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Abstract

We prove local distortion results for quasiconformal and quasiregu-
lar mappings at points at which the local modulus of continuity of the
mapping is in a sense extremal. These results extend to higher dimen-
sions the results in [2], where the planar case is studied by using the
Beltrami equation. Our proofs are based on the use of the conformal
modulus of n− 1-dimensional sets, and on the methods used in [3].
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1 Introduction

Let Ω ⊂ Rn be a domain, n ≥ 2. We call a mapping f : Ω → Rn quasiregular,
if f ∈ W 1,n

loc (Ω, Rn), and if there exists 1 ≤ KO < ∞ so that

|Df(x)|n ≤ KOJf (x)

for almost all x ∈ Ω. Here |Df(x)| is the operator norm of the differential
matrix of f at x, and Jf (x) is the Jacobian determinant of Df(x). Quasireg-
ular homeomorphisms are called quasiconformal maps. See [4], [5], [7] and
[9] for the basic theory of quasiconformal and quasiregular mappings.

One of the properties of quasiregular mappings is the fact that they are
locally Hölder continuous with exponent α(m,KI) = (m/KI)1/(n−1). Here
KI is the inner distortion of f , and m is the local index of f at the point
at which the local modulus of continuity is measured, see Section 2 for the
definitions. Also, for non-constant quasiregular mappings it is true that the
local modulus of continuity at a single point with local index m cannot be
better than Hölder continuity with exponent β(m,KO) = (mKO)1/(n−1).
See [5] III Theorem 4.7 for the proofs of these properties.

The purpose of this note is to study the asymptotic behavior of quasicon-
formal and quasiregular mappings at points at which the mappings behave
in an extremal way, in the sense of the local modulus of continuity. That is,
we look at the local distortion of a mapping f at points at which the local
modulus of continuity is either no better than α(m,KI), or no worse than
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β(m,KO). This kind of study was initiated by Kovalev in [2], where the
planar case was considered. For quasiconformal mappings with distortion
KO close to one, good estimates for the linear dilatation have been proved
in [8] and [6].

The basic principle of the results in [2] is that, at the points that are
extremal in the sense described above, the mapping distorts spheres some-
what like analytic functions do. Here we show that a similar phenomenom
also occurs in higher dimensions. The results in [2] were proved by using
estimates for solutions of the Beltrami equation, a method not available in
higher dimensions. Here we will use methods similar to the ones established
in [3]. Namely, we will use inequalities and estimates concerning the confor-
mal modulus of families of n− 1-dimensional spheres and their images and
preimages under the mappings in question.

Our first result is stated for quasiconformal maps. As the result is local,
it also holds true for quasiregular mappings at points at which the mapping
is a local homeomorphism. The concepts used to state Theorems 1.1 and
1.4 below are defined in Section 2. In particular, we will use the notion of
infinitesimal space, introduced in [1], in order to describe the asymptotic
behavior.

Fix KI ≥ 1, and set

ωf (x0, δ) := δ−K
−1

n−1
I max

|x−x0|≤δ
|f(x)− f(x0)|,

and
ωf (x0) := lim sup

δ→0
ωf (x0, δ).

We now have the following result that generalizes Theorem 2.1 of [2] to all
dimensions n ≥ 2.

Theorem 1.1. Let f : Ω → Rn be a quasiconformal map, so that KI(x) ≤
KI for almost every x ∈ Ω. Let x0 ∈ Ω, and suppose that ωf (x0) > 0. Then
Hf (x0) = 1. Furthermore, for all g : Rn → Rn in the infinitesimal space of
f at x0,

(1.1) g(x) = |x|K
−1

n−1
I h

( x

|x|

)
for all x ∈ Rn,

where h : Sn−1(0, 1) → Sn−1(0, 1) is a homeomorphism that preserves sur-
face measure. In particular, when n = 2, h is a rotation.

Remark 1.2. Although the mappings in the infinitesimal space satisfy the
strong property (1.1), a mapping satisfying the assumptions of Theorem 1.1
does not have to be “differentiable” at x0, meaning that the infinitesimal
space of f at x0 may include more than one mapping. See the proof of
Theorem 2.2 in [2] for an example where “differentiability” fails.
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Remark 1.3. For planar mappings f the mapping h in (1.1) is an isometry.
In higher dimensions this does not have to be the case; for any n ≥ 3
and any KI > 1 there exists g : Rn → Rn satisfying the assumptions of
Theorem 1.1 for x0 = 0 and KI , so that the mapping h in (1.1) is not an
isometry. To see this, fix KI > 1, and take a quasiconformal mapping g of
the form (1.1). Furthermore, choose h to be a sense-preserving K

1/(n−1)
I -

bilipschitz homeomorphism that preserves surface measure but is not an
isometry. Then g satisfies the assumptions of Theorem 1.1. In particular,

KI(x, g) ≤ KI

almost everywhere: If we denote v(t) = tK
−1

n−1
I , then, at a point of differen-

tiability x,

l(Dg(x)) := inf
{y∈Rn:|y|=1}

|Dg(x)y| = K
−1

n−1

I |x|K
−1

n−1
I −1 = v′(|x|),

while

Jg(x) = l(Dg(x)) · |x|(n−1)
(
K

−1
n−1
I −1

)
= K

−1
n−1

I |x|n
(
K

−1
n−1
I −1

)
= KI l(Dg(x))n.

Also, the infinitesimal space of g at the origin consists of one mapping,
namely the mapping g itself. Mappings h as the one needed here do indeed
exist. For instance, for the two-dimensional sphere S2(0, 1) ⊂ R3 such map-
pings can be constructed as follows. Take the caps C1 = S2(0, 1)∩{x3 > 1/2}
and C2 = S2(0, 1)∩{x3 < −1/2}. Now define h so that h restricted to C1∪C2

is the identity. For |x3| ≤ 1/2, set

h(r, φ, x3) = (r, φ + ϕ(|x3|), x3)

in cylindrical coordinates, where ϕ : [0, 1] → [0, 1] is a nontrivial differen-
tiable function so that ϕ(1/2) = 0 and |ϕ′(t)| ≤ K

1/2
I − 1 for all x ∈ [0, 1/2].

Then h has the desired properties.

We do not know how to prove a result like Theorem 1.1 for quasiregu-
lar mappings at branch points, at which the local modulus of continuity is
roughly α(m,KI). The reason for this is that our methods (seem to) require
that boundaries of certain balls get mapped into the boundaries of the im-
ages. In dimension two this problem does not exist, because, by the Stoilow
factorization theorem, the result for quasiconformal maps implies that the
corresponding result holds true also for quasiregular mappings.

For general points we have, however, the following result concerning the
inverse distortion. Fix KO ≥ 1, and set

σm
f (x0, δ) := δ−(mKO)

−1
n−1 max

U(x0,f,δ)
|x− x0|
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(see Section 2 for the definition of U(x, f, r)), and

σm
f (x0) := lim sup

δ→0
σm

f (x0, δ).

Theorem 1.4. Let f : Ω → Rn be a quasiregular mapping, so that KO(x) ≤
KO for almost every x ∈ Ω. Let x0 ∈ Ω, i(x0, f) = m, and suppose that
σm

f (x0) > 0. Then H∗
f (x0) = 1 and

σm
f (x0) = lim

δ→0
σm

f (x0, δ).

In Section 2 we recall some definitions and the main tools that are needed
to prove the results above. The material is mainly from [3] and [5]. Theorems
1.1 and 1.4 are proved in Section 3.

Acknowledgements
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2 Preliminaries

We will denote open euclidean balls with center x and radius r by B(x, r),
while the corresponding (n− 1)-dimensional spheres are denoted by S(x, r).
In the case x = 0 the notations Br and Sr are used. The boundary of
a general set E is denoted by ∂E. Let f be a non-constant quasiregular
mapping and Df(x) the differential matrix of f at x. Set

|Df(x)| = sup
{y∈Rn:|y|=1}

|Df(x)y| and l(Df(x)) = inf
{y∈Rn:|y|=1}

|Df(x)y|,

where Jf (x) is the Jacobian determinant of Df(x). The inner and outer
distortion functions of f are defined by

KI(x) = KI(x, f) =
Jf (x)

l(Df(x))n
, KO(x) = KO(x, f) =

|Df(x)|n

Jf (x)
,

respectively, whenever Jf (x) 6= 0, otherwise set KI(x) = KO(x) = 0. Recall
that, for non-constant quasiregular mappings f , Jf > 0 almost everywhere,
see [5] II Theorem 7.4. If f is quasiconformal and KI(x, f) ≤ KI almost
everywhere, then f−1 is also quasiconformal and

(2.1) KO(x, f−1) ≤ KI

almost everywhere, see [9] Corollary 13.3 and Theorem 34.4. The Lebesgue
n-measure of a measurable set A is denoted by |A|. The Lebesgue measure
of the unit n-ball is denoted by αn. The (n − 1)-dimensional Hausdorff
measure Hn−1 is normalized so that Hn−1(B1) = ωn−1, where ωn−1 denotes
the surface measure of the unit sphere.
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Let f : Ω → Rn be a non-constant quasiregular mapping. A domain
D ⊂ Ω is called a normal domain (of f), if f(∂D) = ∂f(D). Furthermore,
if D is a normal domain and x ∈ D so that f−1(f(x)) ∩D = {x}, then D
is called a normal neighborhood of x. The x-component of the preimage of
the ball B(f(x), r) under f is denoted by U(x, f, r). By [5] II Lemma 4.1,
for each x ∈ Ω there exists sx > 0 so that for each s < sx the following
properties hold:

1. U(x, f, s) is a normal neighborhood of x,

2. U(x, f, s) = U(x, f, sx) ∩ f−1(B(f(x), s)),

3. ∂U(x, f, s) = U(x, f, sx) ∩ f−1(S(f(x), s)),

4. Rn \ U(x, f, s) and Rn \ U(x, f, s) are connected.

The local index i(x, f) of a quasiregular mapping f at a point x ∈ Ω can be
defined by

i(x, f) = lim
r→0

sup
y∈B(f(x),r)

#{f−1(y) ∩ U(x, f, r)}.

The set of points in Ω at which i(x, f) ≥ 2 is called the branch set of f and
denoted by Bf .

We will use the following dilatation functions:

L(x, f, r) = sup
|x−y|=r

|f(y)− f(x)|, l(x, f, r) = inf
|x−y|=r

|f(y)− f(x)|,

L∗(x, f, r) = sup
z∈∂U(x,f,r)

|x− z| l∗(x, f, r) = inf
z∈∂U(x,f,r)

|x− z|,

H(x, f, r) =
L(x, f, r)
l(x, f, r)

, H∗(x, f, r) =
L∗(x, f, r)
l∗(x, f, r)

,

H(x, f) = lim sup
r→0

H(x, f, r), H∗(x, f) = lim sup
r→0

H∗(x, f, r),

When U is a normal domain of f and Br ⊂ f(U), we denote B′
r :=

f−1(Br)∩U . Also, a similar notation for components of preimages of spheres
will be used. We define the surface modulus MS of a family Λ of Borel-
measurable subsets of Rn by setting

MS(Λ) = inf
{∫

Rn

ρ(x)
n

n−1 dx : ρ : Rn → [0,∞] is Borel measurable,∫
S

ρ(x) dHn−1(x) ≥ 1∀S ∈ Λ
}

.

The surface modulus is a conformal invariant, and we have an inequality
for quasiregular mappings as follows, see [3] Theorem 3.4: Suppose that
f : Ω → Rn is a quasiregular mapping. Furthermore, assume that f(0) = 0,
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i(0, f) = m and that U(0, f, 1) is a normal neighborhood of 0. Let I ⊂ (0, 1)
be a Borel measurable set. If Λ := {St : t ∈ I} and Λ′ = {S′

t : t ∈ I}, then

(2.2) MSΛ ≤ (mKO)
1

n−1 MSΛ′.

Also, by [5] III Lemma 4.1 there exists a constant d so that for all r < d we
have

(2.3) H∗(0, f, r) ≤ C,

where C is a constant only depending on n and KO.
The isoperimetric defect δ(Ω) of a bounded domain Ω is defined as

δ(Ω) = 1− |Ω|
CIHn−1(∂Ω)

n
n−1

,

where CI is the sharp constant in the isoperimetric inequality, so that δ(B) =
0 for all balls B ⊂ Rn. Hence δ(Ω) ∈ [0, 1) for every Ω. In addition to the
isoperimetric defect, we will use the metric distortion. Let f be as in (2.2).
For t ∈ (0, 1), set

α(B′
t) = inf

{
R

r
: S′

t ⊂ B(x,R) \B(x, r), x ∈ Rn

}
.

We then have the following connection between the isoperimetric defect and
the metric distortion, see [3] Proposition 4.4: Let f be as in (2.2). Suppose
that δ(B′

t) < a. Then

(2.4) α(B′
t) ≤ b(a),

where b is an increasing function depending only on n and KO, and b(a) → 1
as a → 0.

Again, let f be as above. For each t ∈ (0, 1), the point symmetrizations
of the set B′

t and its closure will be the open ball B(0, α
−1
n |B′

t|
1
n ) and its

closure, respectively. Thus the symmetrization of each S′
t will be a sphere

enclosing a ball with the same volume as the set enclosed by S′
t. We define

a function p : (0, 1) → (0,∞) by setting p(t) = α
−1
n |B′

t|
1
n . Thus the image

of the set S′
t under point symmetrization is the sphere Sp(t). Note that p

is strictly increasing. We will use the following notation. If s = p(t), we
denote the isoperimetric defect and the linear distortion of B′

t by

δs := δ(B′
t) and αs := α(B′

t),

respectively. The following estimate is proved in [3] Lemma 5.2: Suppose
that I ⊂ (0, 1) is a Borel measurable set and

Λ = {S′
t : t ∈ I}.

6



Then

(2.5) MS(Λ) ≤ ω
−1

n−1

n−1

∫
p(I)

1− δs

s
ds.

Finally, we will make use of the notion of infinitesimal space. Let f :
Ω → Rn be a non-constant quasiregular mapping and x0 ∈ Ω. Set ρ0 =
dist(x0, ∂Ω) and R(ρ) = ρ0/ρ for all positive ρ:s. Define Fρ : BR(ρ) → Rn

by setting

(2.6) Fρ(x) =
f(x0 + ρx)− f(x0)

r(x0, f, ρ)
,

where
r(x0, f, ρ) = α

−1
n

n |f(B(x0, ρ))|
1
n

Then the infinitesimal space of f at x0 is defined as the set of all non-constant
mappings F : Rn → Rn with the property that F is the limit under locally
uniform convergence of some sequence (Fρj ), where ρj → 0. By combining
the Arzela-Ascoli theorem and Reshetnyak’s compactness theorem, one can
prove that the infinitesimal space is always non-empty, see [1]. Also,

ess sup
x∈Rn

KI(x, F ) ≤ ess sup
x∈Ω

KI(x, f)

and
ess sup

x∈Rn
KO(x, F ) ≤ ess sup

x∈Ω
KO(x, f).

3 Proofs of Theorems 1.1 and 1.4

Proof of Theorem 1.4. Without loss of generality, we may assume that x0 =
0 = f(x0). Let (rj) be a decreasing sequence converging to zero so that
r1 < s0, where s0 is as in Section 2, and so that the also the rest of the
assumptions needed for the results in Section 2 to hold true are satisfied.
Then, (2.3) holds in particular. Also, by the continuity estimate [5] III
Theorem 4.7, the function r → σm

f (0, r) is bounded. Assume that

(3.1)
σm

f (0)
σm

f (0, rj)
≥ 1− 1

j
∀j ∈ N

and that σm
f (0, rj) ≥ σm

f (0, rk) for j < k. Notice that the assumption
σm

f (0) = 0 is used here. For r < r1, set r′ := supx∈B′
r
|x|. For j, k ∈ N,

j < k, (3.1) yields
(3.2)

(mKO)
1

n−1 log
((1− 1

j )r′j
r′k

)
≤ (mKO)

1
n−1 log

(σm
f (0, rk)r′j

σm
f (0, rj)r′k

)
≤ log

rj

rk
.
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Set Λjk := {St : rk < t < rj}, and Λ′
jk := {S′

t : rk < t < rj}. Then, by

(2.2), MSΛjk ≤ (mKO)
1

n−1 MSΛ′
jk. Furthermore, by (2.5),

MSΛ′
jk ≤ ω

−1
n−1

n−1

∫ p(rj)

p(rk)

1− δs

s
ds.

Recall that
p(r) = α

−1
n

n |U(0, f, r)|
1
n .

Now

ω
−1

n−1

n−1 log
rj

rk
= MSΛjk ≤ (mKO)

1
n−1 MSΛ′

jk

≤
(mKO

ωn−1

) 1
n−1

∫ p(rj)

p(rk)

1− δs

s
ds,(3.3)

and combining (3.2) and (3.3) yields

(3.4) log
((1− 1

j )r′j
r′k

)
≤

∫ p(rj)

p(rk)

1− δs

s
ds.

Now fix a > 0 and denote I = {s ∈ (p(rk), p(rj)) : δs > a} and J =
(p(rk), p(rj)) \ I. Then we have∫ p(rj)

p(rk)

1− δs

s
ds =

∫
J

1− δs

s
ds +

∫
I

1− δs

s
ds ≤ µ(J) + (1− a)µ(I)

= log
p(rj)
p(rk)

− aµ(I),(3.5)

where µ denotes the logarithmic measure. We have p(rj) ≤ r′j and p(rk) ≥
r′k
C , where C is the constant in (2.3). Hence (3.4) and (3.5) give

log
((1− 1

j )r′j
r′k

)
≤ log

(Cr′j
r′k

)
− aµ(I),

i.e.

(3.6) µ(I) ≤ 1
a

log
C

1− 1
j

.

Notice that this estimate does not depend on k, and thus (3.6) holds with

I = {s ∈ (0, p(rj)) : δs > a)}.

Next, fix ε > 0, and consider the intervals Ai := [(1 + ε)−i−1, (1 + ε)−i) for
i ≥ i0, where i0 satisfies (1 + ε)−i0 < p(rj). Since

µ(Ai) = log(1 + ε),
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(3.6) implies that there exists i(j) such that Ai ∩ J 6= ∅ for all i ≥ i(j)− 1.
Now, for all r < ri(j), we find r1 and r2 so that if p(r) ∈ AL, then p(r1) ∈
AL+1 and p(r2) ∈ AL−1, and δr1 , δr2 < a. By (2.4), αr1 , αr2 < b(a), where
b(a) → 1 as a → 0. Suppose that

S′
r2 ⊂ B(z,R1) \B(z, R2) and S′

r1 ⊂ B(w,R3) \B(w,R4),

so that αr2 = R1/R2 and αr1 = R3/R4. Then, since

|B′
r2 | = αnp(r2)n ≤ αn(1 + ε)n(−L+2)

and
|B′

r1 | = αnp(r1)n ≥ αn(1 + ε)n(−L−1),

we have

R1 ≤ b(a)R2 ≤ b(a)α
−1
n

n |B′
r2 |

1
n ≤ (1 + ε3)b(a)α

−1
n

n |B′
r1 |

1
n

≤ b(a)(1 + ε)3R3 ≤ b(a)2(1 + ε)3R4.

Notice that
B(w,R4) ⊂ S′

r1 ⊂ S′
r2 ⊂ B(z, R1).

Since there exists a ball B(z, R4− 2(R1−R4)) ⊂ B(w,R4) (we may assume
a and ε to be so small that R4 − 2(R1 −R4) > 0), we further have

S′
r ⊂ B(z,R1) \B(w,R4) ⊂ B(z,R1) \B(z,R4 − 2(R1 −R4)),

and so

α(B′
r) ≤

R1

R4 − 2(R1 −R4)
=

R1

3R4 − 2R1
≤ 1

3C(a, ε)− 2
,

where C(a, ε) → 1 as a, ε → 0. We conclude that for all a, ε > 0 there exists
r(a, ε) so that for all r < r(a, ε),

α(B′
r) ≤

1
3C(a, ε)− 2

,

and hence
lim sup

r→0
α(B′

r) = 1.

Let us next define a variant of σm
f ; set

φm
f (0, δ) := δ−(mKO)

−1
n−1

p(δ).

Then, by (2.3), φm
f (0, δ) ≥ 1

C σm
f (0, δ), and, in particular, we can choose a

decreasing sequence (rj), converging to zero, so that φm
f (0, rj) > φm

f (0, rk)
for j < k, and

φm
f (0)

φm
f (0, rj)

≥ 1− 1
j

∀j ∈ N,
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where
φm

f (0) = lim sup
δ→0

φm
f (0, δ) ≥ 1

C
σm

f (0) > 0.

We next show that actually

(3.7) φm
f (0) = lim

δ→0
φm

f (0, δ).

Fix j ∈ N, and consider r < rj and rk < r. Denote Λj = {St : t ∈ (r, rj)},
Λ′

j = {S′
t : t ∈ (r, rj)}, Λk = {St : t ∈ (rk, r)} and Λ′

k = {S′
t : t ∈ (rk, r)}.

As before, we have

ω
−1

n−1

n−1 log
rj

r
= MSΛj ≤ (mKO)

1
n−1 MΛ′

j ≤
(mKO

ωn−1

) 1
n−1

∫ p(rj)

p(r)

1− δs

s
ds

≤
(mKO

ωn−1

) 1
n−1 log

p(rj)
p(r)

(3.8)

and

ω
−1

n−1

n−1 log
r

rk
= MSΛk ≤ (mKO)

1
n−1 MΛ′

k ≤
(mKO

ωn−1

) 1
n−1

∫ p(r)

p(rk)

1− δs

s
ds

≤
(mKO

ωn−1

) 1
n−1 log

p(r)
p(rk)

.(3.9)

By combining (3.8) and (3.9) with the definition of φm
f , we further have

φm
f (0, rk) ≤ φm

f (0, r) ≤ φm
f (0, rj).

We conclude that the function δ → φm
f (0, δ) is increasing, and (3.7) holds in

particular.
In order to complete the proof of Theorem 1.4, we need to show that the

balls defining α(B′
r):s have to be centerd sufficiently near to the origin when

r → 0. To this end, we use the following auxiliary result, cf. [3] Lemma
6.1: Let B(x, r) ⊂ B(y, R), and denote by Λ the family of all sets separating
B(x, r) and Rn \B(y, R). Then

(3.10) MS(Λ) ≤
(
1−A

(R

r
, |x− y|

))
ω

−1
n−1

n−1 log
R

r
,

where t → A(R
r , t) is continuous and strictly increasing, and A(R

r , 0) = 0.
Now, fix R so that α(B′

r) < 1 + 1
k for all r < R, and so that

(3.11)
φm

f (0)
φm

f (0, r)
≥ 1− 1

k
for all r < R.

Denote Ri := 1
i R, and set

Λi := {St : t ∈ (Ri, R)}, Λ′
i := {S′

t : t ∈ (Ri, R)}.
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Suppose that mi is the radius of the largest ball B(xi,mi) with the property
B(xi,mi) ⊂ B′

Ri
for some xi ∈ Rn which is the minimizing point in the

definition of α(B′
Ri

). Also, let Mi be the smallest radius such that B′
R ⊂

B(yi,Mi) for some yi ∈ Rn which is the minimizing point in the definition
of α(BR). Denote by Λ∗

i the family of all sets separating B(xi,mi) and
Rn \B(yi,Mi). We have

(3.12) mi ≥
1

α(B′
Ri

)
p(Ri) ≥

k

k + 1
p(Ri),

and similarly

(3.13) Mi ≤
(
1 +

1
k

)
p(R).

On the other hand, (3.11) gives

(3.14)
p(Ri)
p(R)

=
φm

f (0, Ri)
φm

f (0, R)

(Ri

R

)(mKO)
−1

n−1

≥
(
1− 1

k

)
i−(mKO)

−1
n−1

.

Furthermore,
(3.15)

ω
−1

n−1

n−1 log i = ω
−1

n−1

n−1 log
R

Ri
= MSΛi ≤ (mKO)

1
n−1 MΛ′

i ≤ (mKO)
1

n−1 MΛ∗
i ,

and by (3.10),

(3.16) MΛ∗
i ≤ (1−A(i, |xi − yi|))ω

−1
n−1

n−1 log
Mi

mi
.

By (3.12), (3.13) and (3.14),

(3.17) log
Mi

mi
≤ log

(p(R)(k + 1)2

p(Ri)k2

)
≤ 3 log

( k

k − 1

)
+ (mKO)

−1
n−1 log i.

By combining (3.15), (3.16) and (3.17), we have

log i ≤ (1−A(i, |xi − yi|))
(
3(mKO)

1
n−1 log

( k

k − 1

)
+ log i

)
,

and so

A(i, |xi − yi|) ≤
3(mKO)

1
n−1 log

(
k

k−1

)
log i

=: Φ(k, i).

If we denote the inverse of t → A(i, t) at a point T by A−1(i, T ), we see that

H∗(0, f, R) ≤ |yi + Mi|
Mi

α(B′
R)
− |yi|

≤
|xi − yi|+ α(B′

Ri
)p(Ri) + (1 + 1

k )p(R)
k−1

k p(R)− |xi − yi| − α(B′
Ri

)p(Ri)
(3.18)

≤
A−1(i,Φ(k, i)) + (1 + 1

k )(p(Ri) + p(R))
k−1

k p(R)−A−1(i,Φ(k, i))− (1 + 1
k )p(Ri)

.
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We may take k → ∞ as R → 0, and so (3.18) yields (notice that
A−1(i,Φ(k, i)) → 0 as k →∞)

H∗(0, f) ≤ p(R) + p(Ri)
p(R)− p(Ri)

.

On the other hand, p(Ri) ≤ ϕ(i)p(R), where ϕ depends only on i and
ϕ(i) → 0 as i →∞. So, letting i →∞ gives H∗(0, f) = 1, and hence

lim
δ→0

σm
f (0, δ) = lim

δ→0
φm

f (0, δ) = φm
f (0) = σm

f (0).

The proof of Theorem 1.4 is complete.

Proof of Theorem 1.1. We again assume that x0 = 0 = f(x0). By applying
Theorem 1.4 to f−1, we see that H(0, f) = 1 and ωf (0) = limδ→0 ωf (0, δ).
Let g be the locally uniform limit of a converging sequence (Fρ) as in (2.6).
First, for each fixed r and each x ∈ R(ρ) so that |x| = r and R(ρ) > r,

|Fρ(x)| = α
1
n |f(ρx)|
|f(Bρ)|

1
n

≤
(rρ)K

−1
n−1
I ωf (0, rρ)H(0, f, ρ)

ρK
−1

n−1
I ωf (0, ρ)

ρ→0−−−→ rK
−1

n−1
I

and

|Fρ(x)| ≥
(rρ)K

−1
n−1
I ωf (0, rρ)

ρK
−1

n−1
I ωf (0, ρ)H(0, f, rρ)

ρ→0−−−→ rK
−1

n−1
I .

Hence |g(x)| = |x|K
−1

n−1
I ∀x ∈ Rn.

Recall that KI(x, g) ≤ KI for almost every x ∈ Rn. We next claim that

(3.19) g(tx) = tg(x) for all t > 0 and x ∈ Rn.

If this is not the case, then there exists a ray Ly = {ty : t > 0} for some
y ∈ S1, such that g−1(Ly) is not a ray of the form {tx : t > 0} for any
x ∈ S1. Furthermore, by continuity of g, there exist ε > 0, a ball Bε ⊂ S1

and T > 0 so that if we denote AT = B2T \BT , then for all y ∈ Bε we have

(3.20)
∫

g−1(Ly)∩AT

G ds > 1 + ε,

where G(x) = 1
|x| log−1 2. Denote by Γ the family of all line segments of the

form {
ty : t ∈

(
TK

−1
n−1
I , (2T )K

−1
n−1
I

)}
.
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Then, since for
F =

⋃
y∈Bε

(
g−1(Ly) ∩AT

)
we have |F | > 0, and since by (3.20) we can choose a test function G′ for
M(g−1(Γ)) as

G′(x) =

{
1
|x| log−1 2, x ∈ AT \ F
1

1+ε
1
|x| log−1 2, x ∈ F

we have

KIωn−1 log1−n 2 = ωn−1 log1−n
(2T

T

)K
−1

n−1
I = MΓ ≤ KIM(g−1Γ)

≤ KI

∫
AT

G′(x)n dx < KIωn−1 log1−n 2.

This is a contradiction, and hence (3.19) holds true.

We have shown that g is of the form g(x) = |x|K
−1

n−1
I h( x

|x|), where h :
S1 → S1 is a homeomorphism. To finish the proof, we need to show that
Hn−1(h(V )) = Hn−1(V ) for all Borel sets V ∈ S1. If this is not true, then
there exists a Borel set W ⊂ S1 so that

(3.21) Hn−1(h(W )) > Hn−1(W ).

Denote
ΓW := ∪w∈W {tw : t ∈ (1, 2)}.

Then the paths in g(ΓW ) are line segments of the form{
th(w) : t ∈

(
1, 2K

−1
n−1
I

)}
,

and we have

ωn−1Hn−1(h(W ))KI log1−n 2 = M(gΓW ) ≤ KIM(ΓW )
= ωn−1Hn−1(W )KI log1−n 2,

which contradicts (3.21). The proof of Theorem 1.1 is complete.
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[9] Väisälä, J.: Lectures on n-dimensional quasiconformal mappings,
Springer-Verlag, Berlin - New York, 1971.

University of Jyväskylä
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