⊂ Rn be a K-quasiconformal map and

suppose

|f(x)− f(x′)| ≤ ψ(|x− x′|)

for all x, x′ ∈ Bn with the function ψ(t) = exp(−(ε log 1
t )

1/s) where 1 ≤ s ≤
n
n−1 . Then, by Corollary 5.2, mn(∂f(Bn)) = 0 and Hh(∂f(Bn)) < ∞ for

the gauge function

h(t) = tn exp
( C

(n− (n− 1)s)
(log

1
t
)n−(n−1)s

)
when s < n

n−1 , and for the gauge function

h(t) = tn(log
1
t
)C

when s = n
n−1 . Here the constant C depends on K, ε, n and s.

If n
n−1 < s, then the boundary of the domain f(Bn) can have positive

Lebesgue measure, see Section 7.2.

Note that the previous example is roughly equivalent with Remark 4.9. In-
deed, by using the fact that quasiconformal mappings are quasi-isometries for
large distances in the quasihyperbolic metrics, we see the following connec-
tion between uniform continuity of quasiconformal mappings and the quasi-
hyperbolic growth condition. If f : Bn −→ Ω ⊂ Rn is a K-quasiconformal
mapping from the unit ball onto a bounded domain Ω, and

|f(x)− f(x′)| ≤ ψ(|x− x′|)

for all x, x′ ∈ Bn with a proper modulus of continuity ψ, then the image do-
main f(Bn) satis�es the quasihyperbolic growth condition with the function
φ(t) = C log 1

ψ−1(t)
. Moreover, the dimension estimates implied by Corol-

lary 4.8 and Corollary 5.2 for the boundary of f(Bn) are equivalent (except
perhaps with di�erent constants).

6 John domains

De�nition 6.1. Let ϕ : [0,∞[−→ [0,∞[ be a continuous function such that
ϕ(t)
t is an increasing function. We say that a domain Ω is a ϕ-John domain,

if there is a John center x0 ∈ Ω such that for all x ∈ Ω there is a curve

γ : [0, l] −→ Ω, parametrized by arclength and with γ(0) = x, γ(l) = x0, and

d(γ(t), ∂Ω) ≥ ϕ(t) for all 0 < t < l.

Note that, when ϕ(t) = ct with some c < 1, this de�nition is equivalent
with the de�nition of a usual c-John domain. The Hausdor� dimension of
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the boundary of a usual c-John domain is known to be strictly less than
n, see e.g. [KR, p. 599]. Question arises, whether one could establish a
dimension bound for a ϕ-John domain Ω ⊂ Rn with ϕ(t) = cts for some
s > 1. This cannot be done, however. In section 7.3 we show that, for
any s > 1, the boundary ∂Ω can have positive Lebesgue measure. However,
with a proper function ϕ, a generalized Hausdor� dimension estimate for
the boundary can be established by applying generalized mean porosity. It
is indeed immediate that every ϕ-John domain is weakly mean porous with
parameters α(t) = ϕ(t) (for small t) and `(k) ≥ 2−k

2α(2−k)
(take Q to be the

collection of the Whitney decompositions of all the cubes in the Whitney
decomposition of Rn\∂Ω). By applying Corollary 3.5 we obtain the following
result.

Corollary 6.2. Let Ω ⊂ Rn be a ϕ-John domain. Assume that∫
0

ϕ(t)n−1dt

tn
= ∞.

Then mn(∂Ω) = 0 and Hh(∂Ω) <∞ for each premeasure h which satis�es

h(2−j) ≤ 2−jn exp
(
C(n)

∫
[2−j ,2−j0 ]

ϕ(t)n−1dt

tn

)
for all j > j0.

Note that this corollary is sharp by an example given in section 7.3. There-
fore, for ϕ(t) = t

(log 1
t
)s we obtain a dimension bound when s ≤ 1

n−1 , whereas

the boundary can have positive volume when s > 1
n−1 .

Remark 6.3. For a ϕ-John domain Ω with ϕ(t) = t

(log 1
t
)

1
n−1

, Corollary 6.2

implies that Hh(∂D) <∞ for the gauge function

h(t) = tn(log
1
t
)C(n).

7 Sharpness of the results

Recall the well known Frostman's lemma. We denote by M(A) the set of
Radon measures µ such that spt(µ) ⊂ A and µ(Rn) = 1.

Lemma 7.1. Let A be a Borel set in Rn and suppose there exists µ ∈M(A)
such that µ(B(x, r)) ≤ h(r) for x ∈ Rn and r > 0. Then Hh(A) > 0.

Proof. Take any collection of balls Bi = B(xi, ri), xi ∈ Rn, ri < r, such that
A ⊂

⋃
iBi. Then 1 = µ(A) ≤ µ(

⋃
iBi) ≤

∑
i µ(Bi) ≤

∑
i h(ri). �
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7.1 Sharpness of Corollary 3.5

We show the sharpness of Corollary 3.5 by constructing an example of a
set E which is weakly mean porous with parameters α and ` and for which
Hh(E) > 0 with a premeasure h satisfying for all j ∈ Z+

h(2−j) ≤ 2−jn exp
(
C̃(n)

j∑
k=j0

`(k)α(2−k)n

(2−k)n
)

with some constant C̃(n).

Let α and ` be as in Corollary 3.5 and let j0 = 1. Then

p(k) =
`(k)α(2−k)n

(2−k)n
is a decreasing function of k. (33)

Let

Q0 = {x ∈ Rn : |xi| ≤
1

4
√
n
for all i = 1, 2, ..., n}.

We de�ne for each k ∈ Z+ a collection Ek of closed sets F ∈ Rn in the
following way. E0 consists of Q0 alone. To obtain Ek from Ek−1, subdivide
Q0 into 2nk closed dyadic cubes Qik of diameter 2−k−1 in the natural way.
For each i = 1, ..., 2nk, let Q̃ik ⊂ Qik be the smallest open cube in the center
of Qik such that it contains 2n`(k) disjoint open cubes of side length α(2−k).
We can assume that the diameter of Q̃ik is dyadic and, by condition (33),

d(Q̃ik)/d(Q
i
k) ≤

1
4
for all i and k. (34)

Let
Ek = {F ∩Qik \ Q̃ik : F ∈ Ek−1 , i = 1, ..., 2nk}.

We show that the set

E =
∞⋂
k=1

⋃
F∈Ek

F

is weakly mean porous with parameters α and `.

De�ne for every k ∈ Z+ a collection Q̃k of disjoint cubes by subdividing each
Q̃ik, i = 1, ..., 2nk, into 2n`(k) subcubes of side length α(2−k). Then let

Qk = {Q ∈ Q̃k : Q ⊂
2nk⋃
i=1

Q̃ik \
k−1⋃
j=0

2nj⋃
l=1

Q̃lj},

and let
Q = {Q ∈ Qk : k = 1, 2, ...}.
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To see that Q indeed satis�es the conditions of De�nition 3.1, notice the
following geometric facts. Fix x ∈ E and take any Qk (a dyadic subcube
of Q0 with diameter 2−k−1) such that x ∈ Qk. Now, there exists a dyadic
subcube Qk+3 ⊂ Qk such that Qk+3 ⊂ Ak+3(x). Moreover, by inequality
(34), we can choose the cube Qk+3 so that it is not completely covered by

the set
⋃k+2
j=0

⋃2nj

l=1 Q̃
l
j (here Q̃lj is de�ned as above). Now, by inequality

(34), there is at most one dyadic subcube Qj such that j ≤ k + 2 and
Q̃j ∩ Q̃k 6= ∅. Since the diameter of the cube Q̃j is dyadic, we see that the

set Q̃k+3 \
⋃k+2
j=0

⋃2nj

l=1 Q̃
l
j contains at least `(k + 3) cubes Q ∈ Q such that

l(Q) ≥ α(2−k−3). Thus we have that

χQk (x) = 1

for every k and hence E is weakly mean porous.

Next we estimate the dimension of E by using Frostman's lemma. De�ne
the density

∆k,F =
|
⋃
G∈Ek+1

G ∩ F |
|F |

=
∑

G∈Ek+1

|G ∩ F |
|F |

for each (nonempty) set F ∈ Ek. The construction above implies

∆k,F ≥
(
1− C(n)`(k)α(2−k)n

(2−k)n
)

=: ∆k. (35)

For each set F ∈ Ek let Fi ∈ Ei, i = 0, 1, ...k − 1, be the (unique) sets for
which F ⊂ Fi. We de�ne a sequence of Radon measures µk, k = 0, 1, 2, ... ,
such that

µ0(A) =
1
|Q0|

|Q0 ∩A|

and

µk(A) =
1
|Q0|

∑
F∈Ek

|F ∩A|
∆k−1,Fk−1

× ...×∆0,F0

for all measurable A ⊂ Rn. Then spt(µk) ⊂
⋃
F∈Ek

F and

µk+1(F ) =
1
|Q0|

∑
G∈Ek+1

|G ∩ F |
∆k,F ×∆k−1,Fk−1

...×∆0,F0

=
1
|Q0|

|F |
∆k−1,Fk−1

...×∆0,F0

= µk(F )

for all F ∈ Ek. Hence µl(F ) = µk(F ) for all l ≥ k. Particularly for all k

µk(Rn) = µk(Q0) = µ0(Q0) = 1

and thus µk ∈M(Rn) for all k.
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Recall that M(Rn) is a compact metric space with an appropriate metric
d (see [RM, p. 52-55]). Hence there is a subsequence µki

converging to a
measure µ ∈M(Rn) in the metric d. Note that spt(µ) ⊂ E.

Let j ∈ Z+ and let x ∈ Rn. By (35) we have for each G ∈ Ej+1 that

µ(G) ≤ |G|
|Q0|

∏j
k=1 ∆k

and, by the construction, the ball B(x, 2−j) intersects at most P (n) sets
Gi ∈ Ej+1, where P (n) is a constant depending only on n. Hence

µ(B(x, 2−j)) ≤ µ(
P (n)⋃
i=1

Gi) ≤
∑P (n)

i=i |Gi|
|Q0|

∏j
k=1 ∆k

≤ P (n)2−jn

|Q0|
∏j
k=1 ∆k

.

We choose the constant Q(n) ≥ P (n)
|Q0| and the function

h(2−j) =
Q(n)2−jn∏j

k=1 ∆k

= Q(n)2−jn exp
(
− log(

j∏
k=1

∆k)
)

= Q(n)2−jn exp
(
−

j∑
k=1

log ∆k

)

= Q(n)2−jn exp
(
−

j∑
k=1

log(1− C(n)`(k)α(2−k)n

(2−k)n
)
)
.

Clearly we have that

h(2−j) ≤ 2−jn exp
(
C̃(n)

j∑
k=1

`(k)α(2−k)n

(2−k)n
)
,

when we choose the constant C̃(n) big enough. Therefore

µ(B(x, 2−j)) ≤ h(2−j) ≤ 2−jn exp
(
C̃(n)

j∑
k=1

`(k)α(2−k)n

(2−k)n
)

and the claim follows from Frostman's lemma.

Note especially that if

∞∑
k=1

`(k)α(2−k)n

(2−k)n
<∞,

then Frostman's lemma implies that mn(E) > 0.
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7.2 Sharpness of Corollary 4.8

We show the sharpness of Corollary 4.8 in the case n = 2 by constructing a
domain Ω ⊂ R2 such that it satis�es the quasihyperbolic growth condition
with a function φ, and Hh(∂Ω) > 0 with a premeasure h satisfying

h(2−j) ≤ 2−2j exp
(
C̃

∫
[2−j ,2−j0 ]

dt

−φ′(t)t2
)

for all j > j0 ∈ Z+, where the constant C̃ depends only on β.

Let φ :]0, 1] −→]0,∞[ be a function satisfying the conditions of Corollary
4.8. By condition (14) we can take j0 to be the smallest integer such that

4β2

−φ′(2−j0 )
≤ 1

162−j0 . Then de�ne function α so that it satis�es

α(2−k) =
4β2

−φ′(2−k)

for all k ≥ j0. Thus
α(2−k)

2−k ≤ 1
16 for all k ≥ j0. We can assume that α(2−k)

is dyadic for all k ≥ j0.

Let
Qj0 = {(x, y) ∈ R2 : |x| ≤ 2−j0−1 and |y| ≤ 2−j0−1}.

Let Ωx
j0

be the α(2−j0) neighborhood of the x-coordinate axis in the square

Qj0 . Let Ωy
j0

be the α(2−j0) neighborhood of the y-coordinate axis in the
square Qj0 . Let Ωj0 = Ωx

j0
∪ Ωy

j0
. For each k > j0 de�ne Ωk by subdividing

Qj0 into dyadic squares Qik, i = 1, 2, ..., 22(k−j0), of side length 2−k. Let Ω̃x
k

be the union of the α(2−k) neighborhoods of the centered x-coordinate axes
in the squares Qik and let Ωx

k = Ω̃x
k \

⋃k−1
i=j0

Ωi. Similarly let Ω̃y
k be the union

of the α(2−k) neighborhoods of the centered y-coordinate axes in the squares
Qik and let Ωx

k = Ω̃x
k \

⋃k−1
i=j0

Ωi. Let Ωk = Ωx
k ∪ Ωy

k.

De�ne the domain Ω by

Ω =
∞⋃
k=j0

Ωk ∪
∞⋃
k=j0

int1(Ω
x
k ∩ Ωy

k+1),

where we denote by int1(·) the one dimensional interior of the set.

Notice that the domain Ω satis�es the quasihyperbolic growth condition with
the function φ: Let x0 = 0 and let xj ∈ Ω such that α(2−j−1) ≤ d(xj , ∂Ω) ≤
α(2−j) for some j ≥ 2j0. Now we have that

kΩ(x0, xj) ≤ 2
j+1∑
k=j0

∫ 2−k

0

dt

α(2−k)
≤ 2

j+1∑
k=j0

2−k

α(2−k)
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=
1

2β2

j+1∑
k=j0

−φ′(2−k)2−k ≤ 1
β2

∫ 2−j0+1

2−j−1

−φ′(t)dt

≤ 1
β2
φ(2−j−1) ≤ φ(2−j/2) ≤ φ(

2−j

2−j0
) ≤ φ(

α(2−j)
α(2−j0)

) ≤ φ(
d(xj , ∂Ω)
d(x0, ∂Ω)

).

Hence there is a constant C0 such that the inequality

k(x, x0) ≤ φ(
d(x, ∂Ω)
d(x0, ∂Ω)

) + C0

holds for all x ∈ Ω.

We obtain the desired dimension estimate for ∂Ω similarly to Section 7.1.
Let Ej0 = {Qj0 \ Ωj0} and de�ne for all k > j0

Ek = {F ∩Qik \ Ωk : F ∈ Ek−1, i = 1, 2, ..., 22(k−j0)}.

Now

∂Ω = E =
∞⋂
k=j0

⋃
F∈Ek

F,

and for the density of Ek+1 in Ek we have the estimate

∆k,F ≥
(
1− Cα(2−k)

2−k
)

for each F ∈ Ek. Hence

∆k,F ≥
(
1− C

−φ′(2−k)2−k
)
,

where the constant C depends only on β. The claim follows as in Section 7.1
by using Frostman's lemma. Note especially that if the sum

∑ 1
−φ′(2−k)2−k

converges, or equivalently, if∫
[0,1]

dt

−φ′(t)t2
<∞,

then mn(∂Ω) > 0.

Note that this example also shows the essential sharpness of Corollary 5.2.
Indeed, the domain Ω is simply connected and hence it is the image of the
disk B2 for some quasiconformal mapping f : B2 −→ R2. Since Ω satis�es
the quasihyperbolic growth condition with the function φ which satis�es the
conditions of Corollary 4.8, the mapping f is uniformly continuous with a
corresponding modulus of continuity ψ(t) = Cφ−1(C log 1

t ), see [HK] for
details. In this case the dimension estimates of the corollaries 4.8 and 5.2
are essentially equivalent (except perhaps with di�erent constants).
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To prove the sharpness of the dimension estimate in Rn with n > 2, a similar
construction can be carried out. We sketch an outline for the case n = 3.
Let

Qj0 = {x ∈ R3 : |xi| ≤ 2−j0−1 for all i = 1, 2, 3}.

De�ne Ωj0 now by removing the α(2−j0) neighborhoods of the coordinate
axes in Qj0 and of the lines (t,±2j0−2, 0) in Qj0 . De�ne Ωj accordingly for
j > j0 in the dyadic subcubes of Qj0 and, �nally, de�ne the domain Ω by
attaching the x3-components of Ωj+1 to the x1-components of Ωj . By [V]
one can deduce that with this construction Ω is a quasiconformal ball.

7.3 Sharpness of Corollary 6.2

We show the sharpness of Corollary 6.2 in the case n = 2 by constructing
a ϕ-John domain Ω ⊂ R2 for which Hh(∂Ω) > 0 with a premeasure h
satisfying

h(2−j) ≤ 2−2j exp
(
C̃

∫
[2−j ,2−j0 ]

ϕ(t)dt
t2

)
with some constant C̃.

Let ϕ :]0, 1[−→]0, 1[ be a continuous function such that ϕ(t)
t is an increasing

function. Choose α(t) = ϕ(t) and construct a domain Ω similarly as in
Section 7.2. Notice that Ω is a ϕ-John domain: Let x0 = 0 be the John
center, and for any x ∈ Ω let γ(x0, x) be the quasihyperbolic geodesic joining
x to x0. Now the length of γ is at most 2−j0 and d(γ(t), ∂Ω) ≥ ϕ(t) for all
0 < t < l ≤ 2−j0 .

We obtain the desired dimension estimate similarly as in Section 7.2. Now,
for the density of Ek+1 in Ek, we have the following estimate. For each
F ∈ Ek

∆k,F ≥
(
1− Cϕ(2−k)

2−k
)
.

The claim follows as in Section 7.1 by using Frostman's lemma. To prove the
sharpness of the dimension estimate in Rn with n > 2, a similar construction
can be carried out. The case n = 3 is outlined at the end of Section 7.2.
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