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Abstract. For a Borel-function f : R → R we consider the ap-
proximation of a random variable f(W1) ∈ L2 by stochastic inte-
grals with respect to the Brownian motion W = (Wt)t∈[0,1] and
the geometric Brownian motion, where the integrands are piece-
wise constant within certain deterministic time intervals. In earlier
papers it has been shown that under certain regularity conditions
the optimal approximation rate is 1√

n
, if one optimizes over deter-

ministic time-nets of cardinality n. We will show the existence of
random variables f(W1) ∈ L2 such that the approximation error
tends as slowly to zero as one wishes.

1. Introduction and result

In this article we consider the approximation of a random variable
f(W1) ∈ L2 by stochastic integrals over piece-wise constant integrands,
where f : R → R is a Borel-function, with respect to the standard
Brownian motion W = (Wt)t∈[0,1] and the geometric Brownian motion
S = (St)t∈[0,1]. The approximation problem arises from Stochastic Fi-
nance where one is interested in variance optimal discrete time hedges
in European type options in continuous time option pricing models be-
cause continuously adjusted portfolios have to be replaced by discretely
adjusted portfolios in practice. As the option pricing model we take the
discounted Black-Scholes model (where we may assume without loss of
generality that the time horizon and the volatility are equal to one).
The pay-off of an European type option we denote by g(S1) which we

write in the following as f(W1) by f(x) = g(ex− 1
2 ). The approximation

of the random variable f(W1) by a “discrete” stochastic integral with
respect to the geometric Brownian motion corresponds to a discrete
time hedge of the underlying option with pay-off g(S1).

To recall some earlier results from the literature and for later purpose
we introduce the notation used in this paper. We will work with a
complete probability space (Ω,F , P), where F is generated by W . It
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is also assumed that the filtration (Ft)t∈[0,1] is the augmentation of the
natural filtration of W , all paths of W are continuous, and W0 ≡ 0.
The stochastic integrals we use in our approximation are driven by the
process X = (Xt)t∈[0,1] which is either the standard Brownian motion
W or the geometric Brownian motion S. The geometric Brownian
motion is given by S = (St)t∈[0,1] with

St := eWt− t
2 .

The random variable f(W1) has a representation as stochastic inte-
gral:

f(W1) = Ef(W1) +

∫ 1

0

∂

∂x
F (s, Xs)dXs a.s.

where

F (t, x) := EXt=xf(W1) (1)

gives

F (t, x) ∈ C∞([0, 1)× E)

with

E :=

{
R, X = W
(0,∞), X = S

(cf. [5] and [2]). The approximation that we use is of the form

f(W1) ∼ Ef(W1) +
n∑

i=1

vi−1(Xti −Xti−1
),

where vi is an Fti-measurable step-function and τ = (ti)
n
i=0 is a deter-

ministic, but not necessarily equidistant time-net, 0 = t0 < t1 < · · · <
tn = 1. The approximation error is measured with respect to L2 via

aopt
X (Z; τ) := inf

v0,...,vn−1

∣∣∣∣∣
∣∣∣∣∣Z −EZ −

n∑
i=1

vi−1(Xti −Xti−1
)

∣∣∣∣∣
∣∣∣∣∣
L2

,

where Z ∈ L2 and the infimum is taken over all Fti-measurable step-
functions vi. The superscript opt refers to optimal, since we optimize
over the random variables (vi)

n−1
i=0 .

We are interested in rates of convergence as the time-nets are opti-
mized, i.e. in the asymptotics of

inf
τ∈Tn

aopt
X (Z; τ)

where

Tn := {(ti)m
i=0 : 0 = t0 < t1 < · · · < tm = 1, m ≤ n}.
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Let us now recall some results from the literature. In the case of
equidistant time-nets it follows from Zhang [6] that

C−1
g n−1/2 ≤ aopt

S

(
g(S1);

(
i

n

)n

i=0

)
≤ Cgn

−1/2 for n = 1, 2, . . .

for certain absolutely continuous g that are not almost surely linear (cf.
also [2]). Later on, Gobet and Temam [4] gave examples of functions
gη such that

C−1
η n−η ≤ aopt

S

(
gη(S1);

(
i

n

)n

i=0

)
≤ Cηn

−η for n = 1, 2, . . .

and η ∈ [1
4
, 1

2
). Geiss [2] considered the problem with general determi-

nistic time-nets. In [2] (see Lemma 2.1 below), it was shown that the
approximation error can be completely controlled by the deterministic
function

H(f(W1); X)(u) :=

∣∣∣∣∣∣∣∣(σ2 ∂2

∂x2
F

)
(u, Xu)

∣∣∣∣∣∣∣∣
L2

,

u ∈ [0, 1), with

σ(y) :=

{
1, X = W
y, X = S

and F given as in (1). In particular it was shown that for a large class
of random variables f(W1) ∈ L2 the optimal convergence rate is n−1/2:

Theorem 1.1 ([1](Lemma 4.14, Proposition 4.16)). Let f(W1) ∈ L2

and X ∈ {W, S}. Assume that supu∈[0,1) H(f(W1); X)(u) > 0 and

H(f(W1); X)(u) ≤ C[
α + log

(
1 + 1

1−u

)]α
(1− u)

,

for all u ∈ [0, 1), for some C < ∞ and α ∈ (1,∞). Then

0 < inf
n

√
n

[
inf

τ∈Tn

aopt
X (f(W1); τ)

]
≤ sup

n

√
n

[
inf

τ∈Tn

aopt
X (f(W1); τ)

]
< ∞.

Remark 1.2. (1) The class of random variables satisfying the con-
ditions of the above theorem is rather large. To see this we point
out that for every f(W1) ∈ L2 one has (cf. for example [2]) that∫ 1

0

(1− u)H(f(W1); X)2(u)du < ∞.
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(2) In [1] the above theorem is formulated in the case where X is
the geometric Brownian motion, but by Lemma 2.1 below the
theorem is true also for the Brownian motion.

Using Theorem 1.1 it follows that in the case of Zhang [6] the equidis-
tant time-nets give the optimal rate of approximation. By Theorem 1.1
it can be also proved that for the examples, given by Gobet and Temam
[4], one has the rate n−1/2, when the time-nets are optimized. Thus
the approximation by equidistant time-nets does not necessarily give
the optimal approximation rate.

The following question was left open: Are there random variables
f(W1) ∈ L2 such that

sup
n

√
n

[
inf

τ∈Tn

aopt
X (f(W1); τ)

]
= ∞?

The difficulty in solving this problem arises from the fact that one has
to optimize the approximation over all time-nets of a given cardinality.
Here we solve this problem by a dynamic programming type argument.
Our main theorem, Theorem 1.3, shows the existence of random vari-
ables f(W1) ∈ L2 such that the quantity infτ∈Tn aopt

X (f(W1); τ) tends
as slowly to zero as one wishes:

Theorem 1.3. For every sequence β = (βn)∞n=1 of positive real num-
bers, βn ↘ 0, there exists a random variable fβ(W1) ∈ L2 such that

inf
τ∈Tn

aopt
X (fβ(W1); τ) ≥ βn

for n = 1, 2, . . . and X ∈ {W, S}.

2. Proof

The normalized Hermite polynomials on R are given by

hn(x) :=
1√
n!

(−1)nDne−
x2

2

e−
x2

2

.

The family {hn : n = 0, 1, 2, . . .} forms a complete orthonormal system
in

L2(γ) :=

{
f : R → R : f Borel-function ,

∫ ∞

−∞
f 2(x)dγ(x) < ∞

}
where dγ(x) = e−

x2

2
dx√
2π

is the standard Gaussian measure on real line.
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For the proof of our theorem we will need some preliminary results.
First we recall that the approximation error can be strictly controlled
by the deterministic function H(f(W1); X) defined above.

Lemma 2.1 ([2]). For f ∈ L2(γ) and τ ∈ ∪∞n=1Tn one has

1

C
aX(f(W1); τ) ≤ aopt

X (f(W1); τ) ≤ CaX(f(W1); τ)

where

aX(f(W1); τ) :=

( ∑
ti∈τ,ti>0

∫ ti

ti−1

(ti − u)H(f(W1); X)2(u)du

) 1
2

and C ≥ 1 is an absolute constant.

The next lemma recalls a representation of H(f(W1); X) used later
on.

Lemma 2.2 ([3]). Let f =
∑∞

k=0 αkhk ∈ L2(γ) and u ∈ [0, 1). Then

H(f(W1); W )2(u) =
∞∑

k=0

α2
k+2(k + 2)(k + 1)uk

and

H(f(W1); S)2(u) =
∞∑

k=0

(
αk+2 −

αk+1√
k + 2

)2

(k + 2)(k + 1)uk.

Consequently, for u ∈ [0, 1) one has

1

12
H(f(W1); W )2(u)− 2

3

(
α2

2 + α2
1

)
≤ H(f(W1); S)2(u)

≤ 4H(f(W1); W )2(u) + 2α2
1.

To prove Theorem 1.3 we first consider the Brownian motion case.
We show that there are functions fθ ∈ L2(γ) such that H(fθ(W1); W )(u)
= (1− u)−θ, for θ ∈ (0, 1) and prove that the approximation error for
these fθ is vanishing ”slowly” enough. Finally we construct a function
H2

β as combination of the functions H(fθ(W1); W )2. From the function

H2
β we get the desired function fβ,W for the Brownian motion case such

that H(fβ,W (W1); W )2 = H2
β. So our first step is

Lemma 2.3. For all θ ∈ (0, 1) there exists a function fθ ∈ L2(γ) such
that

H(fθ(W1); W )(u) =
1

(1− u)θ
for u ∈ [0, 1).
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Proof. Because of Lemma 2.2 we have to find a function fθ =∑∞
k=0 αk,θhk ∈ L2(γ) such that

∞∑
k=0

[
α2

k+2,θ(k + 2)(k + 1)uk
]

=
1

(1− u)2θ
.

Let α0,θ = α1,θ = 0. Using the Binomial series expansion

1

(1− u)2θ
=

∞∑
k=0

(
−2θ

k

)
(−u)k =

∞∑
k=0

β
(θ)
k uk for u ∈ (−1, 1),

with β
(θ)
0 := 1 and β

(θ)
k := 2θ(2θ+1)···(2θ+(k−1))

k!
for k ≥ 1 we may set

α2
k+2,θ :=

β
(θ)
k

(k+2)(k+1)
, k ≥ 0, and have to show that

∑∞
k=0 α2

k,θ < ∞ or

∞∑
k=1

2θ(2θ + 1) · · · (2θ + (k − 1))

(k + 2)!
< ∞

for every θ ∈ (0, 1). The above sum can be written with Gamma-
functions as

∞∑
k=1

2θ(2θ + 1) · · · (2θ + (k − 1))

(k + 2)!

=
∞∑

k=1

Γ(k + 2θ)/Γ(2θ)

(k + 2)!

≤ 1

Γ(2θ)

∞∑
k=0

Γ(k + 2θ)

Γ(k + 3)

=
1

2

Γ(3)

Γ(2θ)Γ(1)

∞∑
k=0

Γ(k + 2θ)Γ(k + 1)

Γ(k + 3)

1

k!

=
1

2
F (1, 2θ; 3; 1)

where F (a, b; c; d) is the Gauss hyper-geometric function which is finite
in our case since (c− a− b) > 0 (see [7, p. 556]). 2

Lemma 2.4. For every θ ∈ (1, 2) there exists a function fθ ∈ L2(γ)
such that

H(fθ(W1); W )2(u) = (2− θ)(1− u)−θ on [0, 1)

and

inf
τ∈Tn

aW (fθ(W1); τ) ≥ (θ − 1)
n−1

2 for all n ∈ {1, 2, . . .}
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where aW (·; ·) was defined in Lemma 2.1.

Proof. From Lemma 2.3 it follows that there exists a function fθ ∈
L2(γ) such that

H(fθ(W1); W )2(u) = (2− θ)(1− u)−θ,

where θ ∈ (1, 2). Let us define

bn := (2− θ) inf
0=t0≤···≤tn=1

n∑
i=1

∫ ti

ti−1

(ti − u)(1− u)−θdu.

By a compactness argument there exists a partition 0 = t00 ≤ · · · ≤
t0n = 1 such that

bn

2− θ
=

n∑
i=1

∫ t0i

t0i−1

(t0i−u)(1−u)−θdu = inf
0=t0≤···≤tn=1

∫ ti

ti−1

(ti−u)(1−u)−θdu.

By considering {t00, . . . , t0n, t} as a new partition, where t 6∈ {t00, . . . , t0n}
we may conclude that 0 < bn+1 < bn for n ≥ 1. Moreover it is easy
to see that b1 = 1. Now we assume that n ≥ 2. By a dynamic
programming argument we can calculate a recursive representation for
the expressions bn

2−θ
: Fixing s ∈ [0, 1) and minimizing the error on [s, 1]

by n− 1 time-points and then minimizing the error as a function of s
we get that

bn

2− θ
= inf

0=t0≤···≤tn=1

[∫ t1

0

(t1 − u)(1− u)−θdu

+
n∑

i=2

∫ ti

ti−1

(ti − u)(1− u)−θdu

]

= inf
0≤s≤1

[∫ s

0

(s− u)(1− u)−θdu

+ inf
s=y0≤···≤yn−1=1

n−1∑
i=1

∫ yi

yi−1

(yi − u)(1− u)−θdu

]
(∗)
= inf

0≤s≤1

[∫ s

0

(s− u)(1− u)−θdu + (1− s)2−θ bn−1

2− θ

]
= inf

0≤s≤1

[
1

θ − 1

(
(1− s)2−θ − 1

θ − 2
− s

)
+ (1− s)2−θ bn−1

2− θ

]
.
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The equality (∗) can be seen by

inf
s=y0≤···≤yn−1=1

n−1∑
i=1

∫ yi

yi−1

(yi − u)(1− u)−θdu

= inf
s=y0≤···≤yn−1=1

n−1∑
i=1

∫ 1−yi−1

1−yi

(t− (1− yi))t
−θdt

= inf
0=y0≤···≤yn−1=1

n−1∑
i=1

∫ (1−s)(1−yi−1)

(1−s)(1−yi)

(t− (1− s)(1− yi))t
−θdt

= inf
0=y0≤···≤yn−1=1

n−1∑
i=1

∫ 1−yi−1

1−yi

((1− s)t− (1− s)(1− yi))((1− s)t)−θ(1− s)dt

= inf
0=y0≤···≤yn−1=1

(1− s)2−θ

n−1∑
i=1

∫ 1−yi−1

1−yi

(t− (1− yi))t
−θdt

= (1− s)2−θ inf
0=y0≤···≤yn−1=1

n−1∑
i=1

∫ yi

yi−1

(1− u− (1− yi))(1− u)−θdu

= (1− s)2−θ bn−1

2− θ
.

From above it follows that

bn = inf
0≤s≤1

[
(1− s)2−θ

(
bn−1 −

1

θ − 1

)
− 2− θ

θ − 1
s +

1

θ − 1

]
.

Using the fact that (bn)∞n=1 is a strictly decreasing sequence and by
minimizing

(1− s)2−θ

(
bn−1 −

1

θ − 1

)
− 2− θ

θ − 1
s +

1

θ − 1

as a function of s ∈ [0, 1] we get that

bn = 1− (1− (θ − 1)bn−1)
1

θ−1 .

Let us assume that bn ≥ (θ − 1)n−1, which is true for n = 1. By
induction we see that

bn+1 = 1− (1− (θ − 1)bn)
1

θ−1

≥ 1−
(
1− (θ − 1)(θ − 1)n−1

) 1
θ−1

≥ (θ − 1)n,
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which proves our assertion. 2

Lemma 2.5. Let (βn)∞n=1 be a sequence such that βn ↘ 0. Then there
exists a function fβ,W ∈ L2(γ) with

inf
τ∈Tn

aW (fβ,W (W1); τ) ≥ βn for all n ∈ {1, 2, . . .}.

Proof. Fix ε ∈ (0, 1) and let
∑∞

n=1 pn < ∞, where pn ≥ 0 for all
n ∈ {1, 2, . . .}. Assume a sequence (an)∞n=1 such that

1 < an ↗ 2 and (an − 1)n−1 ≥ (1− ε).

By Lemmas 2.2 and 2.3 we can choose coefficients αk,an such that

(1− u)−an =
∞∑

k=0

α2
k+2,an

(k + 2)(k + 1)uk and α0,an = α1,an = 0.

Hence
∞∑

n=1

pn(2− an)(1− u)−an =
∞∑

n=1

pn(2− an)
∞∑

k=0

α2
k+2,an

(k + 2)(k + 1)uk

(2)

=
∞∑

k=0

(
∞∑

n=1

pn(2− an)α2
k+2,an

)
(k + 2)(k + 1)uk.

Define

αk+2 :=

(
∞∑

n=1

pn(2− an)α2
k+2,an

) 1
2

for k ∈ {0, 1, . . .} ,

α0 = α1 = 0 and set fp,ε :=
∑∞

k=0 αkhk. To show that fp,ε is well
defined we need to prove that

∞∑
k=0

α2
k+2 < ∞.

The definition of the coefficients αk,an implies that

∞∑
k=0

α2
k+2 =

∞∑
k=0

(
∞∑

n=1

pn(2− an)α2
k+2,an

)

=
∞∑

n=1

pn(2− an)
∞∑

k=0

α2
k+2,an
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=
∞∑

n=1

pn(2− an)

∫ 1

0

(1− u)(1− u)−andu

=
∞∑

n=1

pn < ∞.

Now by equation (2) we have that

H(fp,ε(W1); W )2(u) =
∞∑

n=1

pn(2− an)(1− u)−an .

From this it follows that

inf
τ∈Tn

aW (fp,ε(W1); τ)2

= inf
τ∈Tn

∞∑
k=1

pk

∑
ti∈τ,ti>0

∫ ti

ti−i

(ti − u)(2− ak)(1− u)−akdu

≥
∞∑

k=1

pk inf
τ∈Tn

∑
ti∈τ,ti>0

∫ ti

ti−i

(ti − u)(2− ak)(1− u)−akdu.

Choosing θ = ak in Lemma 2.4 we get that

inf
τ∈Tn

aW (fp,ε(W1); τ)2 ≥
∞∑

k=1

pk(ak − 1)n−1

≥ (1− ε)
∞∑

k=n

pk.

Finally we set fβ,W := fp,ε√
1−ε

and pk := β2
k − β2

k+1. 2

Proof of Theorem 1.3. From Lemmas 2.1 and 2.5 it follows
that the assertion is true in the case of the Brownian motion. Let
(ξn)∞n=1 be some sequence ξn ↘ 0. By virtue of Lemma 2.5 we can
choose a function fξ,W ∈ L2(γ) such that ξn ≤ aW (fξ,W (W1); τ) for all
τ ∈ Tn and n ∈ {1, 2, . . .}. From the proof of Lemma 2.5 we see that
H(fξ,W (W1); W )2(u) ↗∞ as u → 1 and that we can also assume that
α0 = α1 = 0. This means that we can find an r ∈ (0, 1) such that

α2
2 ≤ H(fξ,W (W1); S)2(u)

for u ∈ [r, 1). By Lemma 2.2 this implies

H(fξ,W (W1); W )2(u) ≤ 20H(fξ,W (W1); S)2(u)
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for u ∈ [r, 1). Let τn ∈ Tn and define τ2n := τn ∪ { ir
n

: i = 0, 1, . . . , n} ∈
T2n. Lemma 2.5 gives

ξ2
2n ≤

∑
ti∈τ2n,ti>0

∫ ti

ti−1

(ti − u)H(fξ,W (W1); W )2(u)du

=
∑

ti∈τ2n,0<ti≤r

∫ ti

ti−1

(ti − u)H(fξ,W (W1); W )2(u)du

+
∑

ti∈τ2n,ti>r

∫ ti

ti−1

(ti − u)H(fξ,W (W1); W )2(u)du

≤ H(fξ,W (W1); W )2(r)

2

r2

n

+ 20
∑

ti∈τ2n,ti>r

∫ ti

ti−1

(ti − u)H(fξ,W (W1); S)2(u)du

≤ H(fξ,W (W1); W )2(r)

2

r2

n
+ 20aS(fξ,W (W1); τn)2.

By choosing

ξ2
2n := 20β2

n +
H(fξ,W (W1); W )2(r)

2

r2

n

and

fβ := 2fξ,W

Lemma 2.2 gives that

βn ≤
aS(fβ(W1); τn)

2
≤ aW (fβ(W1); τn).

2

3. Final remark

Theorem 1.3 yields to the following open problems which might be
of interest for future work:

(i) As a consequence of Theorem 1.3 we get that Theorem 1.1 with-
out a condition on the function H(f(W1); X) fails to be true.
One might ask for weaker or even usable sufficient and necessary
conditions on H(f(W1); X) such that

sup
n

√
n

[
inf

τ∈Tn

aopt
X (f(W1); τ)

]
< ∞. (3)
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Moreover it would be of interest to find a property, which is in
a sense a property on f itself, equivalent to (3).

(ii) It seems that our techniques for deterministic time-nets do not
apply for random time-nets. So one might ask whether it is
possible to construct examples as in Theorem 1.3 if one is using
random time-nets instead of deterministic time-nets.
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