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Abstract. We construct a C1-function f : [0, 1] → R such that for almost
all x ∈ (0, 1), there is r > 0 for which f(y) > f(x) + f ′(x)(y − x) when
y ∈ (x, x+r) and f(y) < f(x)+f ′(x)(y−x) when y ∈ (x−r, x). The existence
of such functions is related to a problem concerning conical density properties
of Hausdorff measures on Rn. We also discuss the tangential behavior of
typical C1-functions, using an improvement of Jarnik’s theorem on essential
derived numbers.

1. Introduction and notation

Let us begin by introducing some notation. For 0 ≤ s ≤ n, let Hs denote
the s-dimensional Hausdorff measure on Rn, and on the real line, let L stand
for the Lebesgue measure. We use the common notation B(x, r) for open balls
on Euclidean and metric spaces, and for the unit sphere on Rn the notation
Sn−1 = {x ∈ Rn : |x| = 1} is used. If x ∈ Rn, and A ⊂ Rn, then d(x, A) stands
for the Euclidean distance between x and A. The length of an interval I ⊂ R is
denoted by `(I) and the notion ∂A is used for the boundary of a given set A ⊂ R.
The (symmetrical) upper and lower densities of A ⊂ R at x ∈ R are defined as
the upper and lower limits, respectively, of the ratio L((x − r, x + r) ∩ A)/(2r)
when r ↓ 0. If f : [0, 1] → R is differentiable at x ∈ (0, 1), the sets A+(f, x) and
A−(f, x) are given by

A+(f, x) = {y ∈ (0, 1) : f(y) > f(x) + f ′(x)(y − x)},

A−(f, x) = {y ∈ (0, 1) : f(y) < f(x) + f ′(x)(y − x)}.

For r > 0, we put A+(f, x, r) = A+(f, x) ∩ (x − r, x + r) and A−(f, x, r) =
A−(f, x) ∩ (x − r, x + r). If x ∈ Rn, θ ∈ Sn−1, and 0 ≤ η < 1, we define the
cone H(x, θ, η) by setting H(x, θ, η) = {y ∈ Rn : (y − x) · θ > η|y − x|}. For
half-spaces we use shorter notation, H(x, θ) = H(x, θ, 0).
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Given a set A ⊂ Rn, it is often of interest to know how it is distributed near a
“generic” point. This paper was inspired by the following conical density theorem
of Marstrand [4, pp. 293–297].

Theorem 1.1. Let 0 ≤ s < 2 and A ⊂ R2 with Hs(A) < ∞.

(1) If 0 ≤ s < 1 and θ ∈ S1, then lim inf
r↓0

r−sHs(B(x, r) ∩ H(x, θ) ∩ A) = 0

for Hs-almost all x ∈ A.

(2) If 1 < s < 2, then for Hs-almost all x ∈ A, there is θ ∈ S1 such that

lim inf
r↓0

r−sHs(B(x, r) ∩ H(x, θ) ∩ A) = 0.

It seems that 1-sets (sets A with 0 < H1(A) < ∞) play a special role in
connection with the above theorem. Marstrand’s proof yields that claim (2) is
valid also for 1-sets if half-spaces H(x, θ) are replaced by cones H(x, θ, η) for any
η > 0. On the other hand, Besicovitch [1, Theorem 13] had shown before that
even (1) holds for purely unrectifiable 1-sets, that is, for 1-sets which intersect
every rectifiable curve only in a set of zero H1-measure. A question arises whether
(2) actually holds for all 1-sets.

The answer to the above question is negative. In Section 2.1 we construct a
C1-function f : [0, 1] → R whose graph does not satisfy claim (2) of Theorem
1.1. In Section 2.2, inspired by our example, we study the distribution of the
sets A+(f, x) and A−(f, x) for functions f ∈ Ck[0, 1], k ∈ N. We show that for
a typical f ∈ C1[0, 1], both of the sets A+(f, x) and A−(f, x) have zero lower
density and unit upper density at x for almost every x ∈ (0, 1). This is a corollary
to an extension of Jarnik’s theorem on essential derived numbers (Theorem 2.3).

Finally, in Section 3, we discuss the above conical density problem in higher
dimensions.

Acknowledgements. I am grateful to Professors Pertti Mattila, Luděk Zaj́ıček,
and Clifford Weil for useful discussions, comments, and suggestions. I also thank
Mika Leikas, Jouni Parkkonen, and Juhani Takkinen.

2. Tangential behavior of functions

2.1. An example. Our goal in this section is to prove the following.

Theorem 2.1. There is a continuously differentiable function f : [0, 1] → R such

that for almost all x ∈ (0, 1), there is r > 0 for which

(x, x + r) ⊂ A+(f, x), (2.1)

(x − r, x) ⊂ A−(f, x). (2.2)

Remarks. It is quite easy to construct functions f ∈ C∞[0, 1] so that (2.1) and
(2.2) are valid in a set of positive measure: Define g ∈ C∞[0, 1] so that g = 0 on
some Cantor set C with L(C) > 0, and g > 0 outside this set. If f is given by
f(x) =

∫ x

t=0
g(t)dt, then (2.1) and (2.2) hold for f on the set C. However, for any
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C2-function, these conditions can not hold almost everywhere, see Proposition
2.2 (1).

Proof of Theorem 2.1. The idea is to iterate the construction suggested by the
above remark. Choose a sequence of numbers 0 < λi < 1 for i ∈ N such that

∞∏

i=1

(1 − λi) > 0. (2.3)

Let R1 = 1 and define numbers Ri for every i ∈ N by letting Ri+1 = (1−λi)Ri/2.
We define a Cantor set C1 ⊂ (0, 1) in a usual manner. Start by setting Q1,1 =
(0, 1/2 − λ1/2), I1,1 = [1/2 − λ1/2, 1/2 + λ1/2], and Q1,2 = (1/2 + λ1/2, 1). If

open intervals {Qi,j}
2i

j=1 and closed intervals {Ii,j}
2i−1

j=1 have been defined, remove
from the middle of every Qi,j a closed interval of length λi+1Ri+1. Denote the

deleted intervals by {Ii+1,j}
2i

j=1 and the remaining open intervals by {Qi+1,j}
2i+1

j=1 .
For every i ∈ N, the length of the intervals Qi,j is Ri+1 and the length of the
intervals Ii,j is λiRi. We set C1 = (0, 1) \

⋃
i,j Ii,j =

⋂
i

⋃
j Qi,j. It follows from

(2.3) that L(C1) > 0. Then we define g1(x) = d(x, C1) for 0 < x < 1 and further
f1(x) =

∫ x

0
g1(t)dt for any 0 ≤ x ≤ 1. It is clear that f1 is strictly monotone

on [0, 1] and because f ′
1(x) = 0 for every x ∈ C1, it follows that (2.1) and (2.2)

are valid for f1 if x ∈ C1. As seen above, the set (0, 1) \ C1 can be written as
(0, 1) \ C1 =

⋃
i,j I1,i,j, where intervals I1,i,j are closed and disjoint.

Let us continue by induction. Suppose that a function gk and a set Ck =
(0, 1) \

⋃
i,j Ik,i,j have been defined. Denote by I ′

k,i,j the open interval with same

center as Ik,i,j and with length `(Ik,i,j)/2. First we modify gk on each Ik,i,j so
that it remains continuous, becomes constant (= bk,i,j) on I ′

k,i,j, and affine on
both components of Ik,i,j \ I ′

k,i,j. Denote this new function by g̃k (see Figure 1).

The above constant, bk,i,j, is defined so that
∫

Ik,i,j
(gk − g̃k) = ak,i,j, where the

constants ak,i,j > 0 are chosen sufficiently small (see the discussion in the next
paragraph). Now we define gk+1 on I ′

k,i,j in a corresponding manner as g1 was
defined on (0, 1) (see Figure 1): Let I ′

k,i,j = (α, β). For each x ∈ I ′
k,i,j, we set

gk+1(x) = bk,i,j + ck,i,j g1

(
x − α

β − α

)
(2.4)

where constants ck,i,j are chosen so that
∫

Ik,i,j
gk+1 =

∫
Ik,i,j

gk. On (0, 1)\
⋃

i,j I ′
k,i,j

we set gk+1 = g̃k. Let Ck+1 = (
⋃

i,j({αk,i,j} + `(I ′
k,i,j)C1))

⋃
Ck, where αk,i,j is

the left endpoint of I ′
k,i,j, and write (0, 1) \ Ck+1 =

⋃
i,j Ik+1,i,j, where intervals

Ik+1,i,j are closed and disjoint.
We may choose constants ak,i,j > 0 inductively so that every gk is continuous

and sup{x ∈ [0, 1] : |gk(x) − gk+1(x)|} < 2−k for every k. If 0 ≤ x ≤ 1, we define
g(x) = limk→∞ gk(x) and f(x) =

∫ x

0
g. If x ∈ I ′

l−1,i,j ∩ Cl and y ∈ I ′
l−1,i,j with

y > x, we have g(z) ≥ bl−1,i,j for all z ∈ (x, y) and g > bl−1,i,j in a set of positive
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g k g k g k+1
~

Figure 1. Construction of gk+1 from gk on Ik,i,j.

measure on (x, y). This implies

f(y) = f(x) +

∫ y

x

g(t)dt > f(x) + bl−1,i,j(y − x) = f(x) + f ′(x)(y − x).

If y < x, then the above inequality is switched. Thus, if x ∈ Cl, and r = r(x) > 0
is such that (x−r, x+r) ⊂ I ′

l−1,i,j for some i and j, then properties (2.1) and (2.2)
are valid. Since L((0, 1) \

⋃
l Cl) = 0 and for any x ∈

⋃
l Cl, there is I ′

l−1,i,j such
that x ∈ Cl ∩ I ′

l−1,i,j (we put I ′
0,1,1 = (0, 1)), the construction is completed. �

Problems. 1. In the above example, the set where conditions (2.1) and (2.2)
hold seems to be a first category set. Is it possible for a C1-function, for these
properties to hold on a residual subset of (0, 1)? If not, then what is the case if
we require only that both of the sets A+(f, x) and A−(f, x) have positive lower
density at x in a residual set?
2. Are there functions f ∈ C1[0, 1] so that both of the one-sided lower densities,

lim inf
r↓0

L((x, x + r) ∩ A+(f, x))/r,

lim inf
r↓0

L((x, x + r) ∩ A−(f, x))/r,

are strictly positive in a set of positive (or even full) measure? Similar questions
can be posed when intervals (x, x + r) are replaced by some other sets.

2.2. Typical behavior. Given a property for functions, it is natural to ask if
this property is typical on a function class in question. The theme of this section
is to study the typicality of some properties related to the above example. For
k ∈ N ∪ {0,∞}, the space Ck[0, 1] is given the norm ||f || = sup{|f j(x)| : x ∈
(0, 1), j ∈ N, 0 ≤ j ≤ k} where f 0 = f . When we say that some property holds
for a typical f ∈ Ck[0, 1] we mean that this property is valid on a residual set of
functions on Ck[0, 1].
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Some very basic facts are listed in the proposition below. To help discussion,
we write for f ∈ C1[0, 1],

Af = {x ∈ (0, 1) : x ∈ A+(f, x)
⋂

A−(f, x)},

B+
f = {x ∈ (0, 1) : conditions (2.1) and (2.2) hold for some r > 0},

B−
f = B+

−f .

Proposition 2.2. (1) For any f ∈ C2[0, 1], the set Af is nowhere dense.

(2) If 2 ≤ k ∈ N ∪ {∞}, then L(Af) = 0 for a typical f ∈ Ck[0, 1].
(3) The set (0, 1) \ Af is dense for any f ∈ C1[0, 1].
(4) The sets B+

f and B−
f are dense for a typical f ∈ C1[0, 1].

Proof. If f ∈ C2[0, 1] and x ∈ (0, 1) is such that both of the sets (x − r, x +
r) ∩ A+(f, x) and (x − r, x + r) ∩ A−(f, x) are nonempty for any r > 0, then
f ′′(x) = 0. This implies (1). Also (2) follows since L({x : f ′′(x) = 0}) = 0 for a
typical f ∈ Ck[0, 1] when k ≥ 2. Claim (3) follows from the mean value theorem,
and (4) is true because the derivative of a typical C1-function has a dense set of
minima and maxima. �

A natural question arising from our example is the following: Is it true that
for a typical f ∈ C1[0, 1], both of the sets A+(f, x) and A−(f, x) have strictly
positive lower density at x for almost every x ∈ (0, 1). This is, however, not the
case; As we shall see, both of these sets have typically unit upper density and
thus also zero lower density for almost every x. We shall prove this by using
the following generalization of a well known theorem of Jarnik [2]. We say that
c ∈ R is a symmetrical essential derived number of f : [0, 1] → R at x ∈ (0, 1),
denote c ∈ SEDN(f, x), if there is a set E = E(x, c) ⊂ R such that E has unit
upper density at x and

lim
y∈E
y→x

f(y) − f(x)

y − x
= c. (2.5)

To avoid confusion, we note that in this context the term “symmetrical” does
not refer to symmetric differentiation but to symmetrical upper density.

Theorem 2.3. For a typical f ∈ C[0, 1], we have SEDN(f, x) = R for almost

every x ∈ (0, 1).

Remarks. A number c ∈ R is called a right essential derived number of f at x
if there is E ⊂ R satisfying (2.5) with lim supr↓0 L((x, x + r) ∩ E)/r = 1. Left
essential derived numbers are defined in an analogous way. A point x ∈ (0, 1)
is an essential knot point of f if every c ∈ R is simultaneously left and right
essential derived number of f at x. Jarnik [2] proved that almost all points
are essential knot points for a typical function f ∈ C[0, 1]. The above theorem
is stronger than Jarnik’s result since it allows us to choose E such that it is
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simultaneously big at both sides of x for some small scales, and not only big at
left for some scales and big at right for some (possibly different) scales.

If w ∈ R2 and c, α ∈ R, we denote by `w,c the line through w with slope c and
put X(w, c, α) = {v ∈ R2 : d(v − w, `w,c) ≤ α|v − w|}. These cones are useful
since c ∈ SEDN(f, x) if and only if

x ∈
⋂

ε,α,r0

{z ∈ (0, 1) : ∃ 0 < r < r0 such that

L({y ∈ (z − r, z + r) : (y, f(y)) ∈ X((z, f(z)), c, α)}) > (2 − ε)r}

(2.6)

where the intersection is taken over all positive rationals ε, α and r0, see also [9,
Lemma 1].

Proof of Theorem 2.3. For f ∈ C[0, 1], let

F = F (f) = {x ∈ (0, 1) : SEDN(f, x) 6= R}.

It follows from (2.6) that

F =
⋃

c,ε,α,r0

{x ∈ (0, 1) : L({y ∈ (x − r, x + r) :

(y, f(y)) /∈ X((x, f(x)), c, α)}) > εr for all 0 < r < r0}

where the union is taken over all c ∈ Q, and 0 < ε, α, r0 ∈ Q. Thus

{f ∈ C[0, 1] : L(F (f)) > 0} =
⋃

δ,c,ε,α,r0

A(δ, c, ε, α, r0)

where c ∈ Q, 0 < δ, ε, α, r0 ∈ Q, and A(δ, c, ε, α, r0) ⊂ C[0, 1] is given by

A(δ, c, ε, α, r0) ={f ∈ C[0, 1] : L({x ∈ (0, 1) : L({y ∈ (x − r, x + r) :

(y, f(y)) /∈ X((x, f(x)), c, α)}) > εr for all 0 < r < r0}) > δ}.

Fix numbers c ∈ R, and δ, ε, α, r0 > 0. It suffices to prove that the set
A(δ, c, ε, α, r0) is nowhere dense on C[0, 1]. Take f ∈ C[0, 1] and let 0 < r < r0.
Let g ∈ C[0, 1] with ||f−g|| < r/2 so that it satisfies the following (see [8, Lemma

1]): There are disjoint intervals I1, . . . , Ik ⊂ (0, 1) with
∑k

i=1 `(Ii) > 1− δ/2 such
that g is affine and has slope c on each interval Ii. Let 0 < ` < mini=1,...,k `(Ii),
0 < t < min{δ/4, r0}, and 0 < s < min{αεt/4, r/2}. Take h ∈ B(g, s`). It is
easy to see that if x ∈ Ii with d(x, ∂Ii) > t`, then (y, h(y)) ∈ X((x, h(x)), c, α)
for all y ∈ (x− t`, x + t`) \ (x− 2s`/α, x + 2s`/α). It follows that for such x, we
have

L({y ∈ (x − t`, x + t`) : (y, h(y)) /∈ X((x, h(x)), c, α)}) < 4s`/α < t`ε. (2.7)

Since (2.7) holds in a measurable set whose measure is greater than 1 − δ/2 −
k2t` > 1 − δ, we conclude that h /∈ A(δ, c, ε, α, r0). Thus B(g, s`) ⊂ B(f, r) \
A(δ, c, ε, α, r0) and the claim follows. �
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Zaj́ıček [8] strengthened Jarnik’s result using porosity notations. His result is
also in a sense one-sided and does not seem to imply Theorem 2.3. However,
only a minor change in his method gives even stronger theorem. The following
notation is from [8]. If A ⊂ R and I ⊂ R is an interval, the number p(A, I)
denotes the length of the largest subinterval I ′ ⊂ I \ A. We denote by G the
collection of all increasing functions g on (0,∞) for which g(x) > x for all 0 < x <
∞. If g ∈ G, we say that E ⊂ R is [g]-porous from the right (left) at x ∈ R if there
is a sequence ri ↓ 0 such that g(p(E, (x, x + ri))) > ri (g(p(E, (x − ri, x))) > ri)
for all i ∈ N. A number c ∈ R is a right (left) [g]-derived number of f at x
if there is a set E ⊂ R for which R \ E is [g]-porous from the right (left) at x
such that (2.5) holds for E. A point x is a [g]-knot point of f if every c ∈ R is
both left and right [g]-derived number of f at x. Zaj́ıček [8, Theorem 2] showed
that for a typical f ∈ C[0, 1], the set of points from (0, 1) which are not [g]-knot
points of f is σ-[g]-totally porous. See [8, Definition 2] or [7, Definition 2.49] for
the definition of [g]-totally porous sets.

Modifying the above notation, we say that A ⊂ Rn is symmetrically [g]-porous
at x if there is a sequence ri ↓ 0 so that min{g(p(A, (x − ri, x))), g(p(A, (x, x +
ri))) > ri for each i ∈ N. A number c ∈ R is a symmetrical [g]-derived number
of f at x if there is a set E ⊂ R such that R \ E is symmetrically [g]-porous at
x and (2.5) holds for E. A point x is a symmetrical [g]-knot point of f if each
c ∈ R is a symmetrical [g]-derived number of f at x.

Theorem 2.4. Let g ∈ G. Then for a typical f ∈ C[0, 1], the set of points

x ∈ (0, 1) which are not symmetrical [g]-knot points of f is σ-[g]-totally porous.

This theorem can be proved by modifying Zaj́ıček’s method only slightly and
thus we shall not repeat the argument. For the convenience of an interested
reader we comment that the main point is that in [8, Lemma 2(b)] one can
assert: For any h ∈ U(a, b, s, δ) and x ∈ ∪n−1

k=0 [k/n + 2v, (k + 1)/n − 2v] the
inequalities g(p({y : (h(y) − h(x))/(y − x) /∈ [a, b]}, [x, x + v])) > v and g(p({y :
(h(y) − h(x))/(y − x) /∈ [a, b]}, [x − v, x])) > v hold.

We now turn our attention back to our original question related to the distri-
bution of the sets A+(f, x) and A−(f, x) for typical functions f ∈ C1[0, 1].

Theorem 2.5. For a typical f ∈ C1[0, 1], both of the sets A+(f, x) and A−(f, x)
have unit upper density and zero lower density at x for almost every x ∈ (0, 1).

Proof. By symmetry, it suffices to show that

lim sup
r↓0

L((x − r, x + r) ∩ A+(f, x))/(2r) = 1

almost everywhere for a typical f ∈ C1[0, 1]. In fact, we shall verify a stronger
statement according to which for typical f ∈ C1[0, 1] the set (0, 1) \ A+(f, x) is
strongly symmetrically porous (see [7, p. 320]) at x for almost every x ∈ (0, 1).
Using Theorem 2.3, we see that for typical f ∈ C1[0, 1], we have SEDN(f ′, x) = R
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almost everywhere. Fix such a function f and x ∈ (0, 1) for which SEDN(f ′, x) =
R. Now there is E ⊂ (0, 1) with

lim sup
r↓0

L((x − r, x + r) ∩ E)/(2r) = 1 (2.8)

and

lim
t∈E
t→x

f ′(t) − f ′(x)

t − x
= 2.

Thus we may choose 0 < r0 < 1 so that

(f ′(t) − f ′(x))/(t − x) > 1 for all t ∈ (x − r, x + r) ∩ E \ {x}. (2.9)

Replacing E by it’s closure if necessary, we may assume that it is measurable.
Choose 0 < M < ∞ so that |f ′(x)| < M for all x ∈ [0, 1] and let ε > 0 be

such that 1 − (4M + 2)ε > 0. Using (2.8), we may find arbitrary small radii
0 < r < r0 such that L((x − r, x + r) ∩ E) > (2 − ε2)r. If y ∈ (x + εr, x + r) for
such a radius r, then the above facts and (2.9) imply

y∫

x

f ′dL =

∫

(x,y)∩E

f ′dL +

∫

(x,y)\E

f ′dL

>

∫

(x,y)∩E

f ′(x)dt +

∫

(x,y)∩E

(t − x)dt − ε2Mr

> f ′(x)(y − x) − ε2rM + εr/2 − ε2r − ε2Mr

= f ′(x)(y − x) + (1 − (4M + 2)ε)εr/2

> f ′(x)(y − x).

Thus f(y) = f(x) +
∫ y

x
f ′dL > f(x) + f ′(x)(y − x) giving y ∈ A+(f, x). In a

similar manner, we see that y ∈ A+(f, x) also if y ∈ (x− r, x− εr). Letting ε ↓ 0
gives the claim. �

Remark. Using Theorem 2.4 in place of Theorem 2.3 in the above proof leads
to stronger conclusions. For example, if g ∈ G, then we see that for a typical
f ∈ C1[0, 1], both of the sets (0, 1) \ A+(f, x) and (0, 1) \ A−(f, x) are strongly
symmetrically porous at x for a set of points x whose complement is σ-[g]-totally
porous.

3. Conical densities

Let f and Cl, l ∈ N, be defined as in the proof of Theorem 2.1. Define
G = {(t, f(t)) : t ∈ (0, 1)} and GC = {(t, f(t)) : t ∈

⋃
l Cl}.

Fix x = (t, f(t)) ∈ GC . It is clear that

lim inf
r↓0

H1(B(x, r) ∩ G ∩ H(x, θ))/r > 0 (3.1)
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whenever θ ∈ S1 is not perpendicular with the tangent of G at x. Therefore we
consider only directions of the form θ = ±(−f ′(t), 1)/(1 + f ′(t)2)1/2. If r > 0 is
small, then (s, f(s)) ∈ B(x, r) for s ∈ (t− cr, t+ cr) and c = (1+2f ′(t)2)−1/2. It
follows from (2.1)–(2.2) that H1(B(x, r) ∩ G ∩ H(x, θ)) ≥ cr. We conclude that
(3.1) holds for all x ∈ GC and θ ∈ S1. This implies that claim (2) of Theorem
1.1 is not always valid for rectifiable curves.

By modifying the above example, one can easily construct m-rectifiable sur-
faces S on Rn, for any integer 1 < m < n, so that

lim inf
r↓0

r−mHm(B(x, r) ∩ H(x, θ) ∩ S) > 0 (3.2)

for any θ ∈ Sn−1 and for Hm-almost all x ∈ S. One can take, for example, S to
be the graph of the function

g : (0, 1) × Rm−1 → Rn−m : (x1, . . . , xm) 7→ (f(x1), . . . , f(x1)),

where f is as above.
Marstrand’s argument from [4, pp. 293–297] can be generalized to prove that in

Rn claim (1) of Theorem 1.1 holds for 0 < s < 1, and claim (2) for n−1 < s < n,
see also [5, Theorem 11.11]. For general 0 < s < n, the following is known, see
Lorent [3] and Suomala [6]. If m ∈ N, then a set A ⊂ Rn is called m-rectifiable if
Hm-almost all of it can be covered with a countable union of C1-images of Rm.
A set A is called purely m-unrectifiable, if it intersects every C1-image of Rm

only in a set of Hm measure zero.

Theorem 3.1. Let A ⊂ Rn with Hs(A) < ∞ and let V be an m-dimensional

linear subspace of Rn. If either 0 < s < m or if s = m and A is purely m-

unrectifiable, then for Hs almost every x ∈ A, there is θ ∈ V ∩ Sn−1 such that

lim inf
r↓0

r−sHs(B(x, r) ∩ H(x, θ, η) ∩ A) = 0 (3.3)

for any η > 0.

The examples discussed above show that one cannot always take η = 0 in
(3.3) when s ∈ [1, m)∩N and A is s-rectifiable. On the other hand, Besicovitch’s
argument from [1, pp. 317–320] can be modified to prove that even claim (1) of
Theorem 1.1 holds for any purely 1-unrectifiable set A ⊂ Rn with H1(A) < ∞.

Problem. Does Theorem 3.1 hold with η = 0 when either s ∈ (1, n − 1) is non-
integral, or s ∈ [2, n − 1] ∩ N and A is purely s-unrectifiable?
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[7] L. Zaj́ıček. Porosity and σ-porosity. Real Anal. Exchange, 13(2):314–350, 1987/88.
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