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1 Introduction

Let Q@ C R™ (n > 2) be a bounded domain. We say that a mapping f: Q —
R™ has finite distortion if f belongs to the Sobolev space W H1(Q, R™), the
Jacobian determinant Jy = det(Df) of f (Df being the differential matrix
of f) is integrable in 2, and if there is a measurable function K > 1, finite
almost everywhere, such that

|IDf(x)]" < K(x)Jf(x) a.e. €. (1.1)

The distortion inequality (1.1) guarantees that J; > 0 a.e. and that Df
vanishes a.e. in the zero set of J¢. The smallest function K satisfying (1.1)
is then defined by

IDf@" e ;0
K@) =4 Ji(x) f J¢(x) #0,
1 if Jp(z) = 0.

(1.2)

The motivation for employing mappings of finite distortion partially arises
from nonlinear elasticity. In modeling deformations of elastic bodies the
property Jy > 0 a.e. (or [f(E)] = 0 = |E| = 0) is very desirable. For
further discussion and references see [4].

Theorem 1.1. ([4]) Let f: Q@ — R™ be a mapping of finite distortion sat-
isfying the distortion inequality (1.1) such that K € LY"=1)(Q). If the
multiplicity of f is essentially bounded and f is not constant, then for any
E C Q we have

(B =0 = |E]=0

and Jy >0 a.e. in (.

The integrability condition on K is known to be sharp in the LP-scale:



Theorem 1.2. ([2, 6.5.6]) There is a Lipschitz-homeomorphism f:  — Q
of finite distortion K such that Jy vanishes in a set E C 1 of positive
measure, |f(E)| =0 and K € LP(Q) for allp < 1/(n —1).

In this paper we will prove that Theorem 1.1 is sharp in any Orlicz-scale:

Theorem 1.3. Let a: [1,00) — [1,00) be a continuous, strictly increasing
function such that tlim a(t) = oo and such that
— 00

$1/(n—1)
a(t)

is increasing. Then there exists a homeomorphism f: Q — € of finite distor-
tion K such that J¢ vanishes in a set E C § of positive measure, |f(E)| =0

and
K(Qj‘)l/(n_l) e
| ety <=

The mapping that we will construct for Theorem 1.3 is not, in general, in
a much bigger space than W1!(Q,R"). However, we will show that even
for Lipschitz mappings the integrability condition on K in Theorem 1.1 is
sharp up to a logarithm:

t—

Theorem 1.4. There exists a Lipschitz-homeomorphism f: Q — Q of finite
distortion K such that J; vanishes in a set E C ) of positive measure,
F(B) =0 and

K($)l/(n_1)

dxr <
aloge(e+ K@) "

for all e > 0.

2 The construction of mapping f

Similarly to [3] (see also [2] and [5]) we will construct a homeomorphism
f:Qo— Qo (Qo =1[0,1]") such that a regular Cantor set

E=( U @ c

k=1veVk

of positive measure gets mapped onto a regular Cantor set

o0

E= U @ co

k=1ycVk

of zero measure.



2.1 The Cantor sets F and E’

The cubes @, and Q) are defined as follows. Let ||x|| = max; |x;| denote the
cubic norm of z € R™. We will denote by

Q(z,r) ={z eR": ||z —z| < r}

the closed cube with center z and radius r. Let V = {1,2,...,2"}. Then
the sets VF =V x --- x V, k € {1,2,...}, will serve as the sets of indices
for our construction. If w € V*~! we denote

Vk[w]:{vevk: vj:wj,jzl,...,k—l}.

Divide Qg into 2" closed subcubes P, = Q(z,,1/4), v € V. Then for each
veVllet Q, = Q(zy,71) be a concentric closed subcube of P, with radius
r1 < 1/4. The rest of the cubes are defined inductively: if the cubes P,
and Qu = Q(2y,75_1) have been defined for each w € V¥~1, then for all
w € VE~1 divide Q,, into 2" closed subcubes P, = Q(zy,7x_1/2), v € VF[w].
Then for each v € V¥ let Q, = Q(z,,71) be a concentric closed subcube of
P, with radius rj, < ry_1/2. The cubes Q) = Q(2),7}), v € V¥, are defined
in a similar manner.

At this point, we want to keep the construction as general as possible.
Therefore we choose

rp = go(k)2_k_l

and
e = P(k)27

where ¢ : [1,00) — (1/2,1) and ¥ : [1,00) — (0,1) are strictly decreasing
functions such that tlim (t) = 0. Then
—00

1| U - o
veVk

and

= lim 2"'“(7"2)" =0.
k—o0

2= Jim | U @,
veVE

We also make the following technical assumptions on ¢ and : assume that
¢ and v are continuously differentiable, ¢’ and v are increasing and

—'(t) /
2 —¢(t—1). 2.1
~Y <p
=) (2.1)
Here and subsequently, we denote a < b (a 2 b) if there exists a constant

¢ > 0 depending only on constant parameters (such as n) such that a < ¢b
(b<ca),and axbifa <band b < a.



Note that the assumption (2.1) is harmless: we cannot have

—¢'(t—1)

since otherwise

1> /ety = [Tz [T a = [ o = .

2.2 The mapping f

Let us first define the piecewise continuously differentiable homeomorphisms
fr: Qo — Qo such that fr maps each annulus P, \ Q,, v € V¥, onto the
annulus P/ \ Q! and fixes the boundary 90Qo. Let fo = id|Qo and for
kEe{l,2,...} we set

( fu_1(z) if 2 & Upeys Pos

T — 2
fi(z) = Jr—1(z0) + ap(z — 20) + bkm

ifr € P,\Q,, veVk
fk—l(zv) + Ck(-r - Zv) ifre@, wve Vka

where ay, by and ¢ are chosen so that f} is continuous:
aprr + by = T;W
agpri—1/2 +bp =11._1/2, (2.2)
CkTE = T;v

It follows that . .

_ /27 (k= 1) — (k)
re-1/2 =1k @k —1) — (k)

Define f = kh_)nolo fr. It is easily seen that f is a one-to-one mapping such

ag (2.3)

that f(F) = E’. Continuity of f follows from the uniform convergence of
the sequence (fy): for any x € Qo and I > j > 1 we have

|fi(x) = fi(@)| S 7j— 0

as j — oo. Since f: Qg — Qo is continuous one-to-one mapping and Qg is
compact, it follows that f is a homeomorphism.

3 The analytic properties of the mapping f

Let z € int P, \ Q,, v € V¥. Denote 7 = ||z — 2,||. Then

-1 @k —1)
rp<r< = T < 2rg,
2 o(k)




whence 7 ~ r;. We estimate |D f(x)| and J¢(zx) using [3, Lemma 5.1]. Since

T — 2y

f@) = fe1(z0) + (arllz — 2| + bk)ma

denoting p(r) = axr + by, we see that

b/rk =1} if by, > 0
|Dﬂmwwmw{ﬂﬁywww}~{%+-wm /s b0,
T

aka lf bk S 07
{wm, if by, > 0,
~ el —wk)
PR Lok <0.

If by, > 0, then the tangential derivative dominates in the annulus P, \ Q,,
v € V¥, and if by < 0, then the radial derivative dominates. From (2.1) it
follows that the radial derivative dominates:

k-1 - k) (k)

oE—1)—gk) = —gh—1) ~ V)
Therefore
Yk —1) — p(k)
D)~ S =

For the Jacobian we have the estimate

/ n— 7\ n—1
Jf(x) ~ %@1 Z ak(ak + bk/rk)n_l = ay, <:_:>
Lk =1) = (k) g
oD =k VM
whence
_Df@) _ (k=1 —v(k) 1 \"
Kp(z) = 70 < (@(k_ D w(k)> . (3.1)
Note that [Df(x)| is essentially bounded in Qg \ E if and only if
Yk —1) = Y(k)
k1) (k) == (3.2)

The following Proposition can be proven by following the argument in [2, p.
131].

Proposition 3.1. f is Lipschitz if and only if (3.2) holds.

Therefore f € WH1(Qo, R") if (3.2) holds. Next we will show that actually
this is always the case at least when E’ is small enough.

Lemma 3.2. If dimy(E’) < 1, then f € W1(Qo,R™).



Proof. The measure of the union of k-level annulae in the construction of £
is

)| = 27 ((rk-1/2)" = (r)") = p(k = 1)" — (k)"

U @\Q)

veVk
~ ok —1)—p(k). (3.3)
Here, the last estimate follows from the assumption 1/2 < ¢(¢) < 1. Now,
Yk —1) —¥(k)
Df|~ plk—=1) — ok
fo P 2ok =)~ ) = =tk o

= S Wk — 1) — (k) = (1) < oc.
k

Therefore, on H" !-a.e. line segment L C Qq, parallel to i*" coordinate
axis, f is locally Lipschitz in L\ E, D;f(x) = (9;f*(x),...,0:f"(z)) exists
for H'-a.e. x € L\ E and

Awmmwﬁ<m. (3.5)

Fix such L. We will show that f is absolutely continuous on L. If f is
Lipschitz-homeomorphism on an interval I C L\ E, then

HY(F(1)) = /1 Dy f|dH. (3.6)

We conclude that (3.6) holds for each open set I C L\ E. Fix € > 0. Choose
disjoint open intervals I; C L. Since H'(f(E)) = 0 and I; \ E is open, we
have by (3.6)

H(f(1;) = HU(f(; N E) + HU(F(I; \ E))

- [ i G0
L\E

whence

By absolute continuity of the integral with respect to the measure there
exists § > 0 such that

H(UL\E) <SS H(I) <6 = S HA(FL) <e
J J

J



Thus f is absolutely continuous on L. Therefore D; f exists H'-a.e. in L and
(3.6) holds for all intervals I C L (see e.g. [1, 2.9.20, 2.9.22 and 2.10.13]).
As in (3.7), we see that

/ \Duf|dH = / Dy f|ar,
L I\E

whence

/ |D; fldH' =0
LNE

and thus D;f = 0 H'-a.e. in L N E. We conclude that f is absolutely
continuous on H" ! almost all lines parallel to coordinate axes, f has all
partial derivatives a.e. in Qg and Df = 0 a.e. in E. Together with (3.4)
this implies that f € WbH1(Qg, R™). O

Lemma 3.3. If f is Lipschitz or dimy(E') < 1, then Jp € LY (Qo) and
Jr=0 a.e inkE.

Proof. If f € Wh1(Qo,R") is a Lipschitz-homeomorphism, then

[ =lsca) (3.8)
A

for all measurable sets A C Qo (see [1, 3.2.3 (1)]), and the claim follows. If
dimy(E') < 1, then Df = 0 (and thus J; = 0) a.e. in E by the proof of
Lemma 3.2. Since

Q\E=J (@\ U @)= 4
k=1 veVE k=1

and each f|Ay is a Lipschitz-homeomorphism, applying (3.8) we see that
J; € LM(Qo). O

4 Proofs of Theorems 1.3 and 1.4

To prove Theorems 1.3 and 1.4, it suffices to choose ¢ and v such that the
mapping [ : Qo — Qo constructed in Section 2 enjoys the desired properties.
Theorems 1.3 and 1.4 then follow by scaling and shifting (note that f fixes
the boundary 0Q). Thus Theorem 1.3 follows from the following Lemma.

Lemma 4.1. Let o be as in Theorem 1.3, and let s € (0,1). We can define

1 © dr
_ _ (1-n/s)t
o(t) 5 —I—/t (a1 () /D) and P(t) =2




(for large t). Then E' is s-dimensional self-similar set, f € WH1(Qg,R™),
Jr € LYQo), Jf =0 a.e. in E and

1/(n—1)
/ % < 0. (4.1)

Proof. We have a(t) <t and hence a~!(t) > t for large ¢, whence

° dr < *©  dr -
v (a— L) Ve=D = [ /1) 0.

Thus ¢ is decreasing, tlim o(t) =1/2 and
— 00

, 1
¢t) = - (a—L(tn)) /(1)

is increasing. (2.1) is easy to check. By Lemmas 3.2 and 3.3 it remains to
show (4.1). Since

”¢(k — 1) — 1/)(]43) _on/s—1 _
o5 —9 1>1,

we have by (3.1) and (3.3) that

(K1 3 1
/Qo a(Ky) Pl <<¢(k_l§_w(k))n—1>
<> ! —
boa <<—w(1k—1>) 1)
< zk: (k—ll)" < 00 O

Theorem 1.4 follows from Lemma 4.2.

Lemma 4.2. Let s € (0,n). We can define

o(t) = % + 207/t and  (t) = 207/

(for large t). Then E' is s-dimensional self-similar set, f is Lipschitz, Jy €
LY(Qo), Jf =0 a.e. in E and

(K )1/(n—1)
[
Qo log" (e + Ky)

for all e > 0.

0¢)



Proof. We have
Pk —1) — (k)
p(k —1) — (k)

whence, by Proposition 3.1, f is Lipschitz, and for z € P, \ Q,, v € V¥,

o () ()

Therefore for € > 0

=1< o0,

(KD p(k (k) 1

/ lo 1+E( +K du < Z 1 1+e 1 kyn—1

Qo log" (e + Ky) og' " (e + 1/9(k)")
~y 1
~ - logl—i-e (Z(n/s—l)(n—l)k)
~Y L O
~ 1—4—6 .

- k

5 Remark

In Lemma 4.1 the set £’ can be chosen to have any Hausdorff dimension s €
(0,1). We can further guarantee that dimy £’ = 0 when a(t) = log®(e + t).

Lemma 5.1. Let p > 0 and
B(t) = log(1/1)

(for small t). We can define

P = s (—exp (220)) and (t) = exp (— 27).

(for large t). Then HME') < oo, f € WH(Qg,R™), Jy € LY (Qo), Jyp=0

a.e. in E and
[ e
ot (o o S
Qo log (6 + Kf)

for all e > 0.

Proof. H"(E) < co because for large k we have

> h(diam(Qy)) = 2% h(c(n)2 * (k) < 2°n((k)) = 1.

veVk



Fix € > 0. Then we have

. (k=) — (k)
/ (K)om0 <y )
log®(e + Ky) ™ . 1 n—1
0 k log ((7@@—1)—@@)) )
#0)

<
- zk:log (m)

< Zexp ( (1-2- n/p)gnk/p 22n(k—1)/p)
k

< Z exp Z”k/p < 00. O
k
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