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1. Introduction

In this paper we address the following issue. Suppose that Ω ⊂ R2

is a domain and that f : Ω → f(Ω) ⊂ R2 is a homeomorphism of
the Sobolev class W 1,p

loc (Ω;R2), p ≥ 1. Here W 1,p
loc (Ω;R2) consists of all

locally p-integrable mappings of Ω into R2 whose coordinate functions
have locally p-integrable distributional derivatives. Under which con-
ditions can we then conclude that f−1 ∈ W 1,1

loc (f(Ω),R2), or even that

f−1 ∈ W 1,q
loc (f(Ω),R2) for some q > 1?

Let us first briefly discuss the one-dimensional case. Consider the
usual Cantor ternary function u on the interval (0, 1). Then u is con-
tinuous, non-decreasing, constant on each complementary interval of
the ternary Cantor set and fails to be absolutely continuous. Let now
g(x) = x +u(x) on (0, 1). Then also g fails to be absolutely continuous
and so g does not belong to W 1,1

loc ((0, 1),R). On the other hand, the
Lipschitz function h = g−1 maps (0, 2) homeomorphically onto (0, 1).
Thus, even the inverse of a Lipschitz homeomorphism h can fail to be-
long to W 1,1

loc . If one analyzes the situation more carefully, one notices
that the crucial thing here is that the differential of h vanishes in a set
of positive measure.

In dimension two, the mapping f(x1, x2) = (h(x1), x2), where h is
as above, provides us with a Lipschitz homeomorphism whose inverse
fails to belong to W 1,1

loc . Notice that the Jacobian determinant Jf (x) of
f vanishes in a set of positive area. Our first result shows that this is
the only situation where the inverse fails to belong to W 1,1

loc .

Theorem 1.1. Let Ω ⊂ R2 be a domain. Suppose that f ∈ W 1,1
loc (Ω,R2)

is a homeomorphism and that Jf (x) > 0 for a.e. x ∈ Ω. Then f−1 ∈
W 1,1

loc (f(Ω),R2) and∫

f(Ω)

|Df−1(y)| dy ≤
∫

Ω

|Df(x)| dx.

The above theorem appears to substantially improve on the known
related results. Indeed, the only results we know of assume that f ∈
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W 1,2
loc ([30], [26]). This is an essentially stronger assumption: it and the

a.e. positivity of the Jacobian imply that f maps sets of area zero to
sets of area zero and even that the so-called distributional Jacobian of
f coincides with Jf . Both of these conclusions can fail in our setting,

and our proof is necessarily different from the case f ∈ W 1,2
loc .

The statement of Theorem 1.1 is not symmetric in the sense that no
conclusion on the size of the zero set of the Jacobian of f−1 is drawn.
In fact, under the setting of Theorem 1.1, Jf−1 can vanish in a set of
positive area. Our second result extends Theorem 1.1 to an appealing
statement.

Theorem 1.2. Let Ω ⊂ R2 be a domain. Suppose that f ∈ W 1,1
loc (Ω,R2)

is a homeomorphism, and assume further that Df(x) vanishes almost
everywhere in the zero set of Jf . Then f−1 ∈ W 1,1

loc (f(Ω),R2) and
Df−1(y) vanishes almost everywhere in the zero set of Jf−1. Moreover,

∫

f(Ω)

|Df−1(y)| dy =

∫

Ω

|Df(x)| dx.

Recall that a homeomorphism f ∈ W 1,1
loc (Ω, f(Ω)) is classically dif-

ferentiable almost everywhere. Thus either Jf (x) ≥ 0 or Jf (x) ≤ 0 a.e.
For simplicity, let us assume from now on that Jf (x) ≥ 0 a.e. Under
the assumptions of Theorem 1.2, the inequality

(1.1) |Df(x)|2 ≤ K(x)Jf (x)

then holds a.e., where 1 ≤ K(x) < ∞ a.e. For simplicity, we then say
that f is a mapping (or homeomorphism) of finite distortion K (cf.
[14]). It is now natural to inquire if a suitable integrability condition
on K would guarantee better regularity for the inverse of f. Our next
result gives an affirmative answer.

Theorem 1.3. Let Ω ⊂ R2 be a domain. Suppose that f ∈ W 1,1
loc (Ω,R2)

is a homeomorphism of finite distortion such that K ∈ L1(Ω). Then
f−1 ∈ W 1,2

loc (f(Ω),R2) and f−1 is a mapping of finite distortion.

The first applications of the above results have already been found.
In [13], we show that the W 1,1-minimizers of the L1-integral of a suit-
able distortion function are in fact smooth, with a harmonic inverse.
This relaxes the assumptions in [1], where the minimization problem
was considered in W 1,2.

Based on Theorem 1.1 and Theorem 1.3, it would be natural to
expect for an interpolation-type result, where the integrability of a
power 0 < a < 1 of K would result in the q-integrability for |Df−1|
for some 1 < q(a) < 2. Surprisingly, this turns out not to be the case.
Here and in the sequel, we use the notation Q0 = [0, 1]× [0, 1] for the
unit square in R2.
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Example 1.4. Let 0 < δ < 1. There is a homeomorphism f : Q0 → Q0

of finite distortion such that f ∈ W 1,1(Q0,R2) and K1−δ ∈ L1(Q0), but

f−1 /∈ W 1,1+δ
loc (Q0,R2).

Let us now compare our above results with previously known facts.
First of all, it was known that K ∈ L1 and f ∈ W 1,2

loc (Ω,R2) guaran-

tee that f−1 ∈ W 1,2
loc , see [12]. In [22], it was further shown that the

regularity assumption f ∈ W 1,2
loc (Ω,R2) can be slightly relaxed, say, to

|Df |2 log−1(e+|Df |) ∈ L1
loc. These results were based on a duality argu-

ment, relying on integration by parts against the Jacobian determinant
Jf , that does not work when one only assumes that f ∈ W 1,p

loc (Ω,R2) for
some p < 2. The approach used in [2], [30], [26], [8] to handle a prob-
lem arising from nonlinear elasticity is essentially the same. One could
also try to apply the Beltrami equation. Such an approach was used in
[16], but the necessary factorization property of the solutions basically
requires that f ∈ W 1,2

loc (Ω,R2). There are also several recent papers

where the existence of a homeomorphic solution f with f−1 ∈ W 1,2
loc

to a Beltrami equation has been established under integrability condi-
tions on the Beltrami coefficient [4], [3], [29], [11], [15]. The existence of
such a solution does not necessarily guarantee that all homeomorphic
solutions were as good, unless one has the factorization property.

The following corollary to our results shows that the regularity of
the inverse of a solution to a Beltrami equation holds already under
minimal assumptions.

Corollary 1.5. Let Ω ⊂ R2 be a domain and let f ∈ W 1,1
loc (Ω,R2) be a

homeomorphism with

∂f(z) = µ(z)∂f(z)

a.e. in Ω, where µ is a complex valued function so that |µ(z)| ≤ 1 a.e.
and (1− |µ(z)|)−1 ∈ L1(Ω). Then f−1 ∈ W 1,2

loc (f(Ω),R2) and

∂f−1(z) = µ̃(z)∂f−1(z)

a.e. in f(Ω), where |µ̃(z)| < 1 a.e.

Recall that the statement of Theorem 1.2 is symmetric. Thus one
could inquire if some power of the distortion of f−1 in Theorem 1.3
were also integrable. Our next result shows that such a conclusion
holds (only) under exponential integrability of K.

Theorem 1.6. Let Ω ⊂ R2 be a domain and let f ∈ W 1,1
loc (Ω,R2)

be a homeomorphism of finite distortion. Assume that the distortion
K(x) ≥ 1 satisfies exp(βK) ∈ L1

loc(Ω), for some β > 0. Then Kp
f−1 ∈

L1
loc(f(Ω)), where p = c2β and c2 > 0 is an absolute constant. More-

over, the claim fails for each β for the value c2 = 2.

Let us return to the lack of interpolation between Theorem 1.2 and
Theorem 1.3. As Example 1.4 showed, the integrability of K1−δ does
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not result in any better than W 1,1-regularity of f−1, even when δ is
small. One could still hope for some improvement under some a priori
assumption on f. This turns out to be the case. We prove in Section 4
below that, given a homeomorphism f ∈ W 1,p

loc (Ω,R2), p > 1, of finite

distortion with Ka ∈ L1(Ω), one always has f−1 ∈ W 1,q
loc (f(Ω),R2),

where 1 < q(p, a) ≤ 2. The obtained exponent q turns out to be sharp.
This is proven in Section 7 by means of a novel construction. In the
special case when f is Lipschitz, one can take q = a + 1, for 0 < a ≤ 1.
There is no additional gain from an exponent a > 1: simply notice that
the Lipschitz homeomorphism

f(x) = x||x||s

has a bounded K for each (large) s > 0 and f−1 /∈ W 1,q
loc for q = 2+2/s.

We close this introduction by pointing out an application of Theorem
1.3 that will be discussed in more detail in Section 6. It follows from
Theorem 1.3 that f−1 ∈ W 1,2

loc (f(Ω),R2) with Jf−1 ≥ 0 a.e. whenever

f ∈ W 1,1
loc (Ω,R2) is a homeomorphism of finite distortion with K ∈

L1(Ω). By a result from [25], this guarantees that Jf−1 log(e + Jf−1)
is locally integrable. It follows that log(e + 1

Jf
) ∈ L1

loc(Ω), and this

conclusion turns out to be essentially sharp. Previously it was only
known (cf. [21]) that these assumptions guarantee that Jf (x) > 0 a.e.
Our methods are flexible enough to produce further extensions of this
phenomenon.

2. Preliminaries

2.1. Notation. For c = (c1, c2) ∈ R2, a > 0 and b > 0 we write
R(c, a, b) = [c1− a, c1 + a]× [c2− b, c2 + b]; then R(c, a, b) is a rectangle
in R2. By B(x, r) we denote the two-dimensional open ball centered at
x ∈ R2 with radius r > 0. In the entire paper, Ω will denote a domain
in R2.

We use the notation e1 = (1, 0) and e2 = (0, 1) for the unit vectors.
For a ∈ R2 we write (a)1 and (a)2 for its coordinates, i.e. a = (a)1e1 +
(a)2e2.

We write ||x|| for the euclidean norm of x ∈ R2. Given a square
matrix B we define the norm |B| as the supremum of ||Bx|| over all
vectors x of unit euclidean norm. Recall that the adjugate adj B of B
satisfies

B adj B = I det(B),

where det(B) denotes the determinant of B and I is the identity matrix.
We denote the Lebesque measure of a measurable set E ⊂ R2 by |E|.
Given two functions F, G : Ω → R we write G ∼ F if there is a constant
C ≥ 1 such that F (x)/C ≤ G(x) ≤ CF (x) for every x ∈ Ω.
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By int A we denote the interior of a set A ⊂ R2. We use the notation
sgn for the sign function, i.e. sgn(t) = 1 if t > 0 and sgn(t) = −1 if
t < 0.

2.2. Differentiability of W 1,1-mappings. Every continuous map-
ping f ∈ W 1,1(Ω,R2) has finite partial derivatives almost everywhere
(because it is absolutely continuous on almost every line parallel to co-
ordinate axes, see e.g. [28, I.1.2]), and therefore we have the following
corollary to [9, Theorem 2].

Theorem 2.1. Let f ∈ W 1,1
loc (Ω,R2) be a homeomorphism. Then f is

differentiable almost everywhere in Ω.

2.3. Area formula. Let A ⊂ Ω be a measurable set. Assume that g
is a homeomorphism such that g is differentiable at every point of A.
Let η be a non-negative Borel-measurable function on R2. Then

(2.1)

∫

A

η(g(x)) |Jg(x)| dx ≤
∫

R2

η(y) dy.

This follows from [7, Theorem 3.1.8] together with the area formula
for Lipschitz mappings. In particular, given a homeomorphism g ∈
W 1,1

loc (Ω;R2), we obtain with the help of Theorem 2.1 that

(2.2)

∫

Ω

η(g(x)) |Jg(x)| dx ≤
∫

R2

η(y) dy.

2.4. Properties of integrable functions. The following sufficient
condition for L1-weak compactness will be needed (for the proof see
e.g. [5] or [23, Lemma 7.11]).

Lemma 2.2. Let (gj)j∈N be a sequence of measurable functions on a
domain Ω ⊂ R2 of finite measure. Suppose that there is H ∈ L1(Ω)
such that for almost every y ∈ Ω and for every j ∈ N we have |gj(y)| ≤
H(y). Then there is a subsequence (g̃j)j∈N of (gj)j∈N and g ∈ L1(Ω)
such that the subsequence (g̃j)j∈N converges weakly to g in L1(Ω).

Let h ∈ L1(Ω). It is a well-known fact that the Lebesgue integral
is absolutely continuous with respect to the Lebesgue measure, i.e. for
every ε > 0 there is δ > 0 such that

(2.3) for every E ⊂ Ω we have

[
|E| < δ ⇒

∫

E

h < ε

]
.

2.5. Derivative of a radial stretching. The following lemma can
be verified by an elementary calculation.

Lemma 2.3. Let ρ : (0,∞) → (0,∞) be a strictly monotone, differen-
tiable function. Then for the mapping

f(x) =
x

||x||ρ(||x||), x 6= 0
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we have for almost every x

Df(x) ∼ max
{ρ(||x||)
||x|| , |ρ′(||x||)|

}
, Jf (x) ∼ ρ′(||x||)ρ(||x||)

||x|| .

3. Regularity of the inverse mapping

Lemma 3.1. Suppose that f ∈ W 1,1
loc (Ω,R2) is a homeomorphism and

let B(y, 2r) ⊂⊂ f(Ω). Then

(3.1) r diam f−1(B(y, r)) ≤
∫

f−1(B(y,2r))

|Df |.

Proof. Set d = diam f−1(B(y, r)) and pick a, b ∈ f−1(B(y, r)) such that
|a− b| = d. Without loss of generality, we will suppose that a = (0, 0)
and b = (d, 0). For t ∈ [0, d] we denote

Lt = {s ∈ R : (t, s) ∈ f−1(B(y, 2r))}.
Since f is absolutely continuous on almost every line parallel to the
y-axis and diam f({t} × Lt) ≥ r we obtain

∫

Lt

|Df(t, s)|ds ≥ r

for almost every t ∈ [0, d]. By integrating this inequality over [0, d] we
obtain (3.1). ¤

In the next theorem, we will show that f−1 ∈ W 1,1
loc . We will first

construct approximations to f−1 and then, using Lemma 2.2, we will
prove that these approximations converge weakly to f−1.

Theorem 3.2. Suppose that f ∈ W 1,1
loc (Ω,R2) is a homeomorphism of

finite distortion. Then f−1 ∈ W 1,1
loc (f(Ω),R2).

Proof. Let A ⊂⊂ f(Ω) be a fixed domain. First we will construct
approximations to f−1. Fix ε > 0 such that {x : dist(x,A) < 10ε} ⊂⊂
Ω.

We denote the ε-grid in R2 by Gε = (εZ)× (εZ). Pick a partition of
unity {φz}z∈Gε such that

(3.2)

each φz : R2 → R is continuously differentiable;

supp φz ⊂ B(z, 2ε) and |∇φz| ≤ C

ε
;

∑
z∈Gε

φz(y) = 1 for every y ∈ R2.

Now we set

gε(y) =
∑
z∈Gε

φz(y)f−1(z) for every y ∈ A.
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This approximation to f−1 clearly satisfies gε ∈ C1(A,R2). Then

|Dgε(y)| ≤ C

ε
diam f−1(B(y, 2ε)).

Indeed, for fixed y, choose z0 so that y ∈ B(z0, 2ε). Then

Dgε(y) = D
∑
z∈Gε

φz(y)(f−1(z)− f−1(z0)),

because of (3.2), and the asserted estimate follows. Together with
Lemma 3.1 this implies that for every y ∈ A we have

(3.3) |Dgε(y)| ≤ C

ε2

∫

f−1(B(y,4ε))

|Df(x)|dx.

Denote G̃ = {x ∈ Ω : f is differentiable at x and Jf (x) > 0}. Since f
is mapping of finite distortion (i.e. Jf (x) = 0 ⇒ Df(x) = 0 a.e.) we

conclude with the help of Theorem 2.1 that Df(x) = 0 a.e. in Ω \ G̃.
Pick a Borel set G ⊂ G̃ such that |G| = |G̃|. From (3.3) and (2.2) we
now have

(3.4)

|Dgε(y)| ≤ C

ε2

∫

f−1(B(y,4ε))∩G

|Df(x)|dx

≤ C

ε2

∫

B(y,4ε)∩f(G)

|(Df)(f−1(z))|
Jf (f−1(z))

dz.

We claim that

(3.5) F (z) :=
|(Df)(f−1(z))|

Jf (f−1(z))
χf(G)(z) ∈ L1(A).

Note that f(G) is a Borel set (as a preimage of a Borel set under the
continuous map f−1) and hence F is measurable. For every z ∈ f(G)
we know that f is differentiable at f−1(z) and that Jf (f

−1(z)) > 0.
Therefore f−1 is differentiable at z and Jf−1(z) = 1/Jf (f

−1(z)). It
follows from (2.1) for g = f−1 that∫

A

F (z)dz =

∫

A∩f(G)

|(Df)(f−1(z))|Jf−1(z)dz ≤
∫

f−1(A)∩G

|Df | < ∞.

Since −∫
B(y,4ε)

F → F (y) in L1(A) as ε → 0, there is a subsequence

εj → 0 such that −∫
B(y,4εj)

F has a majorant H ∈ L1(A). From this,

(3.4) and Lemma 2.2, we obtain that there is a subsequence εi → 0
and g ∈ L1(A,R2) such that Dgεi

→ g weakly in L1(A). Clearly∫

A

Dgεi
(y)φ(y)dy = −

∫

A

gεi
(y)Dφ(y)dy

for every test function φ ∈ C∞
c (A,R2). Since gε → f−1 locally uni-

formly as ε → 0, we obtain, after passing to a limit, that∫

A

g(y)φ(y)dy = −
∫

A

f−1(y)Dφ(y)dy
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which means that g is a weak gradient of f−1 in A and therefore f−1 ∈
W 1,1(A). ¤
Theorem 3.3. Suppose that f ∈ W 1,1

loc (Ω,R2) is a homeomorphism of
finite distortion. Then f−1 is a mapping of finite distortion.

Proof. From Theorem 3.2 we know that f−1 ∈ W 1,1
loc (f(Ω),R2). Sup-

pose that f−1 is not a mapping of finite distortion. Then we can find
a measurable set M and an open set A such that M ⊂ A ⊂⊂ f(Ω),
|A| < ∞, |M | > 0, and

(3.6) for every x ∈ M we have |Df−1(x)| > 0 and Jf−1(x) = 0.

Thus there exists k ∈ Z such that for

(3.7) M̃ = {x ∈ M : 2k < |Df−1(x)| ≤ 2k+1} we have |M̃ | > 0.

In view of Theorem 2.1, we may moreover assume that f−1 is differen-
tiable at every point of M̃ . Let η > 0. From (3.6) and (3.7) we obtain
that for every x ∈ M̃ we can pick a ball B(x, r(x)) such that

(3.8)

B(x, 2r(x)) ⊂ A, r(x) < 1,

diam f−1(B(x, r(x))) > 2kr(x) and

|f−1(B(x, 2r(x)))| < η|B(x, 2r(x))|.
We use the Vitali covering theorem for the family {B(x, 2r(x))}x∈M̃

to obtain balls Bi := B(xi, ri) such that

(3.9) M̃ ⊂
⋃
i

10Bi and 2Bi are pairwise disjoint.

Hence (3.9), Lemma 3.1 and (3.8) give us

(3.10)

|M̃ | ≤ 10n
∑

i

|Bi| ≤ C(n)
∑

i

r2
i ≤

≤ C(n)2−k
∑

i

ri diam(f−1(B(xi, ri))) ≤

≤ C(n, k)
∑

i

∫

f−1(2Bi)

|Df | = C(n, k)

∫
S

i f−1(2Bi)

|Df |.

By (3.8) we conclude that

|
⋃
i

f−1(2Bi)| ≤ η
∑

i

|2Bi| ≤ η|A| η→0+→ 0.

This fact, (3.10) and the assumption Df ∈ L1
loc(Ω) contradict (2.3). ¤

Proof of Theorem 1.2. From Section 4, Chapter I in [28] we know that
each homeomorphism f : Ω → R2 is either sense-preserving or sense-
reversing. Without loss of generality, we will suppose that f is sense-
preserving. Thus, at every point of differentiability of f, we have that
Jf (x) ≥ 0 (see [28, Lemma 4.11]). Together with Lemma 2.1 this
implies that Jf (x) ≥ 0 a.e. and thus f is a mapping of finite distortion.
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Relying on Theorem 3.2 and Theorem 3.3, we thus conclude that f−1 ∈
W 1,1

loc (f(Ω), Ω) has finite distortion. Therefore we may use Theorem 2.1
to conclude that

(3.11)

∫

f(Ω)

|Df−1(y)|dy =

∫

A

|Df−1(y)|dy

where A is a Borel subset of the set E where f−1 is differentiable with
Jf−1 > 0 such that |A| = |E|. Applying (2.1) and basic linear algebra
we arrive at

(3.12)

∫

A

|Df−1(y)|dy =

∫

A

|Df−1(y)|
Jf−1(y)

Jf−1(y)dy

≤
∫

f−1(A)

|Df−1(f(x))|
Jf−1(f(x))

dx =

∫

f−1(A)

|(Df(x))−1|Jf (x)dx

=

∫

f−1(A)

| adj Df(x)|dx ≤
∫

Ω

|Df(x)|dx.

We conclude that ∫

f(Ω)

|Df−1| ≤
∫

Ω

|Df |.

The opposite inequality follows by symmetry; recall that also f has
finite distortion. ¤
Proof of Theorem 1.1. Theorem 1.1 is an easy consequence of Theorem
1.2. ¤

4. Higher regularity of the inverse mapping

Proof of Theorem 1.3. Analogously to (3.11) and (3.12) we deduce that
∫

f(Ω)

|Df−1(y)|2dy ≤
∫

f−1(A)

|Df−1(f(x))|2
Jf−1(f(x))

dx =

=

∫

f−1(A)

|(Df(x))−1|2Jf (x)dx =

∫

f−1(A)

| adj Df(x)|2
Jf (x)

dx ≤
∫

Ω

K.

¤
We are now in position to prove an interpolation-type result.

Theorem 4.1. Let p ∈ (1,∞], 1 < q < 2 and set a = (q−1)p
p+q−2

(for

r = ∞ we set a = (q − 1)). Let Ω ⊂ R2 be a domain and suppose
that f ∈ W 1,p

loc (Ω,R2) is a homeomorphism of finite distortion such that

Ka ∈ L1(Ω). Then f−1 ∈ W 1,q
loc (f(Ω),R2).

Proof. We again reason as for (3.11) and (3.12) and use Hölder’s in-
equality to conclude that∫

f(Ω)

|Df−1(y)|qdy ≤
∫

f−1(A)

| adj Df(x)|q
Jf (x)q−1

dx ≤
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≤
∫

f−1(A)

|Df(x)|2−qK(x)q−1dx ≤ ||Df ||2−q
Lp(Ω)

(∫

Ω

Ka
) p+q−2

p .

¤

In certain questions the L2-integrability assumption of partial deriva-
tives can be relaxed to a slightly weaker assumption. Such a situation
will occur in Theorem 6.1 (ii) below; also see [20]. The following gives
a sufficient condition for an integrability condition of this type for f−1.

Theorem 4.2. Let Φ : [0,∞) → [1,∞) be an increasing function such
that for every A > 0 there is C(A) > 0 such that

(4.1) Φ(tA) > C(A)Φ(t) for every t > 0.

Suppose that f ∈ W 1,1
loc (Ω,R2) is a homeomorphism of finite distortion.

Suppose that K
Φ(K)

∈ L1(Ω) and |Df |p ∈ L1(Ω) for some p > 1. Then

f−1 ∈ W 1,1
loc (f(Ω),R2) and

(4.2)
|D(f−1)|2

Φ(|D(f−1)|) ∈ L1(f(Ω)).

Proof. Analogously to (3.11) and (3.12) we obtain by (4.1) that
∫

f(Ω)

|Df−1(y)|2
Φ(|D(f−1)|)dy ≤

∫

f−1(A)

| adj Df(x)|2
Jf (x)Φ( | adj Df(x)|

Jf (x)
)
dx ≤

≤
∫

f−1(A)

K(x)

Φ( K(x)
|Df(x)|)

dx ≤
∫

{K(x)≤|Df |p}
+

∫

{ K(x)
|Df(x)|>K(x)

1− 1
p }
≤

≤
∫

f−1(A)

|Df(x)|pdx +
1

C(1− 1
p
)

∫

f−1(A)

K(x)

Φ(K(x))
dx < ∞.

¤

5. Integrability of Kf−1

Lemma 5.1. Let a > 0, b > 0, α > 0 and β > 0. Then

(5.1) a
α
2 b ≤ b logα(e + b) + C(α, β) exp(βa).

Proof. If the first term on the right-hand side of (5.1) is greater or
equal to the left-hand side, then the inequality is obvious. Otherwise,
b ≤ exp(

√
a), which implies that

a
α
2 b ≤ a

α
2 exp(

√
a) ≤ C(α, β) exp(βa).

¤

We will employ the following result on the higher integrability of the
Jacobian of a mapping of finite distortion from [6, Theorem 1.1] (see
also [4]).
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Theorem 5.2. Let f ∈ W 1,1
loc (Ω,R2) be a mapping of finite distortion.

Assume that the distortion K(x) ≥ 1 satisfies exp(βK) ∈ L1
loc(Ω), for

some β > 0. Then

Jf (x) logα(e + Jf (x)) ∈ L1
loc(Ω),

where α = c1β and c1 is an absolute constant.

Proof of Theorem 1.6. From Theorem 3.2 and Theorem 3.3 we know
that f−1 is a mapping of finite distortion. Set c2 = c1

2
where c1 comes

from Theorem 5.2 and let A be any compact subset of f(Ω) such that
for every y ∈ A, f−1 is differentiable at y with Jf−1(y) > 0. Analogously
to the proof of Theorem 1.3 we obtain using (5.1) and choosing p = c1

2
β

that

(5.2)

∫

A

Kp
f−1 ≤

∫

f−1(A)

|D(f−1)(f(x))|2p

Jf−1(f(x))p+1
dx

≤
∫

f−1(A)

| adj Df(x)|2p

Jf (x)2pJf−1(f(x))p+1
dx

≤
∫

f−1(A)

K(x)pJf (x)dx

≤
∫

f−1(A)

(
Jf (x) logc1β(e + Jf (x)) + C exp(βK(x))

)
dx.

Since f−1 is a mapping of finite distortion we can define Kf−1(y) = 1
for every y ∈ f(Ω) such that Jf−1(y) = 0. Then Theorem 2.1, Theorem
5.2 and (5.2) imply Kp

f−1 ∈ L1
loc(f(Ω)).

To see that we cannot take c2 = 2, consider the mapping defined by
setting f(0) = 0 and

f(x) =
x

||x||
1

loga 1
||x||

for x ∈ B(0,
1

e
) \ {0}.

Then f ∈ W 1,1(B(0, 1
e
),R2) is a homeomorphism of finite distortion

with exp(aKf ) ∈ L1(B(0, 1
e
)), but K2a

f−1 /∈ L1(B(0, 1)).

Indeed, from Lemma 2.3 we obtain that for ||x|| < exp(−a) we have

Df(x) ∼ max
{ 1

||x|| loga 1
||x||

,
a

||x|| loga+1 1
||x||

}
=

1

||x|| loga 1
||x||

,

Jf (x) ∼ a

||x||2 log2a+1 1
||x||

and hence Kf (x) ∼ 1

a
log

1

||x|| .

It follows that f ∈ W 1,1(B(0, 1
e
),R2) and exp(aKf ) ∈ L1(B(0, 1

e
)).

Then we can use Lemma 2.3 for f−1 : B(0, 1) → B(0, 1
e
) which is

clearly given by

f−1(y) =
y

||y|| exp
( −1

||y||1/a

)
for y 6= 0
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to obtain

|Df−1(y)| ∼ max
{exp

(
−1

||y||1/a

)

||y|| ,
exp

(
−1

||y||1/a

)

a||y|| 1a+1

}
∼ C(a)

exp
(

−1
||y||1/a

)

||y|| 1a+1
,

Jf−1(y) ∼ C(a)
exp

(
−2

||y||1/a

)

||y|| 1a+2
, and hence Kf−1(y) ∼ C(a)

||y|| 1a
.

An elementary computation now gives us K2a
f−1 /∈ L1(B(0, 1)). ¤

Notice that the mapping f ∈ W 1,1(B(0, 1
e2 ),R2) defined by f(0) = 0

and

f(x) =
x

||x||
1

log log 1
||x||

for x 6= 0

in a small neigborhood of the origin satisfies Kf ∈ Lp(B(0, 1
e2 )) for

every p ∈ [1,∞), but Kq
f−1 /∈ L1(B(0, 1)) for any q > 0. Thus no

p-integrability of K can guarantee any q-integrability of Kf−1 .

6. Integrability of 1
Jf

Theorem 6.1. Let Ω ⊂ R2 be a domain.
(i) Suppose that f ∈ W 1,1

loc (Ω,R2) is a homeomorphism of finite distor-
tion such that K ∈ L1(Ω). Then Jf > 0 a.e. in Ω and log(e + 1

Jf
) ∈

L1
loc(Ω).

(ii) Let p > 1 and suppose that f ∈ W 1,p
loc (Ω,R2) is a homeomorphism

of finite distortion such that K log−1(e + K) ∈ L1(Ω). Then Jf > 0
a.e. in Ω and log log(e + 1

Jf
) ∈ L1

loc(Ω).

Proof. (i) From our assumptions and Theorem 1.3 we obtain f−1 ∈
W 1,2

loc (f(Ω),R2), and thus Jf−1 log(e+Jf−1) ∈ L1
loc(f(Ω)) (see [25]). We

denote by Ã ⊂ Ω the set where f is differentiable with Jf > 0. From

[21] and Theorem 2.1 we know that |Ã| = |Ω| and therefore we may
find a Borel set A ⊂ Ã such that |A| = |Ω|. Hence we may use (2.2)
and 1

Jf (x)
= Jf−1(f(x)) for x ∈ A to obtain

(6.1)∫

E

log
(
e +

1

Jf (x)

)
dx =

∫

E∩A

1

Jf (x)
log

(
e +

1

Jf (x)

)
Jf (x)dx

≤
∫

f(E∩A)

Jf−1(y) log
(
e + Jf−1(y)

)
dy < ∞

for each compact set E ⊂ Ω.
(ii) From Theorem 4.2 we obtain that

|Df−1|2
log(e + |Df−1|) ∈ L1

loc(f(Ω))
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and therefore Jf−1 log log(e+Jf−1) ∈ L1
loc(f(Ω)) (see [24]). Because f−1

is a homeomorphism, we may thus use [18, Theorem A] to conclude that
f−1 satisfies condition N, that is, f−1 maps sets of measure zero to sets
of measure zero.

We claim that Jf > 0 a.e. in Ω. If not, then we may use Theorem
2.1 to see that the set

M = {x ∈ Ω : Jf (x) = 0 and f is differentiable at x}
has positive measure. Then the differentiability and a simple covering
argument shows that |f(M)| = 0, which contradicts condition N for
f−1. Analogously to (6.1) we now conclude that∫

E

log log
(
e +

1

Jf (x)

)
dx =

∫

E∩A

1

Jf (x)
log log

(
e +

1

Jf (x)

)
Jf (x)dx

≤
∫

f(E∩A)

Jf−1(y) log log
(
e + Jf−1(y)

)
dy < ∞

for each compact set E ⊂ Ω. ¤
Analogously to the proof of part (ii) above, it would be possible to

use [14, Theorem 8.4.1] to obtain further results on the integrability of
1
Jf

also under weaker conditions, like K log−1(e+K) log−1 log(e+K) ∈
L1 and so on. The following two examples from [17] show that the
assumptions of Theorem 6.1 are sharp.

Example 6.2. Let ε > 0. There exists a Lipschitz homeomorphism
f : Q0 → Q0 of finite distortion such that K

log1+ε(e+K)
∈ L1(Q0) and

Jf = 0 on a set of positive measure.

Example 6.3. Let α : (0,∞) → [1,∞) be a continuous, increasing
function such that limt→∞ α(t) = ∞. There exists a homeomorphism
f ∈ W 1,1(Q0,R2) of finite distortion such that K

α(K)
∈ L1(Q0) and

Jf = 0 on a set of positive measure.

The last example of this section shows that the statement of Theorem
6.1 (i) is sharp.

Example 6.4. Let ε > 0. There exists a Lipschitz homeomorphism
f : B(0, 1) → B(0, 1

e
) of finite distortion such that K ∈ L1(B(0, 1))

and log(e + 1
Jf

) /∈ L1+ε
loc (B(0, 1)).

Proof. Without loss of generality we can suppose that ε < 1. Set
f(0) = 0 and

f(x) =
x

||x|| exp
( −1

||x||2−ε

)
for x 6= 0.

From Lemma 2.3 we obtain by elementary computations that

K(x) ∼ 1

||x||2−ε
and log

(
e +

1

Jf (x)

) ∼ 1

||x||2−ε
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and the result easily follows. ¤

7. Examples of homeomorphisms

We begin with the construction related to Theorem 4.1. In [18] it
was observed that homeomorphisms which map suitable regular Can-
tor sets to each other serve as critical examples for condition N, under
integrability conditions on the distortion function. Such a homeomor-
phism is constructed by changing one Cantor construction to another
one by means of mapping “squares to squares”. This trick dates back
at least to [27],[10]. For our purposes, this approach is not sufficient.
Instead of this, we consider product Cantor sets E1 × E2 and map
one construction to another one by means of mapping “rectangles to
rectangles”.

Example 7.1. Let p ∈ (1,∞), 1 < q < 2, ε > 0 and set a = (q−1)p
p+q−2

.

There is a homeomorphism f : Q0 → Q0 of finite distortion such that
f ∈ W 1,p(Q0,R2) and Ka ∈ L1(Q0), but f−1 /∈ W 1,q+ε

loc (Q0,R2).

Proof. We will first give two Cantor constructions in Q0. Later f will
be defined as the limit of a sequence of piecewise continuously differ-
entiable homeomorphisms fk : Q0 → Q0, where each fk maps the k-th
step of the first Cantor construction onto the k-th step of the second
Cantor construction.

We set a0 = b0 = c0 = d0 = 1
2

and
(7.1)

α = 1, β =
p + 1

p− 1
, γ = 1 +

2

q − 1
, δ = 1 + min

{ 2ε

q − 1
,

1

p− 1

}
,

ak =
1

2k+3kα
, bk =

1

2k+3kβ
, ck =

1

2k+3kγ
and dk =

1

2k+3kδ
for k ∈ N.

Without loss of generality, we will suppose that ε < 1, and thus δ < γ.
Hence we have the inequalities

(7.2) α < β, α < γ, δ < β and δ < γ.

It is not difficult to verify the following properties :
(7.3)

(i) ak <
1

2
ak−1, bk <

1

2
bk−1, ck <

1

2
ck−1, dk <

1

2
dk−1 for k ∈ N;

(ii) ak ∼ ak−1, bk ∼ bk−1, ck ∼ ck−1, dk ∼ dk−1 for k ∈ N;

(iii) lim
k→∞

2kak = lim
k→∞

2kbk = lim
k→∞

2kck = lim
k→∞

2kdk = 0.

Let
V =

{
(1, 1), (−1, 1), (1,−1), (−1,−1)

}
.

The sets V k = V × . . .× V , k ∈ N, will serve as the sets of indices for
our construction. Set z0 = [1

2
, 1

2
]. For v ∈ V 1 = V, let

zv = z0 +
1

4
v, Sv = R(zv,

1

4
,
1

4
) and Rv = R(zv, a1, b1).
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Fig. 1. Rectangles Rv for v ∈ V 1 and v ∈ V 2 .

If k ∈ N \ {1}, w ∈ V k−1 and Rw = R(zw, ak−1, bk−1) is a rectangle
from the previous step of construction, then Rw is divided into four
rectangles of equal size and inside them we find concentric rectangles
with side lengths ak and bk. Thus, for v = (v1, . . . , vk) ∈ V k, we set

zv = zw +
1

2
ak−1(vk)1e1 +

1

2
bk−1(vk)2e2

= z0 +
e1

2

k∑
j=1

aj−1(vj)1 +
e2

2

k∑
j=1

bj−1(vj)2

Sv = R(zv,
ak−1

2
,
bk−1

2
), Rv = R(zv, ak, bk).

See Figure 1. It follows from (7.3) (i) that Rv ⊂ Sv. The resulting
Cantor set

E =
⋂

k∈N

⋃

v∈V k

Rv

is clearly a product of two one-dimensional Cantor sets E = E1 ×
E2. From (7.3) (iii) we see that E1 and E2 have zero one-dimensional
measure; therefore E has zero measure.

The second Cantor construction is similar to the first one; namely
for v ∈ V k we set

z̃v = z0 +
e1

2

k∑
j=1

cj−1(vj)1 +
e2

2

k∑
j=1

dj−1(vj)2

S̃v = R(z̃v,
ck−1

2
,
dk−1

2
), R̃v = R(z̃v, ck, dk).

We are now ready to define the mappings fk. Define f0 = id |Q0 .
The mapping f1 stretches each rectangle Rv, v ∈ V 1, homogenuously
so that f1(Rv) = R̃v. The set Sv \ Rv is stretched to S̃v \ R̃v so that
the resulting map is a homeomorphism.

In the general step (i.e. k > 1), fk is defined as fk−1 outside the union
of all rectangles Sv, v ∈ V k−1. Further, it stretches each rectangle Rv

to R̃v homogenuously. We denote by Av two parallelepipeds in Sv \Rv

and the remaining two parallelepipeds are denoted by Bv (see Figure
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2.). These parallelepipeds are mapped to the corresponding ones in
S̃v \ R̃v so that the entire map fk is a homeomorphism.

¡
¡

@
@

@
@

¡
¡

BvBv

Av

Av

Rv
-fk

¡
¡

@
@

@
@

¡
¡

B̃vB̃v

Ãv

Ãv

R̃v

Fig. 2. The mapping fk acting on Sv

To be more precise, let f0 = id |Q0 , and for k ∈ N define
(7.4)

fk(x) =





fk−1(x) if x /∈ ⋃
v∈V k Sv,

z̃v + ck

ak
(x− zv)1e1 + dk

bk
(x− zv)2e2 if x ∈ Rv, v ∈ V k,

z̃v + (x− zv)1e1
α̃k|(x− zv)2|+ β̃k

γ̃k|(x− zv)2|+ δ̃k

+

+
(
ω̃k|(x− zv)2|+ η̃k

)
e2 sgn(x− zv)2 if x ∈ Av, v ∈ V k,

z̃v + (x− zv)2e2
αk|(x− zv)1|+ βk

γk|(x− zv)1|+ δk

+

+
(
ωk|(x− zv)1|+ ηk

)
e1 sgn(x− zv)1 if x ∈ Bv, v ∈ V k,

where the constants α̃k, β̃k, γ̃k, δ̃k, ω̃k, η̃k, αk, βk, γk, δk, ωk and ηk are
chosen so that

(7.5)

α̃k
bk−1

2
+ β̃k =

ck−1

2
, α̃kbk + β̃k = ck,

γ̃k
bk−1

2
+ δ̃k =

ak−1

2
, γ̃kbk + δ̃k = ak,

ω̃k
bk−1

2
+ η̃k =

dk−1

2
, ω̃kbk + η̃k = dk,

(7.6)

αk
ak−1

2
+ βk =

dk−1

2
, αkak + βk = dk,

γk

ak−1

2
+ δk =

bk−1

2
, γkak + δk = bk,

ωk
ak−1

2
+ ηk =

ck−1

2
, ωkak + ηk = ck.

It is then not difficult to check that fk is a homeomorphism.
Clearly, the limit f = limk→∞ fk is a homeomorphism of Q0 onto Q0,

differentiable almost everywhere and absolutely continuous on almost
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all lines parallel to coordinate axes (recall that both E1 and E2 are of
one-dimensional measure zero).

Let k ∈ N and v ∈ V k. Since ak ∼ ak−1 and bk ∼ bk−1 it is not
difficult to find out that the measures of areas Av and Bv from Figure 2
satisfy

(7.7) |Av| ∼ ak

(1

2
bk−1 − bk

)
and |Bv| ∼

(1

2
ak−1 − ak

)
bk.

We need to estimate the derivative of our mapping fk. We denote
its coordinate functions by f 1

k and f 2
k , i.e. fk = (f 1

k , f 2
k ). The function

(7.8) h(t) =
α̃kt + β̃k

γ̃kt + δ̃k

= α̃k

( 1

γ̃k

+

β̃k

α̃k
− δ̃k

γ̃k

γ̃kt + δ̃k

)

is clearly either non-increasing or non-decreasing for t ∈ [bk,
bk−1

2
]. Let

x ∈ int Av. Then |(x − zv)2| ∈ [bk,
bk−1

2
] and therefore (7.4) (7.5) and

(7.3) (ii) give us

∂f 1
k (x)

∂x1

∼ h
(|(x− zv)2|

) ∼ ck

ak

.

From t ∈ [bk,
bk−1

2
], (7.5) and (7.3) (ii) we also have that γ̃kt + δ̃k ∼ ak.

Together with (7.4) and (7.8) this implies

∣∣∣∂f 1
k (x)

∂x2

∣∣∣ = |(x− zv)1|
∣∣h′(|(x− zv)2|

)∣∣ ∼ |(x− zv)1|α̃k

∣∣∣ β̃k

α̃k

− δ̃k

γ̃k

∣∣∣ γ̃k

a2
k

.

Hence

(7.9) Df(x) = Dfk(x) ∼
(

ck

ak
±(x− zv)1(β̃kγ̃k − δ̃kα̃k)

1
a2

k

0 ω̃k

)

for every x ∈ int Av. Analogously we can check that

(7.10) Df(y) ∼
(

ωk 0
±(y − zv)2(βkγk − δkαk)

1
b2k

dk

bk

)

for every y ∈ int Bv.
Since kξ − (k + 1)ξ ∼ kξ−1 for every ξ 6= 0 we obtain with the help

of (7.5) and (7.1) that ω̃k ∼
dk−1

2
−dk

bk−1
2
−bk

∼ kβ−δ and

|β̃kγ̃k − δ̃kα̃k| =
∣∣∣ck

ak−1

2
− ak

bk−1

2
− bk

− ak

ck−1

2
− ck

bk−1

2
− bk

∣∣∣ ≤ C
kβ−α−γ

2k
.

For x ∈ int Av we clearly have |(x − zv)1| ≤ ak−1 and therefore (7.9),
(7.1) and (7.2) give us

(7.11) |Df(x)| ∼ max{kα−γ, kβ−γ, 0, kβ−δ} = kβ−δ and K(x) ∼ kβ−δ

kα−γ
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and analogously for y ∈ int Bv we conclude from (7.10) and (7.2) that

(7.12) |Df(y)| ∼ max{kα−γ, 0, kα−δ, kβ−δ} = kβ−δ and K(y) ∼ kβ−δ

kα−γ
.

Therefore (7.7), (7.11), (7.12) and (7.1) give us∫

Q0

|Df |p ≤ C
∑

k∈N

∑

v∈V k

(|Av|+ |Bv|)k(β−δ)p

≤ C
∑

k∈N
22k 1

22kk1+β+α
k(β−δ)p

≤ C
∑

k∈N

1

k1+p min{ 2ε
q−1

, 1
p−1

} < ∞

and ∫

Q0

Ka ≤ C
∑

k∈N

∑

v∈V k

(|Av|+ |Bv|)k(β+γ−δ−α)a

≤ C
∑

k∈N
22k 1

22kk1+β+α
k(β+γ−δ−α)

(q−1)p
p+q−2

≤ C
∑

k∈N

1

k1+
(q−1)p
p+q−2

min{ 2ε
q−1

, 1
p−1

}
< ∞.

Let k ∈ N, v ∈ V k and x̃ ∈ int Ãv, i.e. there is x ∈ int Av such that
x̃ = f(x). Clearly Jf−1(x̃) > 0 and thus D(f−1)(x̃) = (Df(x))−1. From
this, (7.9) and

(
A B
0 C

)−1

=

(
1
A

−B
AC

0 1
C

)
for any A,B, C 6= 0

we obtain with the help of (7.11) and (7.2) that

|D(f−1)(x̃)| ∼ max{kγ−α, kβ−γ−(α−γ)−(β−δ), 0, kδ−β} = kγ−α.

Similarly we can check that |D(f−1)(ỹ)| ∼ kγ−α for every ỹ ∈ int B̃v.
Thus (7.1) gives us∫

Q0

|D(f−1)|q+ε ≥ C
∑

k∈N

∑

v∈V k

(|Ãv|+ |B̃v|)k(γ−α)(q+ε)

≥ C
∑

k∈N
22k 1

22kk1+γ+δ
k(γ−α)(q+ε)

≥ C
∑

k∈N

1

k1+1+ 2
q−1

+1+ 2ε
q−1

k
2

q−1
(q+ε) = C

∑

k∈N

1

k
= ∞.

¤
Proof of Example 1.4. Set q = 1 + δ

2
and ε = δ

2
. We can clearly find

p > 1 small enough such that (q − 1) p
p+q−2

> 1 − δ; therefore the

statement follows from Example 7.1. ¤
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The assumptions of Example 7.1 left open the case when f is Lips-
chitz. This is actually easier: consider

f(x, y) = (x, |y|α sgn y).

Given 1 < q < 2 and ε > 0, we find α > 1 such that

(α− 1)(q − 1) < 1 and
1− α

α
(q + ε) < −1.

With this choice, K ∈ Lq−1(Q0), but f−1 /∈ W 1,q+ε
loc (Q0,R2).
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