
NONSYMMETRIC CONICAL UPPER DENSITY AND

k-POROSITY

ANTTI KÄENMÄKI AND VILLE SUOMALA

Abstract. We study how the Hausdorff measure is distributed in nonsym-
metric narrow cones in R

n. As an application, we find an upper bound close
to n−k for the Hausdorff dimension of strongly k-porous sets. With k-porous
sets we mean sets which have holes in k different directions on every small
scale.

1. Introduction

It is a well known fact that for a set A ⊂ R
n with finite s-dimensional Hausdorff

measure, Hs(A) < ∞, we have

1 ≤ lim sup
r↓0

Hs
(
A ∩ B(x, r)

)

rs
≤ 2s (1.1)

for Hs almost every x ∈ A. For a proof, see, for example, [9, Theorem 6.2(1)].
This is analogous to the classical Lebesgue Density Theorem. Using this fact,
we know roughly how much of A there is in small balls. Mattila [8] studied how
A is distributed in such balls. He was able to estimate how much of A there is
near (n − m)-planes. More precisely, assuming 0 ≤ m < s ≤ n and denoting

X(x, V, α) = {y ∈ R
n : dist(y − x, V ) < α|y − x|},

X(x, r, V, α) = X(x, V, α) ∩ B(x, r),

as x ∈ R
n, V ∈ G(n, m), r > 0, and 0 < α ≤ 1, he proved that there exists a

constant c = c(n, m, s, α) > 0 such that

lim sup
r↓0

inf
V ∈G(n,n−m)

Hs
(
A ∩ X(x, r, V, α)

)

rs
≥ c (1.2)

for Hs almost every x ∈ A whenever A ⊂ R
n is such that Hs(A) < ∞. Here

G(n, m) denotes the collection of all m-dimensional linear subspaces of R
n, see

[9, §3.9]. Actually (1.2) is just a special case of Mattila’s result, as his theorem
can be applied also for more general cones, see [8, Theorem 3.3].
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In Theorem 2.5 we show that if A is as above, then it cannot be concentrated
in too small regions, not even inside the cones X(x, r, V, α). More precisely,
denoting

H(x, θ) = {y ∈ R
n : (y − x) · θ > 0},

H(x, θ, η) = {y ∈ R
n : (y − x) · θ > η|y − x|},

for x ∈ R
n, θ ∈ Sn−1, and 0 < η ≤ 1, we prove under the same assumptions as

in (1.2) that there exists a constant c = c(n, m, s, α, η) > 0 such that

lim sup
r↓0

inf
θ∈Sn−1

V ∈G(n,n−m)

Hs
(
A ∩ X(x, r, V, α) \ H(x, θ, η)

)

rs
≥ c

for Hs almost every x ∈ A. Our method gives also a more elementary proof for
(1.2) and it can also be used to obtain similar results for more general measures,
see Theorem 2.6.

The nonsymmetric conical upper density theorem is essential in our applica-
tion to k-porous sets, that is, the sets with pork > 0, see (1.5). The notation
of porosity, or 1-porosity using our terminology, has aroused from the study of
dimensional estimates related, for example, to the boundary behavior of quasi-
conformal mappings. See Koskela and Rohde [6], Martio and Vuorinen [7], Sarvas
[12], Trocenko [14], and Väisälä [15]. The dimensional properties of 1-porous sets
are well known. Using a version of (1.2), Mattila showed that

sup{s > 0 : por1(A) > % and dimH(A) > s for some A ⊂ R
n} −→ n − 1 (1.3)

as % → 1
2
. Here dimH refers to the Hausdorff dimension. Later Salli [11] general-

ized this result for the Minkowski dimension, and found the correct asymptotics.
The concept of 1-porosity has also been generalized for measures, and it leads to
similar kind of dimension bounds. See Järvenpää and Järvenpää [4] and refer-
ences there.

Motivated by the fact that each V ∈ G(n, n − 1) has maximal 1-porosity,
we introduce a porosity condition which describes also sets whose dimension is
smaller than n − 1. For 0 < k ≤ n, x ∈ R

n, A ⊂ R
n, and r > 0 we set

pork(A, x, r) = sup{% : there are z1, . . . , zk ∈ R
n such that

B(zi, %r) ⊂ B(x, r) \ A for every i, (1.4)

and (zi − x) · (zj − x) = 0 for i 6= j}.
The k-porosity of A at a point x is defined to be

pork(A, x) = lim inf
r↓0

pork(A, x, r),

and the k-porosity of A is given by

pork(A) = inf
x∈A

pork(A, x). (1.5)
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This means that k-porous sets have holes in k orthogonal directions near each
of its points in every small scale. We shall now give a concrete example where
k-porosity occurs naturally. Suppose 0 < λ < 1

2
and let Cλ ⊂ R be the usual

λ-Cantor set, see [9, §4.10]. It is clearly a 1-porous set with por1(Cλ) ≈ 1
2
− λ.

Mattila’s result (1.3) implies that dimH(Cλ) → 0 as por1(Cλ) → 1
2
. Of course, we

could obtain the same information just by calculating the Hausdorff dimension of
the self-similar set Cλ and letting λ → 0, but our aim was to provide the reader
with an illustrative example. The sets Cλ × Cλ ⊂ R

2 and Cλ × Cλ × [0, 1] ⊂ R
3

are clearly 2-porous with por2 ≈ 1
2
− λ. For these sets (1.3) does not give any

reasonable dimension bound. However, it would be desirable to see, also in
terms of porosity, that dimH(Cλ × Cλ) → 0 and dimH(Cλ × Cλ × [0, 1]) → 1 as
λ → 0. This follows as an immediate application of Theorem 3.2. Using our
nonsymmetric conical upper density theorem, we show that

sup{s > 0 : pork(A) > % and dimH(A) > s for some A ⊂ R
n} −→ n − k

as % → 1
2
. Observe also that in the proof of Theorem 3.2 the orthogonality in

(1.4) plays no rôle and we may replace it by an assumption of a uniform lower
bound for the angles between zi − x and the (k − 1)-plane spanned by vectors
zj − x, i 6= j.

Let us now discuss the situation when porosity is small. It is well known (for
example, see [7]) that if A ⊂ R

n with por1(A, x, r) ≥ % > 0 for all x ∈ A and
0 < r < r0, then

dimM(A) < n − c%n, (1.6)

where c > 0 depends only on n, and dimM refers to the Minkowski dimension,
see [9, §5.3]. It might be possible to get a better estimate if por1 is replaced
by pork for some k > 1, but this condition does not feel very natural if the
size of the holes is small. However, if V ∈ G(n, m) is fixed and the condition
por1(A, x, r) ≥ % is replaced by

sup
{
%′ : B(z, %′r) ⊂ B(x, r) \ A for some z ∈ V + {x}

}
≥ %,

then n in (1.6) can be replaced by m, see Theorem 4.3. This is a rather immediate
consequence of (1.6), but our main point is to give a simple proof for (1.6) using
iterated function systems.

Acknowledgement. The authors are indebted to Professor Pertti Mattila for his
valuable comments for the manuscript. The authors thank also Esa Järvenpää,
Maarit Järvenpää, Pekka Koskela, Tomi Nieminen, Kai Rajala, and Eero Saks-
man for useful discussions during the preparation of this article.

2. Nonsymmetric conical upper density

We shall first prove a density theorem for nonsymmetric regions and then prove
our main theorem by using a similar argument on (n − m)-planes. The proofs
rely on the following geometric fact.
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Figure A. All points lying on the gray region form a large angle
with points z and w.

Lemma 2.1. For given 0 < β < π, there is q = q(n, β) ∈ N such that in any set

of q points in R
n, there are always three points which determine an angle between

β and π.

Remark 2.2. Erdős and Füredi [1] have shown that for the smallest possible
choice of q it holds that

2(π/(π−β))n−1 ≤ q(n, β) ≤ 2(4π/(π−β))n−1

+ 1.

For the convenience of the reader we shall give below a different proof which
establishes the existence of some such q. The estimate that we get here for q is,
however, quite bad compared to the best possible one.

Proof. Let A be a set of points in R
n so that all angles formed by its points

are less than β. Let us fix a small number η > 0 and cover R
n \ {0} by cones

Ci = H(0, θi, η), i = 1, 2, . . . , k. Note that we can do this with a constant
k = k(n, η). For y ∈ R

n we use notation Ci,y = Ci + {y}.
For any index i1i2 · · · ij, where j ∈ N and im ∈ {1, 2, . . . , k} for 1 ≤ m ≤ j, we

define sets Ai1i2···ij in the following way: We begin by fixing x ∈ A and setting
Ai = A ∩ Ci,x for 1 ≤ i ≤ k. If Ai1i2···ij has been defined, we choose y ∈ Ai1i2···ij
and define Ai1i2···ij l = Ai1i2···ij ∩ Cl,y for 1 ≤ l ≤ k (if Ai1i2···ij is empty, then so
is Ai1i2···ij l). We refer to y as the corner of Ai1i2···ij l. It follows directly from the
definition of the sets Ai1i2···ij that

card Ai1i2···ij ≤ 1 +
k∑

l=1

card Ai1i2···ij l.

Iterating this, we get

card A ≤
k∑

j=0

kj +
∑

i1i2···ik

k∑

l=1

card Ai1i2···ikl. (2.1)

The main point of the proof is the observation that if η = η(β) is chosen small
enough in the beginning, then the following is true: If z and w are the corners of
Ai1i2···ij and Ai1i2···ij ij+1···im , respectively, and if z ∈ Cim,w, then A∩Cij ,z∩Cim ,w =
∅. See Figure A. It follows by induction from the above fact that for given Ai1i2···ij
we have

card{l : Ai1i2···ij l 6= ∅} ≤ k − j.
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In particular, Ai1i2···ik+1
= ∅ for any choice of i1i2 . . . ik+1. Combined with (2.1),

this gives cardA ≤ ∑k
j=0 kj. This number depends only on k = k(n, β) and the

claim follows. �

For 0 < η ≤ 1 we define

t(η) =

√
η2 + 4

η2
,

γ(η) =
1

t(η)
.

Notice that t(η) ≥ 2 and η/
√

5 ≤ γ(η) ≤ η/2.

Lemma 2.3. Suppose y ∈ R
n, θ ∈ Sn−1, 0 < η ≤ 1, t = t(η), and γ = γ(η). If

z ∈ R
n \

(
B(y, tr) ∪ H(y, θ, γ)

)
, then

B(z, r) ∩ H(y, θ, η) = ∅.
Proof. Take w ∈ R

n such that it maximizes (w − y) · θ/|w − y| in the closure
of B(z, r). It suffices to prove that (w − y) · θ/|w − y| < η, see Figure B. It
is straightforward to check that η

√
s2 − 1 ≥ 1 + γs when s ≥ t. Denoting now

s = |y − z|/r, we have s ≥ t > 1 and thus

(w − y) · θ < r + γ|y − z| = (1 + γs)r

≤ η
√

s2 − 1r = η|w − y|,
which finishes the proof. �

y

z

w

r

sr

√
s2 − 1r

θ

Figure B. Illustration for the proof of Lemma 2.3.

Theorem 2.4. Suppose 0 < η ≤ 1 and 0 < s ≤ n. Then there is a constant

c = c(n, s, η) > 0 such that

lim sup
r↓0

inf
θ∈Sn−1

Hs
(
A ∩ B(x, r) \ H(x, θ, η)

)

rs
≥ c

for Hs almost every x ∈ A whenever A ⊂ R
n with Hs(A) < ∞.
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Proof. Take c > 0 and assume there exists a set B ⊂ R
n with Hs(B) > 0 such

that for each x ∈ B and 0 < r < r0 there is θ ∈ Sn−1 for which

Hs
(
B ∩ B(x, r) \ H(x, θ, η)

)
< crs. (2.2)

According to (1.1), we may assume that

Hs
(
B ∩ B(x, r)

)
< 2s+1rs (2.3)

for all 0 < r < r0 and x ∈ B. Using the same estimate, we find 0 < r < r0/3
and x ∈ B such that

Hs
(
B ∩ B(x, r)

)
> 1

2
rs. (2.4)

Set t = t(η), γ = γ(η), and take 0 < δ < 1. Let us fix β < π such that
the opening angle of H(x, θ, γ) is smaller than β, and let q = q(n, β) be as in
Lemma 2.1. We can cover the set B ∩ B(x, r) by (2n)n/2δ−n balls of radius δr
with centers in B. Using now (2.4), we notice that there exists x1 ∈ B ∩B(x, r)
such that

Hs
(
B ∩ B(x1, δr)

)
> (2n)−n/2δn2−1rs.

The set B ∩B(x, r) \B(x1, tδr) can also be covered by (2n)n/2δ−n balls of radius
δr with centers in B. Since, using (2.3) and (2.4),

Hs
(
B ∩ B(x, r) \ B(x1, tδr)

)
> (1

2
− 2s+1tsδs)rs

and if 1
2
− 2s+1tsδs > 0, we find x2 ∈ B ∩ B(x, r) \ B(x1, tδr) for which

Hs
(
B ∩ B(x2, δr)

)
> (2n)−n/2δn(1

2
− 2s+1tsδs)rs.

Choosing δ = δ(n, s, η) > 0 small enough and continuing in this manner, we find
q points x1, . . . , xq ∈ B∩B(x, r) with |xi −xj| > tδr for i 6= j, such that for each
i ∈ {1, . . . , q} we have

Hs
(
B ∩ B(xi, δr)

)
> (2n)−n/2δn

(
1
2
− (q − 1)2s+1tsδs

)
rs

=: c(n, s, η)(3r)s,
(2.5)

where c(n, s, η) > 0.
According to Lemma 2.1, we may choose three points y, y1, y2 from the set

{x1, . . . , xq} such that for each θ ∈ Sn−1 there is i ∈ {1, 2} for which yi ∈
R

n\
(
B(y, tδr)∪H(y, θ, γ)

)
. We obtain, using Lemma 2.3, that for each θ ∈ Sn−1

there is i ∈ {1, 2} such that

B(yi, δr) ⊂ B
(
y, 2(1 + δ)r

)
\ H(y, θ, η).

Thus, applying (2.5), we have

Hs
(
B ∩ B(y, 3r) \ H(y, θ, η)

)
> c(n, s, η)(3r)s

for all θ ∈ Sn−1. Recalling (2.2), we conclude that c ≥ c(n, s, η). The proof is
finished. �
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Theorem 2.5. Suppose 0 < α, η ≤ 1 and 0 ≤ m < s ≤ n. Then there is a

constant c = c(n, m, s, α, η) > 0 such that

lim sup
r↓0

inf
θ∈Sn−1

V ∈G(n,n−m)

Hs
(
A ∩ X(x, r, V, α) \ H(x, θ, η)

)

rs
≥ c

for Hs almost every x ∈ A whenever A ⊂ R
n with Hs(A) < ∞.

Proof. For any V, W ∈ G(n, n − m), we set d(V, W ) = supx∈V ∩Sn−1 dist(x, W ).
With this metric G(n, n − m) is compact, see Salli [10]. Defining for each V ∈
G(n, n − m) a set {W : d(V, W ) < α/2} we notice that a finite number of these
sets is still a cover. We assume that the sets assigned to the planes V1, . . . , Vl,
where l = l(n, m, α), cover G(n, n−m). For any W , it holds that d(Vi, W ) < α/2
with some i ∈ {1, . . . , l}. This implies X(0, Vi, α/2) ⊂ X(0, W, α). Thus, for each
W ∈ G(n, n − m), there is i such that

X(x, r, W, α) ⊃ X(x, r, Vi, α/2) (2.6)

when r > 0 and x ∈ R
n. We shall prove that if A ⊂ R

n with Hs(A) < ∞, then

lim sup
r↓0

inf
θ∈Sn−1

i=1,...,l

Hs
(
A ∩ X(x, r, Vi, α/2) \ H(x, θ, η)

)

rs
≥ c(n, m, s, α, n)

for Hs almost every x ∈ A from which the claim follows easily by using (2.6).
Take c > 0 and assume that there exists a set B ⊂ R

n with Hs(B) > 0 such
that for each x ∈ B and 0 < r < r0 there are i and θ ∈ Sn−1 for which

Hs
(
B ∩ X(x, r, Vi, α/2) \ H(x, θ, η)

)
< crs.

According to (1.1) we may assume that

Hs
(
B ∩ B(x, r)

)
< 2s+1rs

for all 0 < r < r0 and x ∈ B. Using the same estimate, we find 0 < r < r0/3
and x ∈ B such that

Hs
(
B ∩ B(x, r)

)
> 1

2
rs. (2.7)

Next we define

Bi =
{
x ∈ B : Hs

(
B ∩ X(x, 3r, Vi, α/2)\H(x, θ, η)

)
< c(3r)s

for some θ ∈ Sn−1
}
.

(2.8)

Since
⋃l

i=1 Bi = B, we infer from (2.7) that there is i0 ∈ {1, . . . , l} for which

Hs
(
Bi0 ∩ B(x, r)

)
> 2−1l−1rs.

Take 0 < ε < 1. Since the set (V ⊥
i0

+ {x}) ∩ B(x, r) can be covered with

(2m)m/2ε−m balls of radius εr, there exists y ∈ (V ⊥
i0

+ {x}) ∩ B(x, r) such that

Hs
(
Bi0 ∩ B(x, r) ∩ P−1

V ⊥
i0

(B(y, εr))
)

> (2m)−m/22−1l−1εmrs.



8 ANTTI KÄENMÄKI AND VILLE SUOMALA

Choosing ε = ε(n, m, s, η) > 0 small enough, we find, as in the proof of Theorem
2.4, a point z ∈ Bi0 ∩ B(x, r) ∩ P−1

V ⊥

i0

(
B(y, εr)

)
such that for each θ ∈ Sn−1 there

is a ball

B(w, εr) ⊂ B
(
x, (1 + ε)r

)
\

(
H(z, θ, η) ∩ B(z, 4εr/α)

)

with

Hs
(
B ∩ B(w, εr) ∩ P−1

V ⊥
i0

(B(y, εr))
)

> c(n, m, s, α, η)(3r)s > 0.

Since

P−1
V ⊥

i0

(
B(y, εr)

)
∩ B(z, 3r) \ B(z, 4εr/α) ⊂ X(z, 3r, Vi0 , α/2),

we get

inf
θ∈Sn−1

Hs
(
B ∩ X(z, 3r, Vi0 , α/2) \ H(z, θ, η)

)
> c(n, m, s, α, η)(3r)s.

Figure C illustrates the situation. Since z ∈ Bi0 , we conclude, using (2.8), that
c ≥ c(n, m, s, α, η). The proof is finished. �

V + {x}

y

x

r

z

w
4εr/α

Figure C. Illustration for the proof of Theorem 2.5.

Our method can be applied also in a more general setting. A similar proof as
above gives the following result. If µ is a measure on R

n, h : (0, r0) → (0,∞), and
x ∈ R

n, we define D(µ, x) and D(µ, x) as the lower and upper limits, respectively,
of the ratio µ(B(x, r))/h(r) as r ↓ 0.

Theorem 2.6. Suppose 0 ≤ m < n and h : (0, r0) → (0,∞) is a function with

h(εr)

εmh(r)
−→ 0 uniformly for all 0 < r < r0 (2.9)
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as ε ↓ 0. Let µ be a measure on R
n with D(µ, x) < ∞ for µ almost all x ∈ R

n.

For every 0 < α, η ≤ 1, there is a constant c = c(n, m, h, α, η) > 0 such that

lim sup
r↓0

inf
θ∈Sn−1

V ∈G(n,n−m)

µ
(
X(x, r, V, α) \ H(x, θ, η)

)

h(r)
≥ cD(µ, x)

for µ almost every x ∈ R
n.

Let us make few comments related to the above theorem. Suppose that h
fulfills condition (2.9). Let Hh be the generalized Hausdorff measure which is
constructed using h as a gauge function, see [9, §4.9]. If µ = Hh|A, where
Hh(A) < ∞, then D(µ, x) < ∞ for µ almost every x ∈ R

n, and thus Theorem
2.6 can be applied.

There are many natural gauge functions, such as h(r) = rs log(1/r) where
m < s < n, which satisfy (2.9). However, some interesting cases, such as h(r) =
rm/ log(1/r), are not covered by this condition.

It seems to be unknown whether a similar result as Theorem 2.6 holds if one
replaces the condition D(µ, x) < ∞ by D(µ, x) < ∞. The most interesting
example falling into this category is obtained when µ = Ps|A and h(r) = rs,
where Ps(A) < ∞ and m < s < n. See also Suomala [13] for related theorems.
Here Ps denotes the s-dimensional packing measure, see [9, §5.10].

3. Sets with large k-porosity

Mattila [8] proved Theorem 2.5 in the case m = n−1. Using this, he obtained
the desired dimension bounds for 1-porous sets, see (1.3). Our result for k-porous
sets follows applying a similar argument.

For
√

2 − 1 < % < 1
2

we define

t(%) =
1√

1 − 2%
,

δ(%) =
1 − % −

√
%2 + 2% − 1√

1 − 2%
.

Notice that δ(%) → 0 as % → 1
2
.

Lemma 3.1. Suppose x ∈ R
n, r > 0,

√
2 − 1 < % < 1

2
, t = t(%), and δ = δ(%).

If z ∈ R
n is such that B(z, %tr) ⊂ B(x, tr), then

H(x + δrθ, θ) ∩ B(x, r) ⊂ B(z, %tr),

where θ = (z − x)/|z − x|.
Proof. To simplify the notation, we assume r = 1, x = 0, and θ = e1 =
(1, 0, . . . , 0). This will not affect the generality. Let y ∈ B(0, 1) \ B(z, %t).
We have to show that

y /∈ H(x + δθ, θ). (3.1)
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By the Pythagorean Theorem we have

|z − y1| =
√
|z − y|2 − |y − y1|2 ≥

√
(%t)2 − 1.

Using this, we obtain

y1 = |z| − |z − y1| ≤ t − %t −
√

(%t)2 − 1 = δ,

which implies (3.1). �

Theorem 3.2. Suppose 0 < k ≤ n. Then

sup{s > 0 : pork(A) > % and dimH(A) > s for some A ⊂ R
n} −→ n − k

as % → 1
2
.

Proof. Assume on the contrary that there exists s > n − k such that for each√
2 − 1 < % < 1

2
there is a set A% for which dimH(A%) > s and pork(A%) > %.

Take
√

2 − 1 < % < 1
2

and such a set A%. Now A% has a subset B for which
dimH(B) > s and pork(B, x, r) > % for all x ∈ B and 0 < r < r0 with some
r0 > 0. Clearly also the closure of B satisfies these conditions. Thus there is a
closed set F ⊂ B (for example, use [2, Theorem 5.4]) such that 0 < Hs(F ) < ∞
and

pork(F, x, r) > % for all x ∈ F and 0 < r < r0.

Therefore, for any x ∈ F and 0 < r < r0/t, there are z1, . . . , zk ∈ R
n such

that B(zi, %tr) ⊂ B(x, tr) \ F for i = 1, . . . , k, and (zi − x) · (zj − x) = 0
for i 6= j. Put θi = (zi − x)/|zi − x|. Applying now Lemma 3.1 we have
H(x + δrθi, θi) ∩ B(x, r) ⊂ B(zi, %tr) for every i. Here t = t(%) and δ = δ(%).
Thus

F ∩ B(x, r) ⊂
k⋂

i=1

B(x, r) \ H(x + δrθi, θi). (3.2)

Put θ = − 1√
k

∑k
i=1 θi and take V ∈ G(n, k) such that θi ∈ V for every i. Now

choosing α and η small enough, we have, using (3.2), that

F ∩ X(x, r, V, α) \ H(x, θ, η) ⊂ B(x, 2n1/2δr). (3.3)

Observe that the choice of α and η does not depend on δ and hence not on %
either. Figure D illustrates the situation. Using Theorem 2.5, we may fix x ∈ F
and 0 < r < r0/t for which

Hs
(
F ∩ X(x, r, V, α) \ H(x, θ, η)

)
≥ c22s+1ns/2rs, (3.4)

where c = c(n, k, s, α, η) > 0. By (1.1) we may assume that also

Hs
(
F ∩ B(x, 2n1/2δr)

)
≤ 22s+1ns/2δsrs. (3.5)

Combining (3.3)–(3.5), we have c22s+1ns/2rs ≤ 22s+1ns/2δsrs and hence

s ≤ log c

log δ(%)
.
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θ1

θ2 θ
x

δr

Figure D. The situation when n = 2, k = 2.

But the constant c does not depend on %, and thus log c/ log δ(%) → 0 as % → 1
2

giving a contradiction. �

4. Sets with small porosity

Finally, let us briefly discuss the situation when porosity is small. The proof of
the following theorem can be found for example in Martio and Vuorinen [7]. We
shall give here a different proof, and then show how the theorem can be improved
when more information on the location of the holes is given.

Theorem 4.1. Let A ⊂ R
n be bounded and suppose that por1(A, x, r) ≥ % for

all x ∈ A and 0 < r < r0. Then dimM(A) < n − c%n, where c > 0 depends only

on n.

Proof. We may assume that r0 = 1 and A ⊂ [0, 1]n. Let us denote by Qj the
collection of all closed dyadic cubes Q ⊂ [0, 1]n with side length 2−j. Let l be
the smallest integer with 2−l+2 < %/

√
n. It is easy to see that for any Q ∈ Qj

there is Q′ ∈ Qj+l such that Q′ ⊂ Q and Q′ ∩ A = ∅. Let us fix one such Q′ for
each Q ∈ ⋃∞

j=1 Qj. Next we define a set B ⊂ [0, 1]n by setting

B = [0, 1]n \
∞⋃

j=0

⋃

Q∈Qj

Q′. (4.1)
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f1 f2

f3

f4 f5

f6

f7 f8

f9

Figure E. Similitudes fk, when n = 2, l = 3.

For any Q ∈ Qj, let xQ be the corner of Q which is nearest to the origin, and let

Q̃ = {xQ} + 2−j−l[0, 1]n. If we define E ⊂ [0, 1]n by setting

E = [0, 1]n \
∞⋃

j=0

⋃

Q∈Qj

intQ̃,

where int denotes the interior of a given set, then obviously dimM(E) ≥ dimM(B),
see also Käenmäki [5, Example 3.14]. The set E is the limit set of the iterated
function system defined by the similitudes fk, k = 1, 2, . . . , l(2n − 1), see Figure

E. For any i ∈ {1, . . . , l}, there are 2n−1 similitudes among {fk}l(2n−1)
k=1 with con-

traction ratio 2−i. Since the open set condition is clearly satisfied, the dimension
s = dimM(E) = dimH(E) is given by

(2n − 1)

l∑

i=1

2−is = 1,

see Hutchinson [3, §5]. This reduces to

2n−s = 1 + (2n − 1)2−(l+1)s

and since log2(1 + x) ≥ x/
(
(1 + x) log 2

)
for x ≥ 0, we have

s = n − log2

(
1 + (2n − 1)2−(l+1)s

)

≤ n − log2

(
1 + (1 − 2−n)2−ln

)

≤ n − 2

5 log 2
2−ln ≤ n − c%n,

where c =
(
2/(5 log 2)

)
2−3nn−n/2. Because A ⊂ B and dimM(B) ≤ dimM(E) =

s, we conclude that also dimM(A) ≤ n − c%n. �
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We believe it is known, that a straightforward box-counting argument can be
used to prove Theorem 4.1. However, such a direct method seems to lead to
quite complicated recursive formulae and to avoid this, we used the self-similar
set E.

Remark 4.2. In a sense the above result is the best possible one. There is a
constant c′ = c′(n) > 0 and sets A%, 0 < % < 1/2, with dimH(A%) > n − c′%n,
and por1(A%, x, r) ≥ % for all r > 0 and x ∈ R

n. See, for example, Koskela and
Rohde [6], or estimate the Hausdorff dimension of the set E from below.

Theorem 4.3. Let A ⊂ R
n be bounded and suppose that there is V ∈ G(n, m)

such that for all x ∈ A and 0 < r < r0 one has

sup
{
%′ : B(z, %′r) ⊂ B(x, r) \ A for some z ∈ V + {x}

}
≥ %. (4.2)

Then dimM(A) < n − c%m, where c > 0 depends only on n and m.

Proof. Without losing the generality we may assume that V = R
m = {x ∈ R

n :
xm+1 = xm+2 = . . . = xn = 0}, r0 =

√
n, and A ⊂ [0, 1]n. Let Qj be, as before,

the collection of all closed dyadic cubes Q ⊂ [0, 1]n with side length 2−j, and

let Q̃j = {PV (Q) : Q ∈ Qj} and Q′
j = {PV ⊥(Q) : Q ∈ Qj}. Here PV is the

orthogonal projection onto V . Furthermore, let l be the smallest integer with
2−l+2 < %/

√
n.

We define a set E = El,m ⊂ V as in the proof of Theorem 4.1. For j ∈ N we

let aj = aj,l,m denote the minimum number of cubes from the collection Q̃j that
are needed to cover E. The proof of Theorem 4.1 yields that

lim
j→∞

log aj

log(2j)
≤ m − c2−ml, (4.3)

where c > 1
2

is an absolute constant.

It is straightforward to convince oneself of the following fact: If Q̃ ∈ Q̃j and

Q′ ∈ Q′
j+l, then there is Q ∈ Qj+l such that PV ⊥(Q) = Q′, PV (Q) ⊂ Q̃, and

A ∩ Q = ∅. From this observation it follows that given Q′ ∈ Q′
j, only aj cubes

from the collection {Q ∈ Qj : PV ⊥(Q) = Q′} touch the set A. Thus only
2j(n−m)aj cubes from the collection Qj are needed to cover A. Using (4.3), we
calculate

dimM(A) ≤ lim sup
j↓0

log(2j(n−m)aj)

log(2j)
= n − m + lim sup

j↓0

log aj

log(2j)

≤ n − c2−ml ≤ n − c2−3mn−m/2%m.

�

Remark 4.4. Suppose that V ∈ G(n, m) is fixed and A ⊂ R
n is such that (4.2)

holds for every x ∈ A and 0 < r < rx, where rx > 0 depends on the point x.
It follows immediately from Theorem 4.3 that dimH(A) ≤ dimP (A) ≤ n − c%m,
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where c is as in Theorem 4.3 and dimP denotes the packing dimension, see [9,
§5.9]. The above dimension estimates are also sharp. Consider, for example, sets
of the form E × R

n−m, where E ⊂ R
m is as in the proof of Theorem 4.1.
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