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Abstract. We construct a continuous dynamical system on a
compact connected metric space which has a unique ergodic in-
variant natural measure but has no observable measures.

1. Introduction

One of the most important properties of axiom A attractors is the
existence of an SRB-measure. If the system is topologically mixing the
SRB-measure is unique. These results are due to Sinai [S], Ruelle [R],
and Bowen [B]. In this setting the unique SRB-measure µ has many
well-known characterizations. First of all, it is observable, that is, the
Birkhoff averages of Lebesgue almost all initial points can be calcu-
lated using µ (for more precise definitions see section 2). Secondly, the
SRB-measure is natural meaning that any measure which is absolutely
continuous with respect to the Lebesgue measure converges to µ un-
der the iteration of the dynamics. Thirdly, in the expanding case µ is
equivalent to the Lebesgue measure, and in the genuinely hyperbolic
case the conditional distributions of µ along the unstable manifolds are
absolutely continuous with respect to the Lebesgue measure on unsta-
ble leaves. Finally, µ is an equilibrium state for a potential function
constructed using the derivative of the map.

Since the original works of Sinai, Ruelle, and Bowen there has been
an extensive study of SRB-measures. We refer to the nice survey of
Young [Y] for more information. Despite of many important results,
the understanding of systems having or having not SRB-measures is far
from being satisfactory. Therefore it is important to find out relations
between the above mentioned properties in general dynamical systems.
The third and fourth properties are closely tied to hyperbolic systems
since one needs the existence of unstable leaves or symbolic dynamics
to even define them. Thus from the general point of view the first to
properties are more interesting. Blank and Bunimovich have studied
the relations between observable and natural measures in [BB]. They
prove (see [BB, Theorem 2.1]) that if an observable measure exists
then it is also natural. On the other hand, natural measures are not
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necessarily observable (see [BB, Theorem 2.1]). However, Blank and
Bunimovich proved that any ergodic invariant natural measure which is
equivalent to the Lebesgue measure is also observable. They also show
that ergodicity or equivalence to the Lebesgue measure is necessary in
this implication: using a result of Inoue [I, Corollary 2.2] (see also [K]),
they verify the existence of a non-ergodic invariant natural measure
which is not equivalent to the Lebesgue measure and not observable.

In this paper we prove that ergodicity does not guarantee the equiv-
alence of natural and observable measures. Namely, we construct a
continuous dynamical system on a compact connected metric space
which has a unique ergodic invariant natural measure but no observ-
able measures.

The paper is organized as follows. The notation is introduced in
section 2. In section 3 we construct the compact metric space and the
mapping defined on it. The aforementioned properties of this dynam-
ical system are proved in section 4. Finally, in section 5 we give some
modifications of our system.

2. Basic definitions and notation

In this section we give the basic definitions and introduce the nota-
tion used throughout this paper.

Definition 2.1. Let X be a topological space equipped with a locally
finite Borel regular measure L, and let T : X → X be Borel measur-
able. A Borel regular probability measure µ is natural (with respect
to L), if there exists an open set U ⊂ X such that for all Borel regular
probability measures ν, which are absolutely continuous with respect
to L (denoted by ν � L) and supported on U , one has

lim
n→∞

1

n

n∑

j=1

(T∗)
jν = µ

where the limit is taken in the weak∗ topology and T∗ν is the image
measure of ν under the map T . A Borel regular probability measure
µ is observable (with respect to L), if there exists an open set U ⊂ X

such that for L-almost all x ∈ U one has

lim
n→∞

1

n

n∑

j=1

δT j(x) = µ

where δx is the normalized point mass at x. (Here again the weak∗

topology is used.)

We will represent our construction using a modification of the stack-
ing method originally due to von Neumann and Kakutani (see [F, chap-
ter 6]). For this we need some notation. Let Ci = [ci, c

∗
i ), i = 0, 1, . . . , n,

be non-empty intervals with disjoint closures. Denoting C ′ = ∪n
i=0Ci,
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we can define a one-to-one mapping τC : C ′ \ Cn → C ′ \ C0 in the
following manner: when 1 ≤ i < n, set τi : Ci → Ci+1 by

(2.1) τi(x) =
c∗i+1 − ci+1

c∗i − ci

(x − ci) + ci+1,

and define τC(x) = τi(x), when x ∈ Ci. We represent the tower associ-
ated to the function τC as an ordered product C =

∏n

i=0 Ci = C0 · · ·Cn.
Clearly τi is the unique affine order-preserving function of Ci onto Ci+1.
Therefore the intervals Ci define the function τC uniquely and one can
equivalently speak of the tower C and the function τC . The tower C

has C0 as its base and Cn as its top. We say that a tower starts from
its base. Every x in C ′ has some preimage τ−k

C (x) in C0, admitting
k = 0. This k, which is unique for x, is called the height of x and
denoted by h(x). The points with the same height are said to be on
the same level. (The concepts “above”, “below”, and “vertical” make
thus sense due to the correspondence between iteration and ascending
height. They only refer to the location of points in the tower, not their
actual location on the real line.) The height of a tower C is

h(C) = max{h(x) | x ∈ C ′} − min{h(x) | x ∈ C ′} + 1.

For the tower C defined above we have h(C) = n + 1. Later we will
use towers starting from different levels.

It is obvious that also infinitely high towers
∏∞

i=0 Ci can be defined.
Two towers C and D are disjoint, if C ′∩D′ = ∅. If c′i divides the interval
Ci in some proportion, say in half, then τC(c′i) = c′i+1 divides Ci+1 in
the same proportion. We see that τC maps interval [ci, c

′
i) =: C1

i onto
[ci+1, c

′
i+1) =: C1

i+1 and [c′i, c
∗
i ) =: C2

i onto [c′i+1, c
∗
i+1) =: C2

i+1. Thus
we can think the tower C =

∏n

i=0 Ci as consisting of two (parallel)
subtowers

∏n

i=0 C1
i and

∏n

i=0 C2
i as well as the (successive) subtowers∏m

i=0 Ci and
∏n

i=m+1 Ci. (The term subtower will be used in both
senses.) Say we have two disjoint towers C and D with heights n =

h(C) > h(D) = m. We can replace the subtower
∏j+m−1

i=j C2
i (0 ≤ j ≤

n +1−m) by tower
∏m−1

i=0 Di defining the function τ from the interval
C2

j−1 onto D0 and from Dm−1 onto C2
j+m as in (2.1) and elsewhere as a

restriction of τC and τD in an obvious manner. Since the closures of the
intervals are disjoint, the resulting function is continuous everywhere
in its domain excluding the point c′j−1.

3. Construction of the mapping

In this section we will construct our mapping. The basic idea of
the construction is as follows: The mapping is defined on a subset of
the interval [−1, 1]. We start with a short interval near zero. It is
mapped linearly onto an interval which is left to the starting interval.
After continuing in this manner for a while, the interval is divided into
two parts. One part continues to move towards −1 while the other
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one starts to move back to 0 and further to 1. After spending a long
time (compared to its history) close to 1, it returns back to 0 and
further to −1. Then a half of those points which have been close to
−1 will start to move towards 1, spend there a relatively long time,
and come back close to −1 again. In this way every point will spend
arbitrarily long periods of time near −1 and near 1, which guarantees
that there will be no observable measures. On the other hand, the
proportion of points being near −1 at fixed time will tend to 1 as time
tends to infinity implying that the point mass at −1 will be the unique
natural measure. To make the mapping continuous, we need to remove
the neighbourhoods of the splitting points of the intervals, and their
preimages. Finally, adding an extra dimension to our system makes
the space connected.

We start by constructing a compact metric space Z ⊂ [−1, 1] and an

auxiliary mapping T̃ : Z → Z. We will denote the Lebesgue measure
on [−1, 1] by L.

Definition 3.1. For A, B ⊂ [−1, 1] we write A < B, if x < y for
every x ∈ A and y ∈ B. Here the closure of a set A is denoted
by A. We use also the notation x < A if {x} < A, and x ≤ A if
x < A or x ∈ A. The distance of a point x to a set A is denoted by
d(x, A) = inf{d(x, y) | y ∈ A}, where d(x, y) is the usual Euclidean
distance between two points.

For i = 0, 1, . . . , let Ci = [ci, c
∗
i ) and Di = [di, d

∗
i ) be half-open

subintervals of the open interval (−1, 0), and Ei = [ei, e
∗
i ) and Fi =

[fi, f
∗
i ) subintervals of (0, 1), such that C0 > D0 > C1 > D1 > . . . and

E0 < F0 < E1 < F1 < . . . with limi→∞ d(−1, Ci) = limi→∞ d(1, Ei) =
0. For j = 1, 2, . . ., let D

j
i = [dj

i , d
j∗
i ) and F

j
i = [f j

i , f
j∗
i ) be subintervals

of Di and Fi, respectively, so that for every i = 0, 1, . . . we have

(1) D1
i < D2

i < . . .

(2) limj→∞ d(d∗
i , D

j
i ) = 0,

(3) L(D1
i ) < 1

2
L(Di) and L(Dj+1

i ) < 1
2
L(Dj

i ),

and similarly for F
j
i . Now if H stands for C, D, E or F , then L(∪i:n≤iHi)

tends to zero as n tends to infinity. If H is either D or F , then
L(∪j:n≤jH

j
i ) < 1

2n−1L(Hi) < 1
2n−1 for every i and therefore

(3.1) L(
⋃

i,j
i≤n≤j

H
j
i ) ≤

n + 1

2n−1
−−−→
n→∞

0.

The union of the intervals Hi will be denoted by H ′, where H = C, D,
E, or F .

The construction of T̃ is based on the tower C =
∏∞

i=0 Ci and towers
Bi with h(Bi) = hi to be defined precisely in (3.2). All the towers
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Figure 1. Schematic picture of the modified tower correspond-

ing to T̃ . In the picture the intervals are scaled equally long. We
have curtailed the heights of subtowers Bi so that they fit nicely
in the picture. The points xi are dyadic on the base interval C0.

are mutually disjoint. Dividing C (vertically) in half gives two parallel

subtowers with bases C1
1 and C2

1 . Then the subtower
∏h1

i=1 C2
i is re-

placed by B1 in the manner described in section 2. Setting n = h1 + 1,
divide the subtowers starting from intervals C1

n and C2
n in half and re-

enumerate them such that C1
n < C2

n < C3
n < C4

n. Replace the subtower
starting from C1

n with height h2 by B2, the subtower starting from
C2

n+h2
with height h3 by B3, and the subtowers starting from C3

n+h2+h3

and C4
n+h2+h3+h4

with heights h4 and h5 by B4 and B5, respectively.
Then continue by dividing the subtowers in half, re-enumerating them,
and replacing subtowers with corresponding lengths by B6, . . . , B13.
This procedure will be carried on and on always inserting the subtow-
ers Bj in the tower so that the base of Bj+1 is one level above the top
of Bj (see Figure 1).

The function defined above is denoted by T̃ and its domain by Z.
Finally, we define the towers Bi explicitly. The structure of Bi depends
on the heights of B1, . . . , Bi−1. Namely, if Bi is inserted in C so that
it starts from the nth level, it is of the form

(3.2) Bi = Dn
n · Dn

n−1 · · ·Dn
0 ·

4n∏

j=n

Ej · F 4n
4n · F 4n

4n−1 · · ·F 4n
0 .
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Set B′ := ∪iB
′
i where the union of intervals in Bi is denoted by B′

i.
Every x ∈ Z has some nth preimage in C0, so the height of points will

be understood with respect to T̃ and the base C0. The points which
divide C0 into 2n equally long intervals for some n, i.e., the dividing
points due to bisecting C0 over and over again, are called dyadic (see
Figure 1).

Note that in the definition of T̃ we did not use all the intervals
defined above. The only use for the unused intervals is that they make
the indexation simpler.

Lemma 3.2. The mapping T̃ : Z → Z has the following properties:

(1) Its points of discontinuity are some iterates of the dyadic points
in C0.

(2) On every level (except C0) of T̃ there is exactly one interval in
B′. We call such interval Bn.

(3) For every x ∈ Z there are infinitely many positive integers n

and m such that T̃ n(x) ∈ C ′ and T̃ m(x) ∈ E ′.
(4) If x ∈ C ′ (respectively E ′) and n > 0 is the smallest integer

such that T̃ n(x) ∈ E ′ (∈ C ′) then T̃ i(x) ∈ E ′ (∈ C ′) for all
n ≤ i ≤ 2n.

(5) If Gn = {x ∈ Z | h(x) ≥ n}, then limn→∞L(Gn) = 0.

(6) limn→∞L(T̃−n(Bn)) = 0.

(7) If Qk
n = {x ∈ Z | −1 < T̃ n(x) < 1

k
− 1}, then

lim
n→∞

L(Z \ Qk
n) = 0

for every fixed k > 0.

Proof. (1) As mentioned before, the only points where T̃ is discontin-
uous arise in the construction when dividing the subtowers in half and
replacing them. The preimages of such points in C0 are dyadic.

(2) This is obvious considering the construction of T̃ .
(3) In view of the construction, it is easy to see that every x ∈ Z has

some iterate T̃ n(x) in B′
i for some i. Since Bi is of the form (3.2), it is

obvious that some iterate will also be in E ′. The corresponding claim
for C ′ instead of E ′ is similar.

(4) Let n > 0 be the smallest integer such that T̃ n(x) ∈ E ′ for x ∈ C ′.

Then T̃ n(x) ∈ Em ⊂ B′
k for some m and k, and moreover

Bk = Dm
m · Dm

m−1 · · ·Dm
0 ·

4m∏

j=m

Ej · F 4m
4m · F 4m

4m−1 · · ·F 4m
0

(recall (3.2)). Therefore there are m−1 levels below Bk (that is, below
the interval Dm

m) and m levels between Dm
m and Em, altogether 2m

levels below Em. Thus n < 2m. For x ∈ C ′ the claim then follows from
the fact that

∏4m

j=m Ej is a subtower of Bk with height 3m+1 > 2m > n.
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Let x ∈ E ′ and n be the smallest integer such that T̃ n(x) ∈ C ′. Say
x ∈ Em ⊂ B′

k. Then n ≤ hk. It is easy to see in the light of (3.2) that
hk+1 > 2hk ≥ 2n and also that there are at least hk+1 intervals in C ′

above the subtower Bk, from which the corresponding claim for x ∈ E ′

follows.
(5) Every x ∈ Gn belongs to some Cm or Bm with m ≥ n. Moreover,

according to (3.2), Bm is either of the form Ei with i ≥ n, or of the form

D
j
i or F

j
i with j ≥ n and i ≤ j. Since limn→∞L(∪i:i≥nCi∪Di∪Ei∪Fi) =

0, it suffices to prove that limn→∞L(∪i,j:j≥n≥iD
j
i ∪ F

j
i ) = 0, but this

has already been stated in (3.1).
(6) As n tends to infinity, smaller and smaller fractions of the points

on level n−1 are mapped onto Bn (see Figure 1). The inverse function

of T̃ preserves the proportion of such points. Therefore smaller and

smaller subintervals of C0 are mapped onto Bn by T̃ n as n increases.
(7) Let ε > 0. We know that when j is large then d(−1, Ci) < 1

k
for

all i ≥ j. Thus for n > j every x ∈ Z \ Qk
n is such that T̃ n(x) ∈ Bi for

some i ≥ j. By (5) we may take m so large that L(Gm) < ε
2
. Then

L(Z \ Qk
n) ≤ L(Gm) + L(Hm),

where

Hm = {x ∈ Z | h(x) ≤ m and T̃ n(x) ∈ B′} ⊂ ∪m
j=0T̃

j(T̃−(n+j)(Bn+j)).

Choosing n > j large enough, we have by (6) that

L(∪m
j=0T̃

j(T̃−(n+j)(Bn+j))) <
ε

2
.

Observe that |T̃ ′| < K = K(m) here, where the notation K(m) means
that the constant K depends on m. In fact, setting some lower bound
on the decrease rate of the lengths of the intervals of the construction,

one has |T̃ ′(x)| < K for all x ∈ Z, that is, one obtains a constant
independent of m. �

Definition 3.3. Consider an increasing sequence (mi) of positive in-
tegers and a point x ∈ Z. Define

Ni(x) = {1 ≤ k ≤ mi | T̃ k(x) < 0} and

Pi(x) = {1 ≤ k ≤ mi | T̃ k(x) > 0}.
From now on we will write Ni instead of Ni(x) as the point x will be
clear from the context. Define ni = #Ni and pi = #Pi, where the
number of the elements in a set A is denoted by #A.

Lemma 3.4. For every x ∈ Z there is an increasing sequence (mi) of
positive integers such that pi = ni = mi

2
.

Proof. We may assume that x < 0 because the case x > 0 is similar.

According to Lemma 3.2.(3), there is n such that T̃ n(x) ∈ E ′. Take
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the smallest such n which is easily seen to be the smallest integer

such that T̃ n(x) > 0. Using Lemma 3.2.(4), we know that the points

T̃ n(x), . . . , T̃ 2n(x) are also in E ′, and thus positive. We set m1 =
2n − 2, whence n1 = n − 1 = p1. The rest of the sequence is defined

recursively. Assume z := T̃ mi(x) > 0. (The case < 0 is treated similarly
by inverting all the inequalities.) Then there is again the smallest n

such that T̃ n(z), . . . , T̃ 2n(z) < 0. We define mi+1 = mi + 2n − 2 and
get ni+1 = ni + n − 1 = mi

2
+ n − 1 = pi + n − 1 = pi+1. �

The set Z is not compact since it lacks the right endpoints of its inter-
vals and the accumulation points −1, 1, d∗

i , and f ∗
i for i = 0, 1, . . . (We

denote the accumulation points outside Z by Z\Z =: Y .) However, the

mapping T̃ can be easily extended to Y . The right endpoints of inter-
vals in Z are mapped to each other in an obvious manner just expanding
the affine function to a left-continuous one on the closed interval in ac-
cordance with (2.1). Define also T̃ (−1) = −1, T̃ (1) = 1, T̃ (d∗

i ) = d∗
i−1

and, T̃ (f ∗
i ) = f ∗

i−1 for i = 1, 2, . . . , T̃ (d∗
0) = 1 and T̃ (f ∗

0 ) = −1.

Lemma 3.5. The mapping T̃ : Z → Z on the compact set Z = Z ∪ Y

is continuous on Y .

Proof. It suffices to prove the continuity at 1, −1, and the points d∗
i , f ∗

i ,
i = 0, 1, . . . (Recall that the left-continuity at the right endpoints of
the intervals is enough, since the closures of the intervals are disjoint.)
First we note that if −1 < x < Ci, then x is either in C ′ or in D′. In the

former case T̃ (x) < Ci+1 < Ci−1, and in the latter one T̃ (x) ≤ Di−1 <

Ci−1. For arbitrary ε > 0 choose i so large that d(−1, Cj) < ε for every
j ≥ i − 1, and let δ < d(−1, Ci). Now if d(−1, x) < δ, then x < Ci

and d(T̃ (x),−1) < d(−1, Ci−1) < ε. Thus T̃ is continuous at −1. The
proof of the continuity at 1 and d∗

i , f ∗
i , i = 0, 1, . . . is similar. �

Although T̃ is continuous at the new points in Y which are added to
Z to make it compact, it is not continuous originally on Z. However,
according to Lemma 3.2.(1) the points of discontinuity in Z are only

some iterates of the dyadic points in C0. In order to make T̃ continuous,
we modify the set Z by omitting all the dyadic points and their images
in the following manner. Denote the middle point of C0 by x0 and the
middle points of the halves of C0 by x1 and x2, respectively. Enumer-
ate all the dyadic points like this (see Figure 1). Remove some small
open interval including x0. Then remove much smaller open intervals
containing x1 and x2. Carry this procedure on so that the remaining
set, (which will be still called C0), is of positive measure, compact and
free of the dyadic points. Note that the new C0 is not a standard
Cantor type set since the intervals are not removed from the middle of
the previous level intervals. In particular, one may remove an interval
inside an interval which has already been removed. Nevertheless, the
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resulting set is compact and it has positive Lebesgue measure if the

lengths of the removed intervals tend to zero rapidly enough. Since T̃

is continuous on (the new) C0 and on all of its iterates, the set

X = ∪∞
n=0T̃

n(C0)

is compact and of positive Lebesgue measure. The restriction T = T̃ |X
is therefore a continuous function on the compact set X. With obvious
modifications it still has the properties described in Lemma 3.2.

4. Natural and observable measures of T

In this section we show that the mapping T has a unique natural
measure which is ergodic and invariant, but it has no observable mea-
sures.

Theorem 4.1. For any Borel regular probability measure µ � L with
support in X we have

lim
n→∞

1

n

n∑

j=1

(T∗)
jµ = δ−1

where the convergence is in the weak∗ topology. Furthermore, the mea-
sure δ−1 is ergodic and invariant with respect to T .

Proof. Let ϕ : X → R be a continuous function and µ a Borel regular
probability measure supported in X such that µ � L. By the definition
of the image measure

∫
ϕd(

1

n

n∑

j=1

(T∗)
jµ) =

∫
1

n

n∑

j=1

ϕ ◦ T jdµ.

For Qk
n = {x ∈ Z | −1 < T n(x) < 1

k
− 1} we know from Lemma

3.2.(7) that limn→∞L(X \ Qk
n) = 0 for every fixed k. Since µ � L

also limn→∞ µ(Qk
n) = 1. We fix a positive integer l and let Rn = {x ∈

X | |ϕ(T n(x)) − ϕ(−1)| < 1
l
}. Since ϕ is continuous, for all positive

integers n we have Qk
n ⊂ Rn for all large k depending on l. This gives

that limn→∞ µ(Rn) = 1. Thus, letting ε > 0, there is a positive integer

nε so that if x ∈ Rn with n > nε, then |ϕ(T n(x)) − ϕ(−1)
µ(Rn)

| < 1
l
+ ε and

µ(X \ Rn) < ε. Now
∣∣∣∣∣

∫
1

n

n∑

j=1

ϕ ◦ T jdµ −
∫

ϕdδ−1

∣∣∣∣∣ ≤
1

n

n∑

j=1

∫

Rj

|ϕ(T j(x)) − ϕ(−1)
µ(Rj)

|dµ(x)

+
1

n

n∑

j=1

∫

X\Rj

|ϕ(T j(x))|dµ(x)

= A + B.
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Fixing ε > 0, noting that µ(Rj) > 0 for all j, and writing M =
maxx∈X |ϕ(x)| we have

A =
1

n

nε∑

j=1

∫

Rj

|ϕ(T j(x)) − ϕ(−1)
µ(Rj )

|dµ(x)

+
1

n

n∑

j=nε+1

∫

Rj

|ϕ(T j(x)) − ϕ(−1)
µ(Rj )

|dµ(x)

≤ MK(nε)

n
+

1

l
+ ε

Letting n → ∞, ε → 0, and l → ∞ this term tends to zero. To
estimate B, choose nε so big that µ(X \ Rj) < ε

M
whenever j > nε.

Then

B =
1

n

nε∑

j=1

∫

X\Rj

|ϕ(T j(x))|dµ(x) +
1

n

n∑

j=nε+1

∫

X\Rj

|ϕ(T j(x))|dµ(x)

≤ nεM

n
+

Mε

M
−−−→
n→∞

ε.

Therefore

lim
n→∞

∫
1

n

n∑

j=1

ϕ ◦ T jdµ = ϕ(−1),

that is, δ−1 is the unique natural measure. Obviously, δ−1 is invariant
and ergodic. �

Theorem 4.2. For L-almost every x ∈ X we have that

lim
n→∞

1

n

n∑

j=1

δT j(x) 6= δ−1.

Proof. Let ϕ : X → R be a continuous function with ϕ(x) = 0 for
x < C0 and ϕ(x) = 1 for x > 0. Take x ∈ Z ∩ X recalling that
L(X \Z) = 0. According to Lemma 3.4, there is an increasing sequence
(mi) such that pi = ni = mi

2
(see Definition 3.3). Since the preimage

T−1(C0) is empty, ϕ(T j(x)) = 0, if T j(x) < 0. Therefore

1

mi

mi∑

j=1

ϕ(T j(x)) =
1

mi

∑

j∈Ni

ϕ(T j(x)) +
1

mi

∑

j∈Pi

ϕ(T j(x))

=
1

2pi

∑

Pi

1 =
1

2

for all i. Hence

lim
n→∞

1

n

n∑

j=1

ϕ(T j(x)) 6= 0 = ϕ(−1).

�
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I

X∗ g(X∗)

X

g

0

Figure 2. The image g(X∗) is connected through the origin.

Corollary 4.3. The mapping T : X → X has no observable measures.

Proof. If T had an observable measure µ then [BB, Theorem 2.1] would
imply that µ is also natural. Thus µ = δ−1 by Theorem 4.1 which is a
contradiction with Theorem 4.2. �

5. Modifications of the mapping T

We have constructed a continuous function on a compact metric
space X with a unique natural measure but without observable mea-
sures. The set X is not connected but it can be modified by increasing
the dimension. First expand X into R

2 by taking X∗ = X × [0, 1].
Let S(x) =

√
2x − x2. Notice that S has 0 as a repelling and 1 as an

attracting fixed point. Define T ∗ on X∗ by T ∗(x, y) = (T (x), S(y)),
which makes T ∗ continuous on its domain. It is obvious that under
iteration T ∗ will eventually behave like T on the set X × {1}. The
natural measure of T ∗ is δ(−1,1) but it does not have observable mea-
sures. Now to make X∗ connected, we define a continuous function
g : X∗ → R

2 by g(x, y) = (yx, y) which is invertible except at the
origin. It is easy to see that X ′ = g(X∗) is connected (see Figure 2).
Define finally function T : X ′ → X ′ by making the origin its fixed point
and defining it as g ◦T ∗ ◦ g−1 everywhere else. Obviously this function
is continuous and it has the same properties as T ∗.

It is also easy to modify T such that it has nontrivial limit dynamics.

Namely, let X̂ = X ′×S1 and define T̂ : X̂ → X̂ by T̂ (x, z) = (T (x), z2).

Then δ(−1,1)×L is the unique natural measure and T̂ has no observable
measures.

Remark 5.1. In the view of Corollary 4.3 we know that the essential
assumption in [BB, Theorem 2.1] guaranteeing that a natural measure
is observable is its equivalence to the Lebesgue measure (restricted to
some open set). It would be nice to know if there is any other condition
implying this property.
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