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1 Introduction

Let Ω ⊂ R
n (n ≥ 2) be a bounded domain. We say that a mapping f : Ω →

R
n has finite distortion if f belongs to the Sobolev space W 1,1(Ω,Rn), the

Jacobian determinant Jf = det(Df) of f (Df being the differential matrix
of f) is integrable in Ω, and if there is a measurable function K ≥ 1, finite
almost everywhere, such that

|Df(x)|n ≤ K(x)Jf (x) a.e. x ∈ Ω. (1.1)

The distortion inequality (1.1) guarantees that Jf ≥ 0 a.e. and that Df
vanishes a.e. in the zero set of Jf . The smallest function K satisfying (1.1)
is then defined by

Kf (x) =







|Df(x)|n

Jf (x)
if Jf (x) 6= 0,

1 if Jf (x) = 0.

(1.2)

The motivation for employing mappings of finite distortion partially arises
from nonlinear elasticity. In modeling deformations of elastic bodies the
property Jf > 0 a.e. (or |f(E)| = 0 ⇒ |E| = 0) is very desirable. For
further discussion and references see [4].

Theorem 1.1. ([4]) Let f : Ω → R
n be a mapping of finite distortion sat-

isfying the distortion inequality (1.1) such that K ∈ L1/(n−1)(Ω). If the
multiplicity of f is essentially bounded and f is not constant, then for any
E ⊂ Ω we have

|f(E)| = 0 =⇒ |E| = 0

and Jf > 0 a.e. in Ω.

The integrability condition on K is known to be sharp in the Lp-scale:
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Theorem 1.2. ([2, 6.5.6]) There is a Lipschitz-homeomorphism f : Ω → Ω
of finite distortion K such that Jf vanishes in a set E ⊂ Ω of positive
measure, |f(E)| = 0 and K ∈ Lp(Ω) for all p < 1/(n− 1).

In this paper we will prove that Theorem 1.1 is sharp in any Orlicz-scale:

Theorem 1.3. Let α : [1,∞) → [1,∞) be a continuous, strictly increasing
function such that lim

t→∞
α(t) = ∞ and such that

t 7→
t1/(n−1)

α(t)

is increasing. Then there exists a homeomorphism f : Ω → Ω of finite distor-
tion K such that Jf vanishes in a set E ⊂ Ω of positive measure, |f(E)| = 0
and

∫

Ω

K(x)1/(n−1)

α(K(x))
dx <∞.

The mapping that we will construct for Theorem 1.3 is not, in general, in
a much bigger space than W 1,1(Ω,Rn). However, we will show that even
for Lipschitz mappings the integrability condition on K in Theorem 1.1 is
sharp up to a logarithm:

Theorem 1.4. There exists a Lipschitz-homeomorphism f : Ω → Ω of finite
distortion K such that Jf vanishes in a set E ⊂ Ω of positive measure,
|f(E)| = 0 and

∫

Ω

K(x)1/(n−1)

log1+ε(e+K(x))
dx <∞

for all ε > 0.

2 The construction of mapping f

Similarly to [3] (see also [2] and [5]) we will construct a homeomorphism
f : Q0 → Q0 (Q0 = [0, 1]n) such that a regular Cantor set

E =

∞
⋂

k=1

⋃

v∈V k

Qv ⊂ Q0

of positive measure gets mapped onto a regular Cantor set

E′ =

∞
⋂

k=1

⋃

v∈V k

Q′
v ⊂ Q0

of zero measure.
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2.1 The Cantor sets E and E ′

The cubes Qv and Q′
v are defined as follows. Let ‖x‖ = maxi |xi| denote the

cubic norm of x ∈ R
n. We will denote by

Q(z, r) = {x ∈ R
n : ‖z − x‖ ≤ r}

the closed cube with center z and radius r. Let V = {1, 2, . . . , 2n}. Then
the sets V k = V × · · · × V , k ∈ {1, 2, . . .}, will serve as the sets of indices
for our construction. If w ∈ V k−1, we denote

V k[w] = {v ∈ V k : vj = wj , j = 1, . . . , k − 1}.

Divide Q0 into 2n closed subcubes Pv = Q(zv, 1/4), v ∈ V 1. Then for each
v ∈ V 1 let Qv = Q(zv, r1) be a concentric closed subcube of Pv with radius
r1 < 1/4. The rest of the cubes are defined inductively: if the cubes Pw
and Qw = Q(zw, rk−1) have been defined for each w ∈ V k−1, then for all
w ∈ V k−1 divide Qw into 2n closed subcubes Pv = Q(zv , rk−1/2), v ∈ V k[w].
Then for each v ∈ V k let Qv = Q(zv , rk) be a concentric closed subcube of
Pv with radius rk < rk−1/2. The cubes Q′

v = Q(z′v , r
′
k), v ∈ V k, are defined

in a similar manner.
At this point, we want to keep the construction as general as possible.

Therefore we choose

rk = ϕ(k)2−k−1

and

r′k = ψ(k)2−k−1,

where ϕ : [1,∞) → (1/2, 1) and ψ : [1,∞) → (0, 1) are strictly decreasing
functions such that lim

t→∞
ψ(t) = 0. Then

|E| = lim
k→∞

∣

∣

∣

⋃

v∈V k

Qv

∣

∣

∣
= lim

k→∞
2nk(rk)

n > 0

and
|E′| = lim

k→∞

∣

∣

∣

⋃

v∈V k

Q′
v

∣

∣

∣
= lim

k→∞
2nk(r′k)

n = 0.

We also make the following technical assumptions on ϕ and ψ: assume that
ϕ and ψ are continuously differentiable, ϕ′ and ψ′ are increasing and

−ψ′(t)

ψ(t)
& −ϕ′(t− 1). (2.1)

Here and subsequently, we denote a . b (a & b) if there exists a constant
c > 0 depending only on constant parameters (such as n) such that a ≤ cb
(b ≤ ca), and a ≈ b if a . b and b . a.
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Note that the assumption (2.1) is harmless: we cannot have

−ψ′(t)

ψ(t)
. −ϕ′(t− 1)

since otherwise

1 >

/∞

1

(−ϕ(t)) =

∫ ∞

1
(−ϕ′(t)) dt &

∫ ∞

2

−ψ′(t)

ψ(t)
dt =

/∞

2

− logψ(t) = ∞.

2.2 The mapping f

Let us first define the piecewise continuously differentiable homeomorphisms
fk : Q0 → Q0 such that fk maps each annulus Pv \ Qv, v ∈ V k, onto the
annulus P ′

v \ Q′
v and fixes the boundary ∂Q0. Let f0 = id|Q0 and for

k ∈ {1, 2, . . .} we set

fk(x) =































fk−1(x) if x 6∈
⋃

v∈V k Pv,

fk−1(zv) + ak(x− zv) + bk
x− zv

‖x− zv‖

if x ∈ Pv \Qv, v ∈ V k,

fk−1(zv) + ck(x− zv) if x ∈ Qv, v ∈ V k,

where ak, bk and ck are chosen so that fk is continuous:

akrk + bk = r′k,

akrk−1/2 + bk = r′k−1/2,

ckrk = r′k.

(2.2)

It follows that

ak =
r′k−1/2 − r′k
rk−1/2 − rk

=
ψ(k − 1) − ψ(k)

ϕ(k − 1) − ϕ(k)
. (2.3)

Define f = lim
k→∞

fk. It is easily seen that f is a one-to-one mapping such

that f(E) = E ′. Continuity of f follows from the uniform convergence of
the sequence (fk): for any x ∈ Q0 and l ≥ j ≥ 1 we have

|fl(x) − fj(x)| . r′j → 0

as j → ∞. Since f : Q0 → Q0 is continuous one-to-one mapping and Q0 is
compact, it follows that f is a homeomorphism.

3 The analytic properties of the mapping f

Let x ∈ intPv \Qv, v ∈ V k. Denote r = ‖x− zv‖. Then

rk < r <
rk−1

2
=
ϕ(k − 1)

ϕ(k)
rk < 2rk,
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whence r ≈ rk. We estimate |Df(x)| and Jf (x) using [3, Lemma 5.1]. Since

f(x) = fk−1(zv) +
(

ak‖x− zv‖ + bk
) x− zv
‖x− zv‖

,

denoting ρ(r) = akr + bk we see that

|Df(x)| ≈ max

{

ρ(r)

r
, |ρ′(r)|

}

≈

{

ak + bk/rk = r′k/rk, if bk ≥ 0,

ak, if bk ≤ 0,

≈

{

ψ(k), if bk ≥ 0,
ψ(k−1)−ψ(k)
ϕ(k−1)−ϕ(k) , if bk ≤ 0.

If bk ≥ 0, then the tangential derivative dominates in the annulus Pv \ Qv,
v ∈ V k, and if bk ≤ 0, then the radial derivative dominates. From (2.1) it
follows that the radial derivative dominates:

ψ(k − 1) − ψ(k)

ϕ(k − 1) − ϕ(k)
≥

−ψ′(k)

−ϕ′(k − 1)
& ψ(k).

Therefore

|Df(x)| ≈
ψ(k − 1) − ψ(k)

ϕ(k − 1) − ϕ(k)
.

For the Jacobian we have the estimate

Jf (x) ≈
ρ′(r)ρ(r)n−1

rn−1
& ak(ak + bk/rk)

n−1 = ak

(

r′k
rk

)n−1

≈
ψ(k − 1) − ψ(k)

ϕ(k − 1) − ϕ(k)
ψ(k)n−1,

whence

Kf (x) =
|Df(x)|n

Jf (x)
.

(

ψ(k − 1) − ψ(k)

ϕ(k − 1) − ϕ(k)

1

ψ(k)

)n−1

. (3.1)

Note that |Df(x)| is essentially bounded in Q0 \E if and only if

ψ(k − 1) − ψ(k)

ϕ(k − 1) − ϕ(k)
≤ C <∞. (3.2)

The following Proposition can be proven by following the argument in [2, p.
131].

Proposition 3.1. f is Lipschitz if and only if (3.2) holds.

Therefore f ∈W 1,1(Q0,R
n) if (3.2) holds. Next we will show that actually

this is always the case at least when E ′ is small enough.

Lemma 3.2. If dimH(E′) < 1, then f ∈W 1,1(Q0,R
n).
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Proof. The measure of the union of k-level annulae in the construction of E
is

∣

∣

∣

⋃

v∈V k

(Pv \Qv)
∣

∣

∣
= 2nk

(

(rk−1/2)
n − (rk)

n
)

≈ ϕ(k − 1)n − ϕ(k)n

≈ ϕ(k − 1) − ϕ(k). (3.3)

Here, the last estimate follows from the assumption 1/2 ≤ ϕ(t) ≤ 1. Now,

∫

Q0\E
|Df | ≈

∑

k

(ϕ(k − 1) − ϕ(k))
ψ(k − 1) − ψ(k)

ϕ(k − 1) − ϕ(k)

=
∑

k

(ψ(k − 1) − ψ(k)) = ψ(1) <∞.
(3.4)

Therefore, on Hn−1-a.e. line segment L ⊂ Q0, parallel to ith coordinate
axis, f is locally Lipschitz in L \ E, Dif(x) = (∂if

1(x), . . . , ∂if
n(x)) exists

for H1-a.e. x ∈ L \ E and

∫

L\E
|Dif | dH

1 <∞. (3.5)

Fix such L. We will show that f is absolutely continuous on L. If f is
Lipschitz-homeomorphism on an interval I ⊂ L \ E, then

H1(f(I)) =

∫

I
|Dif | dH

1. (3.6)

We conclude that (3.6) holds for each open set I ⊂ L\E. Fix ε > 0. Choose
disjoint open intervals Ij ⊂ L. Since H1(f(E)) = 0 and Ij \ E is open, we
have by (3.6)

H1(f(Ij)) = H1(f(Ij ∩E)) + H1(f(Ij \ E))

=

∫

Ij\E
|Dif | dH

1,
(3.7)

whence

∑

j

H1(f(Ij)) =
∑

j

∫

Ij\E
|Dif | dH

1 =

∫

∪j(Ij\E)
|Dif | dH

1.

By absolute continuity of the integral with respect to the measure there
exists δ > 0 such that

H1
(

⋃

j

(Ij \E)
)

≤
∑

j

H1(Ij) < δ =⇒
∑

j

H1(f(Ij)) < ε.
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Thus f is absolutely continuous on L. Therefore Dif exists H1-a.e. in L and
(3.6) holds for all intervals I ⊂ L (see e.g. [1, 2.9.20, 2.9.22 and 2.10.13]).
As in (3.7), we see that

∫

L
|Dif | dH

1 =

∫

L\E
|Dif | dH

1,

whence
∫

L∩E
|Dif | dH

1 = 0

and thus Dif = 0 H1-a.e. in L ∩ E. We conclude that f is absolutely
continuous on Hn−1 almost all lines parallel to coordinate axes, f has all
partial derivatives a.e. in Q0 and Df = 0 a.e. in E. Together with (3.4)
this implies that f ∈W 1,1(Q0,R

n).

Lemma 3.3. If f is Lipschitz or dimH(E′) < 1, then Jf ∈ L1(Q0) and
Jf = 0 a.e. in E.

Proof. If f ∈W 1,1(Q0,R
n) is a Lipschitz-homeomorphism, then

∫

A
Jf = |f(A)| (3.8)

for all measurable sets A ⊂ Q0 (see [1, 3.2.3 (1)]), and the claim follows. If
dimH(E′) < 1, then Df = 0 (and thus Jf = 0) a.e. in E by the proof of
Lemma 3.2. Since

Q0 \E =

∞
⋃

k=1

(

Q0 \
⋃

v∈V k

Qv

)

=:

∞
⋃

k=1

Ak

and each f |Ak is a Lipschitz-homeomorphism, applying (3.8) we see that
Jf ∈ L1(Q0).

4 Proofs of Theorems 1.3 and 1.4

To prove Theorems 1.3 and 1.4, it suffices to choose ϕ and ψ such that the
mapping f : Q0 → Q0 constructed in Section 2 enjoys the desired properties.
Theorems 1.3 and 1.4 then follow by scaling and shifting (note that f fixes
the boundary ∂Q0). Thus Theorem 1.3 follows from the following Lemma.

Lemma 4.1. Let α be as in Theorem 1.3, and let s ∈ (0, 1). We can define

ϕ(t) =
1

2
+

∫ ∞

t

dr

(α−1(rn))1/(n−1)
and ψ(t) = 2(1−n/s)t
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(for large t). Then E ′ is s-dimensional self-similar set, f ∈ W 1,1(Q0,R
n),

Jf ∈ L1(Q0), Jf = 0 a.e. in E and

∫

Q0

(Kf )
1/(n−1)

α(Kf )
<∞. (4.1)

Proof. We have α(t) ≤ t and hence α−1(t) ≥ t for large t, whence

∫ ∞

r0

dr

(α−1(rn))1/(n−1)
≤

∫ ∞

r0

dr

rn/(n−1)
<∞.

Thus ϕ is decreasing, lim
t→∞

ϕ(t) = 1/2 and

ϕ′(t) = −
1

(α−1(tn))1/(n−1)

is increasing. (2.1) is easy to check. By Lemmas 3.2 and 3.3 it remains to
show (4.1). Since

ψ(k − 1) − ψ(k)

ψ(k)
= 2n/s−1 − 1 > 1,

we have by (3.1) and (3.3) that

∫

Q0

(Kf )
1/(n−1)

α(Kf )
.

∑

k

1

α

(

(

1
ϕ(k−1)−ϕ(k)

)n−1
)

≤
∑

k

1

α

(

(

1
−ϕ′(k−1)

)n−1
)

≤
∑

k

1

(k − 1)n
<∞.

Theorem 1.4 follows from Lemma 4.2.

Lemma 4.2. Let s ∈ (0, n). We can define

ϕ(t) =
1

2
+ 2(1−n/s)t and ψ(t) = 2(1−n/s)t

(for large t). Then E ′ is s-dimensional self-similar set, f is Lipschitz, Jf ∈
L1(Q0), Jf = 0 a.e. in E and

∫

Q0

(Kf )
1/(n−1)

log1+ε(e+Kf )
<∞

for all ε > 0.
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Proof. We have
ψ(k − 1) − ψ(k)

ϕ(k − 1) − ϕ(k)
= 1 <∞,

whence, by Proposition 3.1, f is Lipschitz, and for x ∈ Pv \Qv, v ∈ V k,

Kf (x) ≈

(

ψ(k − 1) − ψ(k)

ϕ(k − 1) − ϕ(k)

1

ψ(k)

)n−1

=

(

1

ψ(k)

)n−1

.

Therefore for ε > 0

∫

Q0

(Kf )
1/(n−1)

log1+ε(e+Kf )
dx .

∑

k

ϕ(k − 1) − ϕ(k)

ψ(k)

1

log1+ε
(

e+ 1/ψ(k)n−1
)

≈
∑

k

1

log1+ε
(

2(n/s−1)(n−1)k
)

≈
∑

k

1

k1+ε
<∞.

5 Remark

In Lemma 4.1 the set E ′ can be chosen to have any Hausdorff dimension s ∈
(0, 1). We can further guarantee that dimHE

′ = 0 when α(t) = logε(e+ t).

Lemma 5.1. Let p > 0 and

h(t) = log−p(1/t)

(for small t). We can define

ϕ(t) =
1

2
+ exp

(

− exp
(

22nt/p
))

and ψ(t) = exp
(

− 2nt/p
)

.

(for large t). Then Hh(E′) < ∞, f ∈ W 1,1(Q0,R
n), Jf ∈ L1(Q0), Jf = 0

a.e. in E and
∫

Q0

(Kf )
1/(n−1)

logε(e+Kf )
<∞

for all ε > 0.

Proof. Hh(E) <∞ because for large k we have

∑

v∈V k

h(diam(Qv)) = 2nkh
(

c(n)2−kψ(k)
)

≤ 2nkh
(

ψ(k)
)

= 1.
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Fix ε > 0. Then we have

∫

Q0

(Kf )
1/(n−1)

logε(e+Kf )
.

∑

k

ψ(k−1)−ψ(k)
ψ(k)

logε
((

1
ϕ(k−1)−ϕ(k)

)n−1)

.
∑

k

ψ(k−1)
ψ(k)

logε
(

1
ϕ(k−1)−1/2

)

.
∑

k

exp
(

(

1 − 2−n/p
)

2nk/p − ε22n(k−1)/p
)

.
∑

k

exp
(

− 2nk/p
)

<∞.
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