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Abstract. In R
n, we establish an asymptotically sharp upper bound for the

upper Minkowski dimension of k-porous sets having holes of certain size near
every point in k orthogonal directions at all small scales. This bound tends to
n − k as k-porosity tends to its maximum value.

1. Introduction and notation

The well-known results on dimensional properties of porous sets A ⊂ R
n having

holes of certain size at all small scales deal with the Hausdorff dimension, dimH,
and the following definition of porosity:

por(A) = inf
x∈A

por(A, x), (1.1)

where

por(A, x) = lim inf
r↓0

por(A, x, r) (1.2)

and

por(A, x, r) = sup{ρ : there is z ∈ R
n such that B(z, ρr) ⊂ B(x, r) \ A}. (1.3)

Here B(x, r) is a closed ball with centre at x and radius r > 0. Mattila [8]
proved that if por(A) is close to the maximum value 1

2
, then dimH(A) cannot be

much bigger than n − 1. Salli [12], in turn, verified the corresponding fact for
both the upper Minkowski dimension of uniformly porous sets and the packing
dimension of porous sets, and in addition to this, confirmed the correct asymp-
totic behaviour for the dimension estimates when porosity tends to 1

2
. For other

related results on porous sets and measures, see [1], [2], [4], [5], [7], [10], and [11].
Clearly, n−1 is the best possible upper bound for the dimension of a set having

maximum porosity; any hyperplane serves as an example. Whilst a hyperplane
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has holes of maximum size in one direction which is perpendicular to the plane,
a k-dimensional plane has n − k orthogonal directions with maximum holes.
Intuitively, it seems natural to expect that the more such directions the set has,
the smaller its dimension should be. For examples of Cantor sets, see [6]. This
leads to the following generalisations of (1.1)–(1.3) introduced in [6]:

Definition 1.1. Let k and n be integers with 1 ≤ k ≤ n. For all A ⊂ R
n,

x ∈ R
n, and r > 0, we set

pork(A, x, r) = sup{% : there are z1, . . . , zk ∈ R
n such that for every i

B(zi, %r) ⊂ B(x, r) \ A and (zi − x) · (zj − x) = 0 if j 6= i}.
Here · is the inner product. The k-porosity of A at a point x is defined to be

pork(A, x) = lim inf
r↓0

pork(A, x, r),

and the k-porosity of A is given by

pork(A) = inf
x∈A

pork(A, x).

Note that por1(A) = por(A) for all A ⊂ R
n. As verified by Käenmäki and

Suomala in [6] as a consequence of a conical density theorem, Definition 1.1 gives
necessary tools for extending Mattila’s result to the setting described heuristically
above. Indeed, it turns out that the Hausdorff dimension of any set having k-
porosity close to 1

2
cannot be much bigger than n − k, see [6, Theorem 3.2].

In this paper we generalise this result for the upper Minkowski and packing
dimensions using completely different methods. Our main results, Theorem 2.5
and Corollary 2.6, may be viewed as extensions of Salli’s results to k-porosity as
well. However, in the case k = 1 the proof we give is somewhat simpler than
that of Salli’s. The dimension estimates we establish are asymptotically sharp,
see Remark 2.7.

We complete this section by introducing the notation we use. For integers
0 ≤ m ≤ n, let G(n, m) be the Grassmann manifold of all m-dimensional lin-
ear subspaces of R

n. When V ∈ G(n, m), the orthogonal projection onto V is
denoted by projV . If 0 < α < 1, V ∈ G(n, m), and x ∈ R

n, we define

X(x, V, α) = {y ∈ R
n : | projV ⊥(y − x)| ≤ α|y − x|},

where V ⊥ ∈ G(n, n−m) is the orthogonal complement of V . Furthermore, given
V ∈ G(n, m) and 0 < α < 1, we say that a set A ⊂ R

n is (V, α)-planar if

A ⊂ X(x, V, α)

for all x ∈ A. The set A is called (m, α)-planar if it is (V, α)-planar for some
V ∈ G(n, m).

Let Sn−1 be the unit sphere in R
n. For the half-spaces we use the notation

H(x, θ) = {y ∈ R
n : (y − x) · θ > 0},



ASYMPTOTICALLY SHARP DIMENSION ESTIMATES FOR k-POROUS SETS 3

where θ ∈ Sn−1 and x ∈ R
n. Moreover, ∂A is the boundary of a set A ⊂ R

n and
A(r) = {x ∈ R

n : dist(x, A) ≤ r} for all r > 0.
There are many equivalent ways to define the Minkowski dimension of a given

bounded set A ⊂ R
n, see [9, §5.3]. For us it is convenient to use the following:

Letting 0 < δ < 1 and i ∈ N, we denote by N(A, δ, i) the minimum number of
balls of radius δi that are needed to cover A. The upper Minkowski dimension
of A is defined by setting

dimM(A) = lim sup
i→∞

log N(A, δ, i)

log(δ−i)
.

It is easy to see that this definition does not depend on the choice of δ. The
Hausdorff and packing dimensions, see [9, §4.8 and §5.9], are denoted by dimH

and dimp, respectively.

2. Dimension estimates for k-porous sets

For the purpose of verifying our main results, Theorem 2.5 and Corollary 2.6,
we need three technical lemmas. The first one, Lemma 2.1, dealing with k-porous
sets, follows easily from the definitions. The remaining ones, Lemmas 2.2 and
2.3, are related to (m, α)-planar sets.

For
√

2 − 1 < % < 1
2
, we define

t(%) =
1√

1 − 2%
(2.1)

and

δ(%) =
1 − % −

√
%2 + 2% − 1√

1 − 2%
. (2.2)

Notice that
0 < δ(%) < 4

√
1 − 2% (2.3)

and, in particular, δ(%) → 0 as % → 1/2.
The first lemma is a quantitative version of the following simple fact: Assuming

that pork(A, x, R) > %, there exists z such that B(z, %R) ⊂ B(x, R) \ A. If
R is much larger than r, then ∂B(z, %R) ∩ B(x, r) is nearly like a piece of a
hyperplane. Therefore one will not lose much if A∩B(x, r)\B(z, %R) is replaced
by A ∩ B(x, r) \ H, where H is a suitable half-space. The advantage of this
replacement is that B(x, r) \ H is convex, whilst B(x, r) \ B(z, %R) is not.

Lemma 2.1. Given
√

2 − 1 < % < 1
2

and r0 > 0, assume that A ⊂ R
n is such

that pork(A, x, r) > % for all x ∈ A and 0 < r < r0. Then, taking t = t(%) as

in (2.1), for any 0 < r < r0

2t
, x ∈ A, and y ∈ A ∩ B(x, r), there are orthogonal

vectors θ1, . . . , θk ∈ Sn−1 such that for all i = 1, . . . , k

A ∩ B(x, r) ∩ H(y + 2δrθi, θi) = ∅, (2.4)

where δ = δ(%) is as in (2.2).
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Figure 1. Illustration for the proof of Lemma 2.2: the extreme
positions of x and y.

Proof. The claim follows directly from Definition 1.1 and [6, Lemma 3.1]. �

Lemma 2.2. For all 0 < α < 1 there is a positive integer M = M(n, α) such

that if C ⊂ R
n is convex, then ∂C can be decomposed into M parts all of which

are (n − 1, α)-planar.

Proof. Let C ⊂ R
n be convex. For any x ∈ ∂C, we may choose θ(x) ∈ Sn−1 such

that H(x, θ(x)) ∩ C = ∅. This defines a mapping θ : ∂C → Sn−1. Let θ̃ ∈ Sn−1

and B = B(θ̃, α
3
) ∩ Sn−1. Now, if x, y ∈ θ−1(B), then |θ(y) − θ(x)| ≤ 2

3
α. Since

x /∈ H(y, θ(y)) and y /∈ H(x, θ(x)), this yields to

dist(y − x, θ(x)⊥) = |(y − x) · θ(x)| ≤ 2

3
α|y − x|,

see Figure 1, and so y ∈ X(x, θ(x)⊥, 2
3
α). (Here we use the notation θ(x)⊥ for the

orthogonal complement of the line spanned by θ(x).) Combining this with the

fact that θ(x)⊥ ⊂ X(0, θ̃⊥, α
3
) implies that y ∈ X(x, θ̃⊥, α), and hence θ−1(B) is

(n− 1, α)-planar. Covering Sn−1 with M = M(n, α) balls of radius α
3

and taking
their preimages under θ gives the claim. �

The next lemma is used to give a quantitative estimate of how much one needs
to translate a tilted half-space such that it will not intersect a given neighbour-
hood of a planar set provided that the untilted half-space does not meet the
neighbourhood.

Lemma 2.3. Letting 0 < c < 1, 0 < α < sin(π
2
− arccos c), and V ∈ G(n, m),

suppose that P ⊂ R
n is (V, α)-planar. If 0 < δ ≤ β, x ∈ P (β), θ ∈ Sn−1 with

| projV (θ)| ≥ c, and θ′ = projV (θ)/| projV (θ)|, then

H(x + c′βθ′, θ′) ∩ P (β) ⊂ H(x + δθ, θ),

where c′ = c′(α, c) = 2(sin(arccos c+arcsinα))−1+1
sin( π

2
−arccos c−arcsinα)

.
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Figure 2. Illustration for the proof of Lemma 2.3

Proof. We assume that | projV (θ)| = c. In the case | projV (θ)| > c one may use a
similar argument and show that the number c′ can be replaced by a smaller one.
First observe that P (β) ⊂ X(x, V, α)(2β). Let

A = X(x, V, α)(2β) \ H(x + δθ, θ),

w = x + δθ, and

z = x − 2βθ

sin(arccos c + arcsin α)
,

and take y ∈ A which maximises (y − x) · θ′, see Figure 2. Now the angle
�

wyz
is π

2
− arccos c − arcsin α and since

|z − w| ≤
(

2

sin(arccos c + arcsin α)
+ 1

)
β,

we may estimate

|(y − x) · θ′| ≤ |y − z| =
|z − w|

sin(π
2
− arccos c − arcsin α)

≤ c′β.

�

The following remark will be useful when proving Theorem 2.5.

Remark 2.4. Let A ⊂ R
n, 0 < α < 1, and V ∈ G(n, m). Then A is (V, α)-planar

if and only if there is a Lipschitz mapping f : projV (A) → V ⊥ (we identify R
n

with the direct sum V + V ⊥) with Lipschitz constant α/
√

1 − α2 such that A is
the graph of f . It follows now from the Kirszbraun’s theorem, see [3, §2.10.43],
that A can be extended, that is, there is a (V, α)-planar set A′ ⊂ R

n such that
A ⊂ A′ and projV (A′) = V .

Now we are ready to verify our main result concerning the upper Minkowski
dimension of sets which are uniformly k-porous with respect to the scale r.
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Theorem 2.5. Let 0 < % < 1/2 and r0 > 0. Assuming that A ⊂ R
n is a bounded

set with pork(A, x, r) > % for every x ∈ A and 0 < r < r0, we have

dimM(A) ≤ n − k +
c

log 1
1−2%

,

where c = c(n, k) is a constant depending only on n and k.

Proof. The idea of the proof is as follows: Assuming that all the points in A ∩
B(x, r) are porous and using Lemma 2.1, one finds half-spaces which do not meet
A∩B(x, r). After removing these, one is left with a convex set C ⊂ B(x, r) such
that all the points in A∩B(x, r) are close to the boundary of C and the distance

is proportional to
√

1
2
− %. This implies the claim in the case k = 1. For k ≥ 2,

we divide the boundary ∂C into planar subsets Pi and repeat the above process
for the projections of each of the sets Pi into R

n−1. As the result we see that
A∩B(x, r) is close to a (n−2)-dimensional set. This procedure may be repeated
k times since there are k orthogonal directions with holes.

Since it is enough to prove the claim for sufficiently large %, we may assume
that

log
1

4
√

1 − 2%
>

1

3
log

1

1 − 2%
. (2.5)

Let 0 < α < sin(π
2
− arccos 1√

k
), and let t = t(%) and δ = δ(%) be as in (2.1)

and (2.2), respectively. For any positive integer m with n − k ≤ m ≤ n − 1,

define αm = 2
1

2
(n−k−m+1)α. Moreover, letting c1 = c′(α, 1√

k
) be the constant of

Lemma 2.3, set c2 = 1 + (c1 + 1)/
√

1 − α2.
Fix x ∈ A and 0 < r < r0

2t
. Taking any y ∈ A∩B(x, r), let θ(y) ∈ Sn−1 be one

of the vectors θ1, . . . , θk ∈ Sn−1 given by Lemma 2.1. Define

C =
⋂

y∈A∩B(x,r)

R
n \ H(y + 2δrθ(y), θ(y)).

(Here we could replace R
n with B(x, r). However, our choice makes the inductive

step somewhat simpler.) Then C is non-empty and convex, and furthermore by
(2.4), A ∩ B(x, r) ⊂ (∂C)(2δr). Using Lemma 2.2, we obtain

∂C =

M(n,αn−1)⋃

i=1

Pn−1,i,

where the constant M(n, αn−1) depends only on n and αn−1, and each Pn−1,i is
(n − 1, αn−1)-planar. This, in turn, gives that

A ∩ B(x, r) ⊂
M(n,αn−1)⋃

i=1

Pn−1,i(2δr).



ASYMPTOTICALLY SHARP DIMENSION ESTIMATES FOR k-POROUS SETS 7
PSfrag replacements

z

z′
V

P

P̂

d4

d1

projV (z)

d2

d3

Figure 3. A 2-dimensional illustration for the proof of Theorem
2.5: How much one needs to enlarge the neighbourhood in the
induction step? Here z ∈ P (cn−m−1

2 2δr), z′ ∈ P ′(c1c
n−m−1
2 2δr),

and β = cn−m−1
2 2δr. Further, d1 ≤ c1β, d2 ≤ c1β/

√
1 − α2,

d3 ≤ β/
√

1 − α2, and d4 ≤ β.

We continue inductively: Let n−k < m ≤ n−1 and suppose that we are given
(m, αm)-planar sets Pm,1, . . . , Pm,lm, where lm = M(n, αn−1)

∏n−1
j=m+1 M(j, αj),

such that

A ∩ B(x, r) ⊂
lm⋃

i=1

Pm,i(c
n−m−1
2 2δr).

Consider a positive integer i with 1 ≤ i ≤ lm. Abbreviating P = Pm,i, let
V ∈ G(n, m) be such that P is (V, αm)-planar. For every y ∈ A ∩ B(x, r) ∩
P (cn−m−1

2 2δr), choose orthogonal vectors θ1, . . . , θk ∈ Sn−1 as in Lemma 2.1.
Since m > n − k, there is θ ∈ {θ1, . . . , θk} for which | projV (θ)| ≥ 1√

k
. Setting

θ′(y) = projV (θ)/| projV (θ)|, define

C ′ =
⋂

y∈A∩B(x,r)∩P (cn−m−1

2
2δr)

V \ H
(
projV (y) + c1c

n−m−1
2 2δrθ′(y), θ′(y)

)
.

It follows from Lemmas 2.1 and 2.3 that

projV (A ∩ B(x, r) ∩ P (cn−m−1
2 2δr)) ⊂ (∂C ′)(c1c

n−m−1
2 2δr).

Moreover, C ′ ⊂ V is convex, and by Lemma 2.2, its boundary ∂C ′ can be
decomposed into M(m, αm) parts P ′

j all of which are (m − 1, αm)-planar. Using

Remark 2.4, we find a (V, αm)-planar set P̂ such that P ⊂ P̂ and projV (P̂ ) =

V . The rôle of P̂ is to guarantee that P̂ ∩ proj−1
V (P ′

j) 6= ∅ for all j. For all

j = 1, . . . , M(m, αm) the sets P̃j = P̂ ∩proj−1
V (P ′

j) are (m− 1, αm−1)-planar, and
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moreover,

A ∩ B(x, r) ∩ P (cn−m−1
2 2δr) ⊂

M(m,αm)⋃

j=1

P̃j(c
n−m
2 2δr),

see Figure 3. As the result of this inductive process we may find (n − k, αn−k)-
planar sets Pn−k,1, . . . , Pn−k,ln−k

, where ln−k = M(n, αn−1)
∏n−1

j=n−k+1 M(j, αj),
such that

A ∩ B(x, r) ⊂
ln−k⋃

i=1

Pn−k,i(c
k−1
2 2δr). (2.6)

It is not hard to verify that there is a constant C(α, n, k) depending only on α,
n, and k such that each of the sets Pn−k,i(c

k−1
2 2δr)∩B(x, r) can be covered with

C(α, n, k)δk−n balls of radius δr, and therefore by (2.6), C(α, n, k)ln−kδ
k−n such

balls will cover the set A∩B(x, r). Iterating this and defining c0 = C(α, n, k)ln−k

gives for all positive integers i that N(A, δ, i) ≤ N0(c0δ
k−n)i−i0, where i0 is the

smallest integer with δi0 < r0

2t
and N0 is a positive integer such that A ⊂ ⋃N0

j=1 A∩
B(xj, δ

i0) for some xj ∈ A. Taking logarithms and using (2.3) and (2.5) gives

dimM(A) ≤ lim sup
i→∞

log(N0(c0δ
k−n)i−i0)

i log 1
δ

= n − k +
log c0

log 1
δ

≤ n − k +
c

log 1
1−2%

where c = 3 log c0 is a constant depending only on n and k. �

For the Hausdorff and packing dimensions we have the following immediate
consequence:

Corollary 2.6. Let 0 < % < 1/2 and suppose A ⊂ R
n with pork(A) > %. Then

dimH(A) ≤ dimp(A) ≤ n − k +
c

log 1
1−2%

,

where c is the constant of Theorem 2.5.

Proof. Representing A as a countable union of sets satisfying the assumptions of
Theorem 2.5 gives the claim. �

Remark 2.7. The estimates of Theorem 2.5 and Corollary 2.6 are asymptotically
sharp. In fact, for any 1 ≤ k ≤ n − 1 there is a constant c′ = c′(n, k) with the
following property: for all 0 < % < 1/2 there exists A% ⊂ R

n with

dimH(A%) > n − k +
c′

log 1
1−2%

and pork(A%, x, r) > % for all x ∈ R
n and r > 0. The sets Ck

λ × [0, 1]n−k serve
as natural examples. Here Cλ ⊂ [0, 1] is the λ-Cantor set, see [9, §4.10]. When
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k = 1, the straightforward calculation can be found from Salli [12, Remark
3.8.2(1)].
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Nonlinearity, 13:1–18, 2000.

[3] H. Federer. Geometric Measure Theory. Springer-Verlag, Berlin, 1969.
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