IS THE APPROXIMATION RATE FOR CERTAIN
STOCHASTIC INTEGRALS ALWAYS 1//n?

MIKA HUJO

ABSTRACT. For a Borel-function f : R — R we consider the ap-
proximation of a random variable f(W;) € L? by stochastic inte-
grals with respect to the Brownian motion W' = (W});c0,1] and
the geometric Brownian motion, where the integrands are piece-
wise constant within certain deterministic time intervals. In earlier

papers it has been shown that under certain regularity conditions

the optimal approximation rate is ﬁ, if one optimizes over deter-

ministic time-nets of cardinality n. We will show the existence of
random variables f(W7) € L? such that the approximation error
tends as slowly to zero as one wishes.

1. INTRODUCTION AND RESULT

In this article we consider the approximation of a random variable
f(Wy) € L? by stochastic integrals over piece-wise constant integrands,
where f : R — R is a Borel-function, with respect to the standard
Brownian motion W = (W}),c[0,1) and the geometric Brownian motion
S = (S¢)iepp,1)- The approximation problem arises from Stochastic Fi-
nance where one is interested in variance optimal discrete time hedges
in European type options in continuous time option pricing models be-
cause continuously adjusted portfolios have to be replaced by discretely
adjusted portfolios in practice. As the option pricing model we take the
discounted Black-Scholes model (where we may assume without loss of
generality that the time horizon and the volatility are equal to one).
The pay-off of an European type option we denote by ¢(S;) which we
write in the following as f(W;) by f(z) = g(e*~2). The approximation
of the random variable f(W;) by a “discrete” stochastic integral with
respect to the geometric Brownian motion corresponds to a discrete
time hedge of the underlying option with pay-off ¢(S;).

To recall some earlier results from the literature and for later purpose
we introduce the notation used in this paper. We will work with a
complete probability space (2, F,P), where F is generated by W. It
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is also assumed that the filtration (F;).c[0,1) is the augmentation of the
natural filtration of W, all paths of W are continuous, and W, = 0.
The stochastic integrals we use in our approximation are driven by the
process X = (X)sc[,1] Which is either the standard Brownian motion
W or the geometric Brownian motion S. The geometric Brownian
motion is given by S = (S¢)¢ejo,1) with

The random variable f(W;) has a representation as stochastic inte-
gral:

£ = Ef (1) +/0 %F(S,Xs)dXs 0s.

where
F(t,z) := Ex,—o f (W) (1)
gives
F(t,z) € C*~(]0,1) x E)
with
5o R, X=W
"1 (0,00), X =S5

(cf. [5] and [2]). The approximation that we use is of the form
FOV) ~ B+ v (X, — X, ),
i=1

where v; is an J;,-measurable step-function and 7 = (¢;)I", is a deter-
ministic, but not necessarily equidistant time-net, 0 =15 <t; < --- <
t, = 1. The approximation error is measured with respect to L? via

aP(Z;7) = " invf 1
ooy

9

7 —EZ — Z'Ui—l(Xti - X))

i=1

L2

where Z € L? and the infimum is taken over all F;-measurable step-
functions v;. The superscript opt refers to optimal, since we optimize
over the random variables (v;)!~.

We are interested in rates of convergence as the time-nets are opti-
mized, i.e. in the asymptotics of

. opt .
Tlélyfn a (Z;1)

where

T ={ti)y: 0=ty <ty < -+ <ty =1,m<n}.
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Let us now recall some results from the literature. In the case of
equidistant time-nets it follows from Zhang [6] that

o i
Cyln ™ < af! <9<51>; (E>

for certain absolutely continuous g that are not almost surely linear (cf.
also [2]). Later on, Gobet and Temam [4] gave examples of functions
gy such that

C’n’ln’” <aZ' <gn(Sl); (%) > <CmnMforn=12,...

1=0

n

> < C’g7fl/2 formn=1,2,...
i=0

and 7 € [1,3). Geiss [2] considered the problem with general determi-

nistic time-nets. In [2] (see Lemma 2.1 below), it was shown that the
approximation error can be completely controlled by the deterministic

function
02
2
(O' @F) (U, Xu)

o { L X=W
oY) = y, X =295

and F given as in (1). In particular it was shown that for a large class
of random variables f(W;) € L? the optimal convergence rate is n /2

Theorem 1.1 ([1](Lemma 4.14, Proposition 4.16)). Let f(W;) € L?
and X € {W,S}. Assume that sup,cjo 1) H(f(W1); X)(u) > 0 and

C
[a+1log (1+ )" (1 —w)’
for all w € [0,1), for some C < o0 and o € (1,00). Then

Y

L2

HOF(W): X)(u) = \

u € [0,1), with

H(f(Wh); X)(u) <

0 < inf v/ {inf ai?%f(Wﬁm)] < sup V/n [ig; A" (f(Wh);7)| < oo

T€T,

Remark 1.2. (1) The class of random variables satisfying the con-
ditions of the above theorem is rather large. To see this we point
out that for every f(W,) € L? one has (cf. for example [2]) that

/0 (1 —w)H(f(W1); X)?(u)du < oo.
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(2) In [1] the above theorem is formulated in the case where X is
the geometric Brownian motion, but by Lemma 2.1 below the
theorem is true also for the Brownian motion.

Using Theorem 1.1 it follows that in the case of Zhang [6] the equidis-
tant time-nets give the optimal rate of approximation. By Theorem 1.1
it can be also proved that for the examples, given by Gobet and Temam
[4], one has the rate n~'/2 when the time-nets are optimized. Thus
the approximation by equidistant time-nets does not necessarily give
the optimal approximation rate.

The following question was left open: Are there random variables

f(Wy) € L? such that

sup v/n inf a (fWVy);7)| = o0?
n TE

The difficulty in solving this problem arises from the fact that one has
to optimize the approximation over all time-nets of a given cardinality.
Here we solve this problem by a dynamic programming type argument.
Our main theorem, Theorem 1.3, shows the existence of random vari-
ables f(W)) € L? such that the quantity inf,cz, a'(f(W1);7) tends
as slowly to zero as one wishes:

Theorem 1.3. For every sequence 3 = (,)5, of positive real num-
bers, B3, \, 0, there exists a random variable fz(W1) € L* such that

: opt . >
inf ' (f5(W):7) > 6,
forn=1,2,... and X € {W,S}.

2. PROOF
The normalized Hermite polynomials on R are given by
ac2
1 (=1)"D"e =
\/m e_é ‘

The family {h, : n=0,1,2,...} forms a complete orthonormal system
in

L*(7) = {f :R — R : f Borel-function 7/00 fA(x)dy(z) < oo}

hp(z) =

102 . . .
where dy(x) = 6’7\?—2% is the standard Gaussian measure on real line.
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For the proof of our theorem we will need some preliminary results.
First we recall that the approximation error can be strictly controlled
by the deterministic function H (f(W7); X) defined above.

Lemma 2.1 ([2]). For f € L*(v) and 7 € U327, one has

éax(f(Wl);T) < a¥ (f(Wh);7) < Cax(f(Wh);7)

where

NI

ax(f(V1);7) = ( > [ —U)H<f(W1);X)2<U)dU>

ti—1
and C > 1 is an absolute constant.

The next lemma recalls a representation of H(f(W;); X) used later
on.

Lemma 2.2 ([3]). Let f = p-,arhy € L*(v) and u € [0,1). Then

H(fF(Wh);W)*(w) = af ok +2)(k + Du”
k=0
and

HU )87 = Y- (ansa = ) (kD)0 +

k=0
Consequently, for u € [0,1) one has

SHUV): W) - (0 +a?) < HFW): S)°(w)

12
<AH(F(WL); W2 (u) + 202,

To prove Theorem 1.3 we first consider the Brownian motion case.
We show that there are functions fp € L?(v) such that H(fo(Wy); W)(u)
= (1 —wu)7Y for 6 € (0,1) and prove that the approximation error for
these fy is vanishing ”slowly” enough. Finally we construct a function
HF as combination of the functions H(fo(W1); W)?. From the function
Hé we get the desired function fgy for the Brownian motion case such
that H(fsw(W1); W)? = Hj. So our first step is

Lemma 2.3. For all 6 € (0,1) there exists a function fy € L*(7) such
that

H(fo(W1); W)(u) = 5 foru e [0,1).

L
(1—u)
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Proof. Because of Lemma 2.2 we have to find a function fy =
ZZ‘;O agehi € L2(’y) such that

. 1
k*O

Let o p = 19 = 0. Using the Binomial series expansion

ﬁzZ( . ) Zﬁw) for u € (—1,1),

k=0

with ﬁ(()e) =1 and ﬂk = 20(20+1)"'(20+(k_1) for £ > 1 we may set

©)
g = (kJrgw k >0, and have to show that > °  aj , < oo or
226(20+1)--.(26+(k— 1))
(k+2)!
for every 6 € (0,1). The above sum can be written with Gamma-
functions as

< 00
k=1

12020+ 1) -+ (20 + (k — 1))

p k+2)
= T(k+260)/T(20)
_; (k4 2)!
1 - k:+29
1 (3) (k+29) (k+1)1
Er(ze)m)z T(k+3) k!
% (1,260;3;1)

where F'(a, b; ¢; d) is the Gauss hyper-geometric function which is finite
in our case since (¢ —a —b) > 0 (see [7, p. 556]). O

Lemma 2.4. For every 6 € (1,2) there exists a function fo € L*(7y)
such that
H(fo(W1); W)*(u) = (2= 6)(1 —u)~" on [0,1)
and
inf aw (fo(Wh);7) > (0 —1)"% " foralln € {1,2,...}

T€T,
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where aw (+;-) was defined in Lemma 2.1.
Proof. From Lemma 2.3 it follows that there exists a function fy €
L?(v) such that

H(fo(W1); W) u) = (2= 0)(1 —u)™,
where 6 € (1,2). Let us define

o _ -0
b, = (2 0 t0<1nf<tn 12/ (t; —u)(1 —u) "du.

By a compactness argument there exists a partition 0 = ¢ < -+ <
t? =1 such that

n 0 t
— C 0 N0 : B N
_; /tgl(ti w(-uw)fdu= _ inf /t (ti—u) (1—u) “du.

i—1

By considering {t§,...,t2,¢} as a new partition, where ¢ & {¢9,...,t0}
we may conclude that 0 < b,,1 < b, for n > 1. Moreover it is easy
to see that by = 1. Now we assume that n > 2. By a dynamic
programming argument we can calculate a recursive representation for

the expressions 22: Fixing s € [0, 1) and minimizing the error on [s, 1]

by n — 1 time-points and then minimizing the error as a function of s
we get that

b [/Otl(tl—u)u—u)—edu

2—0 0=to<-<tn=1
n t
+ Z/ (t: —u)(1— u)"du]
i=2 Yti-1

— inf [/Os(s —u)(1 —u)?du

0<s<1
n=l ey
+ inf ;—u)(1—u)Pdu
T o) UERIER

© inf [/Os(s —u)(1 —u)du+ (1 — 5)2—95"—_19]

. 1 (1—8)2_0—1 20 bn—l
_ogsl;[e—l( 0—2 —s )+ (=9 20|
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The equality (%) can be seen by

inf )1 —u)~
ETIND o) U
1-yi—
= inf (t— (1 —y))t %t
ot S e

(I=s)(1=yi-1) »
= e, 12/ (t = (1= s)(1 =)t dt

)(1—yi)

1-yi—
- . — —(1— _ _ —0/1 _
= oo L 12/ (1= s)t = (L= s)(1—y))((1 = s)t)"(1 = s)dt
0 -y ,
— : 2 . . _
SLIER S ) I

_ A Y : ' o o . )
=(1-ys) O—yo§-1-~n§fyn1—12/yil(1 u—(1—y))(1—u)"du

bn—l

(1 20
=(1-ys) 5§

From above it follows that

1 2—-0 1
bn = inf |:<1 — 8)270 (bnl — 0 ) — S+

0<s<1 -1 0—1 0—1
Using the fact that (b,)5°, is a strictly decreasing sequence and by

minimizing
1 2—-6 1
1— 2—0 - -
(1-s) (b’” 9—1) i—1""9-1

as a function of s € [0, 1] we get that
by=1—(1—(6—1)b,_1)77.

Let us assume that b, > (0 — 1)"~!, which is true for n = 1. By
induction we see that

_1

boir =1—(1— (0 —1)b,)7 7

>1—(1—-(0—-1@—-1)" )7
> (-1,
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which proves our assertion. O

Lemma 2.5. Let (3,)32, be a sequence such that B, \, 0. Then there
exists a function faw € L*(7y) with

léljf: aw (faw(Wh);7) > B, foralln € {1,2,...}.

Proof. Fix ¢ € (0,1) and let > >° p, < oo, where p, > 0 for all
n € {1,2,...}. Assume a sequence (a,)5>, such that

l1<a, /2and (a, — 1)"' > (1 —¢).

By Lemmas 2.2 and 2.3 we can choose coefficients oy 4, such that

(I —wu) ZakHa (k4 2)(k + Du* and agq, = 14, = 0.
k=0

Hence

an (1 —u) “"—an —an)ZazH,an(k%—Q)(k—i-l)uk

@)

%
ak+2—<2pn - oz,ma) for k € {0,1,...},

ap = a1 = 0 and set f,. := >/ ahy. To show that f,. is well
defined we need to prove that

o0

2
E Qg < OO.
k=0

The definition of the coefficients ay 4, implies that

(o9}
Zaiw = Z (an - ak+2a )
k=0 n=
= an(2 —ap) Z O‘z+2,an
n=1 k=0
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= an(2 - an)/o (I —u)(l—u)"*du

Now by equation (2) we have that

H(fp:(Wy), W an 2 —ap)(1—wu)" .

From this it follows that
inf aw(fp’g(Wl);T)Z

:T1é1fn2pk Z / (ti —u)(2 —ap)(1 —u)""*du

= t;€T,t; >0

ZZpk inf Z / (t; — u)(2 — ag)(1 — u)”*du.

k=1 " tier,t; >0 ti—i

Choosing 6 = aj, in Lemma 2.4 we get that

mf aw (fpe(Wh); >Zpk ar — 1)"

> (1—5)2pk.

Finally we set faw = jL and py, == 67 — Bi 4. O
Proof of Theorem 1.3. From Lemmas 2.1 and 2.5 it follows
that the assertion is true in the case of the Brownian motion. Let

(€n)52, be some sequence &, N\, 0. By virtue of Lemma 2.5 we can

choose a function few € L?(7) such that &, < aw (few (Wh);

7) for all

7€ T, and n € {1,2,...}. From the proof of Lemma 2.5 we see that
H(few(Wh); W)2(u) / oo as u — 1 and that we can also assume that

ag = a1 = 0. This means that we can find an r € (0, 1) such that

ab < H(few (Wh); S)*(u)
for u € [r,;1). By Lemma 2.2 this implies

H(few (Wh); W) (w) < 20H (few(Wh); ) (w)



THE APPROXIMATION RATE FOR STOCHASTIC INTEGRALS 1/y/n? 11

for u € [r,1). Let 7, € 7,, and define 1y, := TnU{% ci=0,1,...,n} €
75,. Lemma 2.5 gives

g.< ¥ / (s — ) H (fea (W): W) (u)du

t; ETon,t; >0 ti-1

- Z /til(ti —w)H(few (W1); W)*(u)du

1;€T2p,0<t; <r 7 ¥

T Z /til(ti —w)H(few (W1); W)*(u)du

tiETon,ti>r Yl

_ H{few(W): W)(r) 12

- 2
w0 Y f
tiETon,ti>r ti

< BV R WIO T | g fege (W )i

By choosing

(1 — W H (fer (W1); S (u)du

£ =208 + H(few (Wh); W)2<T)%2

2
and

fo:=2fw
Lemma 2.2 gives that

as(fs(W1); )
2

Bn S S aW(f,B<W1>;Tn)-

3. FINAL REMARK

Theorem 1.3 yields to the following open problems which might be
of interest for future work:

(i) As a consequence of Theorem 1.3 we get that Theorem 1.1 with-
out a condition on the function H(f(W7); X) fails to be true.
One might ask for weaker or even usable sufficient and necessary
conditions on H (f(W7); X) such that

supv/n 1€rl?£ aP (fFW);7)| < oo. (3)
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Moreover it would be of interest to find a property, which is in
a sense a property on f itself, equivalent to (3).

(ii) It seems that our techniques for deterministic time-nets do not
apply for random time-nets. So one might ask whether it is
possible to construct examples as in Theorem 1.3 if one is using
random time-nets instead of deterministic time-nets.
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