Menger curvature and Lipschitz parametrizations in
metric spaces

Immo Hahlomaa*

Abstract. We show that pointwise bounds on the Menger curvature imply Lips-
chitz parametrization for general compact metric spaces. We also give some estimates
on the optimal Lipschitz constants of the parametrizing maps for the metric spaces in
Q(g), which is the class of bounded metric spaces E such that the maximum angle for
every triple in E is at least /2 + arcsine. Finally we in a certain way extend Peter
Jones’ travelling salesman theorem to general metric spaces.
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1 Introduction

In this paper E is always a metric space and d : E X E — R is a metric on E. We
denote

d(E) =sup{d(z,y) : z,y € E'},

and forz € Fandr >0
B(z,r)={y€ E : d(y,z) <r}.

Let {z,y, 2} be a metric triple and 4 an isometry from {z,y, 2z} to R?. For {z,y, 2z}
the angle at x, denoted by <yzz, is the angle at vertex i(z) of the planar triangle whose
other vertices are i(y) and i(z). Using the cosine formula we can write

d(z,y)* + d(z,2)* — d(y, 2)”
2d(z,y)d(z, 2) '

<{Yyxz = arccos

We also denote the maximum angle of {z,y, 2} by max<{z,y,z}. The Menger cur-
vature of the triple {z,y, 2}, denoted by c(z,y, z), is the inverse of the radius of the
circle passing through i(x), i(y) and i(z). By elementary plane geometry

2sin <xyz
1 et o
(1) c(z,y, 2) d(z,2)
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from which we easily get

V(di + do + d3)(dy + dy — d3)(dy — da + d3)(—dy + do + d)
didyds; ’

c(z,y,2) =

where d; = d(z,y), do = d(y,z) and d3 = d(z,z). The condition c(z,y,z) = 0
means that the maximum distance in {z,y, z} is the same as the sum of the other two
distances.

Karl Menger introduced this definition of curvature in [10]. In his terminology a
metric space E has at a point p the curvature K (p) if c(z,y,2) — Kum(p) as the
distinct points x, y and z converge independently and simultaneously to p. He proved
that a simple metric arc I" such that Ky (p) = 0 for all p € T and that each subset
of four points of T is isometric with a subset of R® is isometric with a segment of R.
Schoenberg showed in [12] that the latter condition in this statement can be replaced
by the weaker condition, that for each four points of I' so called ptolemaic inequality
is satisfied.

Menger curvature has turned out to be a useful tool for studying relations between
rectifiability, Cauchy integral and analytic capacity. For z1, 29, 23 € C we have

(2) c(z1, 22, 23)° = Z L

= (200) = %0(3) (Zo(2) — Z0(3))

where ¢ runs through all six permutations of {1,2,3}. This relation between Menger
curvature and the Cauchy kernel 1/z, z € C, was found by Melnikov in [8]. We say
that F' C C is 1-regular if there exists C' < oo such that C~'r < HY(FNB(z,r)) < Cr
whenever z € F and r €]0,d(F)[, where H' is the 1-dimensional Hausdorff measure. In
[7] Mattila, Melnikov and Verdera proved that for a compact 1-regular set F' C C the
Cauchy singular integral operator is bounded in L?(F) with respect to the restriction
of #' to F if and only if F is contained in a l-regular curve. They first proved, by
using earlier work of David and Semmes (see [4]) that the latter condition is satisfied
if and only if there exists M < oo such that

/// (21, 22, 23)° dH' 21 dH 2y dH' 23 < Md(B)

(FNB)3

for every ball B in C. Using the indentity (2) they received the final conclusion.
David and Léger have proved that if F C C with H!'(F) < oo and

/ / / (21, 22, 23)° dH ' 21 dH 2y dH' 23 < 00,
FJFJF
then there are rectifiable curves I'1,I's, ... such that
H! (F\ U Fi> = 0.
i=1

We say that a set is a rectifiable curve if it is the image of a bounded interval under
a Lipschitz map. Léger’s proof can be found in [6]. David used this theorem when
he proved in [3] that if F C C is compact with H!'(F) < oo and H!(FNT) = 0 for
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every rectifiable curve I', then F' is removable for bounded analytic functions. The
previous conclusion means that for every open set U containing F' every bounded
analytic function in U\ F' has an analytic extension to U or, equivalently, every bounded
analytic function in C\F is constant. In [13] Tolsa proved that a compact set F' C C
is not removable for bounded analytic functions if and only if F' supports a positive
Radon measure y such that p(B) < d(B) for every ball B in C and

/// (21, 22, 23)? dpzy dpze dpzs < oco.

We say that E has the complete property €2 if max <{z, y, 2z} > 7/2 for every triple
{z,y,z} C E. If there is @ > 0 such that max <{z,y,z} > 7/2 + « for every triple
{z,y,z} C E, we say that E has the complete property 2* (with a constant «). This
means that

(3) d(z,2)* > d(z,y)* + d(y, 2)* + 2d(x,y)d(y, 2) sina

for {z,y, 2} C E whenever d(z,z) = d({z,y, z}). We also denote by Q(¢), 0 <& <1,
the set of the bounded metric spaces which have the complete property * with the
constant arcsine. We say that E has the property (2* at a point x € E| if there exists
d; > 0 such that B(z,d,) has the complete property Q*. If E has the property Q* at
each of its points, we say that E has the property Q*.

Compact connected metric spaces with properties © and 2* have been studied in [2].
In this paper we prove that pointwise bounds on the Menger curvature imply Lipschitz
parametrization for general compact metric spaces. We also give rather sharp estimates
on the Lipschitz constants of the parametrizing maps. In Theorem 3.7 we show that
for E € Q(e) there exist A C [0,1] and a surjective map f : A — E such that

A(E)5ls — ] < d(f(s), (1) < d(E)5-|s 1

for all s,t € A.
For FF C R" and a cube Q C R” set

fr(Q) = inf d(Q) " sup{d(y, L) : y € FN3Q},

where the infimum is taken over all lines in R" and 3@ is the cube with the same
center as () and sides parallel to to the sides of @, but whose diameter is 3d(Q). A
cube Q C R" is a dyadic cube if @ = [, [k:27%, (k; + 1)27*], where k € Z and k; € Z
fori =1,...n. P. W. Jones proved in [5] that a compact F' C R" is contained in a
rectifiable curve if

(4) > Br(Q)%d(Q) < oo,
Q

where the sum is taken over all dyadic cubes in R”. F. Ferrari, B. Franchi and H. Pajot
have extended this result to geodesic metric spaces of a certain type. Theorem 5.2 is
some kind of an analog in the setting of general metric spaces.

In fact, Jones proved in the case n = 2 that for a compact F' C R" the condition (4)
is satisfied if and only if F lies in a rectifiable curve. In [11] K. Okikiolu extended this
result to general n € N.



2 Order

We say that an injective map j : £ — R is an order on E, if for all z,y,2 € F the
condition j(z) < j(y) < j(z) implies that d(z, z) > max{d(z,y),d(y, z)}.

If j: E— Ris an order on E and E' C E, clearly the restriction j|p : B/ - R
is an order on E'. For A C R a function j : A — R is an order if and only if j is
strictly increasing or decreasing. If j; and j, are orders on F then j, = s o j;, where
s=jooj; ' : j1(E) — Ris an order on 7, (E). On the other hand, if j is an order on
E and s: j(E) — R is strictly increasing or decreasing, then s o j also is an order on

E. If E has an order, we can by the next proof construct one in the following way:
Choose a,b € E, a #b, and set for all z € E
_ —d(z,a) if d(z,b) > max{d(z,a),d(a,b)},
(5) j(z) =
d(z,a)  elsewhere.

Then the order j is 2-Lipschitz. If E is compact, we can choose a,b € F such that
d(a,b) = d(F) and we get j : z — d(z,a). At least a compact metric space, which has
an order, is homeomorphic with a subset of R.

For {z1,...,2,} C E, n € N, we will use a notation x;xs ...z, if there is an order
jon {xy,...,x,} such that j(z;) < j(x;41) for i = 1,...,n — 1. Especially a notation
xyz will symbolize the relation d(z, z) > max{d(z,y), d(y, z)}.

Proposition 2.1. Let E be a metric space such that each subset of E, which consists
of at most four points, has an order. Then the whole space E has an order.

Proof. Choose a,b € E, a # b, and define j : E — R by formula (5). We check first
that j is injective by verifying that j(z) # j(y) for all z,y € E with x # y. Clearly
j(x) # 0 = j(a) for x # a and j(x) # j(y) when d(z,a) # d(y,a). Hence we can
assume that x,y # a and d(z,a) = d(y, a). Let i be an order on {a,b, z,y} C E. Since
d(z,a) = d(y,a), we have either i(z) < i(a) < i(y) or i(y) < i(a) < i(xz). We can
assume that i(z) < i(a) < i(y) is true. If now i(b) < i(a), then d(z,b) < d({z,a,b})
and yab. Thus j(z) = d(z,a) # —d(z,a) = —d(y,a) = j(y). If i(b) > i(a), we get
similarly that j(z) < 0 and j(y) > 0.

We next show that every subset of E, which consists of five points, has an order. Let
{1, x9,23, 74,25} C F be such a set and let i : {z1, 22, 3,74} — R be an order such
that i(xy) = k for £k =1,2,3,4. Choose I,m € {1,2,3,4}, | < m, such that d(xs,z;) <
d(xs,x,) and d(xs, Tm) < d(xs, x,) for n € {1,2,3,4}\{l, m}. Now m = [+1. Suppose
this is false. Then we have | < n < m with some integer n and x;x,2,,. Therefore for
any order i’ on {x;, Tp, Tm, x5} either i'(z;) < 7' (x,) < () or ' (zn) < i'(z,) < i'(zy).
Thus we have d(z5,x,) < max{d(zs, ), d(x5,z,)}, which contradicts the choice of [
and m.

If zszyxq, set p=1—1/2. If zyz52144, set p =1+ 1/2. Finally, if x52; 17, we set
p =1+ 3/2. Define a function h : {21, 29, x3, T4, x5} — R by setting h(zg) = i(zx) =k
for k = 1,2,3,4 and h(z5) = p. We claim that h is an order on {z1,xs, 3, T4, %5}
Clearly h is injective. We have to show that for every triple {k, m,n} C {1,2,3,4,5}
the condition h(zy) < h(zm) < h(z,) implies that xxm,,. For {I,1+ 1,5} this is true
by the definition of A. Naturally it suffices to check the triples of indices which contain
D.



If | = 1, then in any case h(zs) < [+ 3/2 < h(zs) < h(z4). Since ¢ is an order
on {z1,zy,x3,24}, we have xix3zs. Thus for any order i’ on {z;,x3,24,25} either
i'(x1) < i'(z3) < #'(x4) or 7' (x4) < i'(x3) < ¢'(z1). Since d(zs5, 1) < d(zs5,23) and i is
an order, necessarily rsx3zy.

If | = 2, then in any case h(z1) < 1 —1/2 < h(zs) < 1+ 3/2 < h(z4) Since i is
an order on {zy, 9,23, x4}, we have z12924. Thus for any order ¢ on {1, xs, 24,25}
either #'(x1) < i'(z2) < #'(x4) or ¥'(z4) < ¥'(x2) < '(z1). Since d(zs,z2) < d(z5,21),
d(xs5,29) < d(x5,24) and i’ is an order, necessarily z1Z524.

If I = 3, then in any case h(zs) > [ — 1/2 > h(z3) > h(x;). Since 7 is an order
on {z1,zy,x3,24}, we have x1xox3. Thus for any order i’ on {z;,x9,z3,25} either
i'(z1) < i'(z2) < i'(x3) or i'(x3) < i'(x2) < ¢'(z1). Since d(zs,z3) < d(zs5,22) and i is
an order, necessarily rsxox;.

Suppose that [ < 2, k € {l + 2,4} and we have x5x;x;1 or ;x5x11. Then h(zs) <
I+1/2 < h(x;11) < h(xy). Since i is an order on {x1, z2, 3, 4}, we have x;2;, 12, Thus
for any order ¢’ on {x;, 211, Tk, x5} either 7' (x;) < ¢’ (x101) < ' (xg) or ' (zg) < i’ (2131) <
i'(z;). Since d(zs, ;) < d({z5, 2141, 2:}) and ¢’ is an order, necessarily x5z 1xy.

Suppose that | < 2, k € {{ + 2,4} and we have x;z52;41 or x5z 112;. Then h(z;) <
I +1/2 < h(zs) <1+ 3/2 < h(zg). Since i is an order on {x,x9, 23,24}, we have
21Z141%k. Thus for any order ¢ on {z;, z;41, xk, x5} either i'(x;) < i'(zy41) < @' (xg) or
i'(zg) < i'(x141) < 7'(27). Since d(zs,z41) < d({zs, 21, 2151}), d(T5, T141) < d(z5, k)
and 7' is an order, necessarily z;T5xy.

Suppose that | < 2, k € {l + 2,4} and xszix;1. Then h(zs) < h(z;) < h(zg)-
Since 7 is an order on {1, %9, 23,4}, we have z;z;1x,. Thus for any order i’ on
{1, x141, Tk, x5} either ¢'(x;) < i'(z41) < 7' (x) or ' (xy) < '(xp1) < i'(z;). Since
5212141 and ¢’ is an order, necessarily x5x;xg.

Suppose that [ < 2, k € {l + 2,4} and z52;412;. Then h(z;41) < h(zs) =1+3/2 <
h(zg). Since 7 is an order on {z1,x2,z3, x4}, we have x;2; 2. Thus for any order 7’
on {x;, 41, Tk, x5} either i (z;) < &' (z41) < @' (xx) or &' (zx) < '(z141) < 7'(2;). Since
d(zs,z141) < d(x5, %), 521417 and 7' is an order, necessarily z;, 1257y

Suppose that [ > 2, k € {1,] — 1} and we have x;z52;,1 or z52;,17;. Then h(zs) >
l+1/2 > h(x;) > h(xy). Since i is an order on {z1, Ta, T3, x4}, we have zyz;zi41. Thus
for any order i’ on {xy, x;, T;11, x5} either i’ (zx) < @' (x;) < i'(zy41) or i’ (z141) < i'(2y) <
i'(xy)- Since d(zs,x141) < d({zs, z;, T141}) and 7' is an order, necessarily zsx;zy.

Suppose that [ > 2, k € {1,l—1} and we have z5x;2,,1 or z;x5241. Then h(x;11) >
l+1/2 > h(zs) > 1 —1/2 > h(xg). Since i is an order on {zq,xs, 23,74}, we have
xpx1Ty41. Thus for any order i on {zy,x;, )11, 25} either i'(xy) < i'(z;) < i'(x141) or
i'"(z141) < '(z) < '(zg). Since d(z5,x;) < d({zs5, T141, 21}), d(xs, 2;) < d(xs, 21) and 7'
is an order, necessarily T;T5%;, 1.

Suppose that | > 2, k € {1,l — 1} and zsz;12;. Then h(zg) < h(xi11) < h(zs).
Since 7 is an order on {1, %9, 23,74}, we have zyz;x;11. Thus for any order i’ on
{g, T, w141, x5} either i'(x) < i'(z;) < #'(x141) or ¥'(z141) < i'(x;) < 7'(zg). Since
Z52;41x; and ¢’ is an order, necessarily x5, 1Ty.

Suppose that | > 2, k € {1,l — 1} and zsx;x;41. Then h(zg) < h(zs) < h(z;).
Since 7 is an order on {z1,xs, %3, 24}, we have zyz;x;11. Thus for any order i’ on
{Zk, T, 141, x5} either @' (x) < i'(z;) < #'(2141) or ¥'(z141) < i'(x;) < 7'(zg). Since
T Ziy1, d(zs, ;) < d(xs5,7¢) and ¢’ is an order, necessarily zz5;.

So we have shown that every subset of F, which consists of five points, has an



order. Let now z1,z9,23 € E and 0 < j(x1) < j(x2) < j(z3). Let ¢ be an order
on {a,b,z1,x9,23} such that i(a) < i(b). Since d(zx,b) < max{d(zx,a),d(a,b)} for
k =1,2,3, necessarily i(zy) > i(a) for £ = 1,2,3. Since d(z1,a) < d(x2,a) < d(x3,a),
we further have i(x1) < i(xe) < i(z3). This implies that z1zox3.

Let next z1,z2,23 € E and j(z;) < 0 < j(z2) < j(zs) and let i be an order
on {a,b, 1, x9,23} such that i(a) < i(b). Since d(zx,b) < max{d(zx,a),d(a,b)} for
k = 2,3, necessarily i(zg) > i(a) for £ = 2,3. Since d(z2,a) < d(z3,a), we have
i(z2) < i(x3). Moreover, z(:rl) < i(a), because zrab. So i(z1) < i(a) <i(za) < i(xs),
which implies z;z9x3.

Let next x1, 29,23 € E and j(z1) < j(z2) < j(z ) and let 7 be an order on
{a,b,x1, 29,23} such that i(a) < i(b). Since zxab for k = 1,2, necessarily i(zg) < i(a)
for k = 1,2. Since d(x9,a) < d(x1,a), we have i(z;) < (:U ). Moreover i(z3) > i(a),
because d(z3,b) < max{d(xs,a),d(a,b)}. So i(z1) < i(x2) < i(a) < i(x3), which
implies x122x3.

Finally, let z1, 22,23 € E and j(z1) < j(x2) < j(z3) < 0 and let ¢ be an order on
{a,b,x1,z9, x5} such that i(a) < i(b). Since zxab for k = 1,2, 3, necessarily i(zy) < i(a)
for k =1,2,3. Since d(z3,a) < d(xq,a) < d(z1,a), we have i(x;) < i(x2) < i(x3). This
implies x125x3. OJ

The following two lemmas we are going to use in the chapter 5.

Lemma 2.2. Let K > 1 and ¢ > K/(K + 1). Suppose that E is a metric space of
four points such that d(z,y) < Kd(z,w) for all z,y,z,w € E, z # w, and d(z,z) >
d(z,y) + ed(y, z) whenever x,y,z € E such that d(z,z) = d({z,y,z}). Then E has an
order or E = {x1,%9, 23,24} such that x1x2%3, Tok1Tq, ToT3Tq, T1T423, £A(T1,T2) <
d(z3,74) < e7'd(z1,72) and ed(z1,z4) < d(To, 13) < e71d(T1, 74)-

Proof. Let E = {1, 2,23, 24} such that z12.23. We denote 6 = d(F)/K and d;; =
d(z;,z;) fori,5 =1,...,4. If now z,x,x), we have d;; < dy, — edjp < 6(K — ¢).

Suppose first that z1x9ox, and xz1x3x4. Then doy — doz > dig — dio — dog > diz +
8d34 — d12 — d23 2 d12 + 8d23 + €d34 — d12 — d23 > 5((8 — 1)K + 8) Z 0 and d24 — d34 2
d14—d12—(d14—8d13) 2 8(d12+6d23)—d12 > 5((8—1)(K—8)+82) = 5((8—1)K+8) 2 0.
Thus we have z1z92324.

If T1X2X4 and T1T4T3, then d23 - d24 Z d23 — (d14 — 6d12) Z d23 — (d12 + d23 — 8d34 —
Edlg) > 5((6—1)K+6) > 0 and d23—d34 > dgg—(d12+d23—€d14) > €(d12+€d24)—d12 >
§((e = 1)(K —€) + &%) > 0, which implies z,727473.

If 212429 and x1243, then d3g—day > digtedoz—dis—(dia—edis) > ((e—1)K+e) >
0 and dss—dag > dig+edos—digs—daz > dis+edos+edog—dig—das > 6((e—1)K+¢€) > 0
which implies z1x42913.

If Lol1T4 and T3T1X4, then d34—d24 2 d13+8d14—(d12+d14) 2 d12+8d23+8d14—(d12+
d14) > 6((8—1)K+8) > 0and d3s—daz > dig+edoz+edis—doz > 5((8—1)K+1+8) > 0,
which implies z4x1x913.

Assume now that zozz4 and x1x4x3. Since doy + edsy — doz > dio + ediy + €(dio +
€d23—d14)—d23 > 5((82—1)K+1+E) = 5((8—1)K+1)(1+E) > 0 and d24+€d23—d34 Z
dig+edig+edyz — (dig+doz —ediy) > 0((e — 1) K +2¢) > 0, we must have zoz324. Now
d24 = d34+81d23 = d12+82d14 and d34 = d12+84d23—63d14 for some ¢ S £€1,€2,€3,&4 S 1.
This gives (g2 + €3)d1s = (€1 + £4)da3, from which we get edyy < doz < e71dyy.



The rest of the alternatives are not possible because of the triangle inequality.
Namely, z;29x4 and z3x124 would imply dsg — doy — doz > dig + edos + edig — (d1g —
edig) —das > 6(2(e — 1)K +1+4¢) > 0. If 212429 and x12374, then dog — doy — d3q >
d23 — (d12 — 8d14) — (d14 — 8(d12 + 8d23)) > 6(2(8 — 1)K + 1+ 62) Z 0. If T1X4T9 and
T3x124, then d34—d24—d23 Z d12+€d23+6d14—(d12—€d14)—d23 > (5((8—1)K+26) > 0.
If ToX1T4 and 12324, then d24 — d34 — d23 > d14 + €d12 — (d14 — 5(d12 + Edzg)) — d23 >
5((e? = 1)K +2¢) > 0. O

Lemma 2.3. Let K > 1 and & > (4K — 1)/(4K + 1). Suppose that E is a metric
space such that #E # 4, d(z,y) < Kd(z,w) for all z,y,z,w € E, z # w, and
d(z,z) > d(z,y) + ed(y, ) whenever x,y,z € E such that d(z,z) = d({z,y, 2}). Then
E has an order.

Proof. We assume that there are at least five points in E. We need to show that every
quadruple of E has an order. Suppose that this is not true and let {z1, o, 3, 24, x5} C
E be a subset of five points such that {x1, s, 3,24} has no order. By the previous
lemma we can assume that z12923, Tox124, Tox3z4 and z1z423. We denote § = d(E)/K
and d;; = d(x;, z;) fori,j =1,...,4. If now z;z,xs, we have d;; < diy—edjr < 6(K —¢).

Applying the proof of Lemma 2.2 to quadruples {z;, 29, 3, x5} and {z1, x4, x3, 25},
we see that the next eight cases are not possible:

T1Toxs and x3x175,
T12529 and T1x35,
T1T5T2 and x37175,
Tox1xs and T1x35,
T124x5 and  x37175,
T1r5x4 and  x1x375,
T1T5x4 and x37175,

T4r1xs and  T1T3Ts.

Furthermore, zo7,25 and z,7523 implies edi5 < dyz < € 'dy5. Similarly, if z42125 and
1253, we have edis < dsy < e71dy5.

The next three alternatives are not possible by the triangle inequality: If x;x5x9
and T1T5T4, then d24 — d25 — d45 2 d12 + 8d14 — (d12 — €d15) — (d14 — €d15) > 6((8 —
1)K + 2¢) > 0. Similarly, if zi2529 and z12475, then doy — dos — dys > dio + dig —
(d1g — edys) — (dis — edyy) > 0((e — 1)K + 2¢) > 0 and if 212925 and x12524, We have
d24 — d25 — d45 Z d14 + Edlz - (d15 - 6d12) - (d14 — 6d15) > 5((8 — 1)K + 26) > (. The
alternative xox1x5 and z4x125 is impossible, because in that case doy + edos — dys >
dig + edig + €(d15 + €d12) — (d14 + d15) > (5((8 — I)K +ée+ 82) > 0, doy + €d45 — d25 >
dig+ediy +€(d15 +€d14) — (d12 +d15) > 5((8 — 1)K+5+52) > 0 and dos +edys — dog >
dis + edq5 + €(d14 + €d15) — (d12 + d14) > (5((8 — 1)K +e&+ 52) > 0.



By the above examination not more than the next six cases are possible:

(=)

ToX1T5, X1T5X3, T1T4Ts5,

-~J

T2T1T5, T1T5X3, T1T5T4,

T1T2T5, T1T5X3, T4T1Ts,

© 0o
O — — ~— —

T1TsT2, T1XT5X3, T4X1Ts5,
1

11) T1ToTs, T1T5T3, T1T4Ts.

) T1T2T5, T1T3T5, T1T4Ts,

N AN AN N /N /N

From (6) it follows that d45 S d15 — 8d14 S d15 - 82d23 S d15 - €3d15 < (1 - 83)(K —
€)d < 0, which is a contradiction. In the case (7) we would have dys < diy — edi5 <
diy —€2d23 < dis —€3d14 < 4. Slmllarly, in the case (8) d25 < d15 —edip < d15 —€2d34 <
dis—e3dy5 < 6 and (9) would imply dos < dig—edys < dig—e?dsy < dyp—3dip < 6. Thus
we must have (10) or (11). Since dog+edos—dys > digt+edig+e(dis—diz) —(dis—ediy) >
6((8 — 1)K+ 1 +8) > 0 and dog + edys — dos > dig +ediy +E(d15 — d14) — (d15 — €d12) >
d((e—1)K+1+¢) > 0, we further have zoz524. Thus dig+e1d1y = dog = dys+2das =
di5 — e3d14 + €2(d15 — £4d12) for some € < g1,&9,€3,84 < 1, from which we get

2(d12 + d14)

d dig) < dis <
e(dia +dia) < djs < l+e

Now it follows from (10) that d35 S d15 — 6d13 S 2(1 +8)_1(d12 + d14) — 8(d12 +€d23)
2(1 + 8)_1(d12 + d14) — 8(d12 + €2d14) < (4(1 + 6)_1 — & — 83)(K — 6)5 < (4(1 + 6’)_1
282)(K - 8)(5 S 6 and (11) y1€1dS d35 S d13 - €d15 S d12 + d23 - 82(d12 + d14)
d12 + d23 — 62(d12 + 8d23) < (2 — 62 - 83)(K — 6)5 S 0.

CIA T IA

From the previous lemmas we easily get the following result.

Proposition 2.4. Let E be a metric space such that c(x,y,z) =0 for all x,y,z € E.
Then E s isometric with a subset of R or, alternatively, with some positive numbers a
and b, isometric with a set {(0,0), (a,0),(0,b), (a,b)} C R? equipped with a metric d;,
where di(x,y) = |x1 — y1| + |22 — ya2| for . = (x1,22),y = (y1,Y2)-

In fact, Menger proved in [9] that a metric space of more than n + 3 points, for
which each of its subsets of n + 2 points is isometric with a subset of R", is isometric
with a subset of R*. He also showed that for each n there is a metric space of n + 3

points, for which each of its subsets of n + 2 points is isometric with a subset of R",
but which is not isometric with a subset of R”. For the proof see also [1].

3 Metric spaces with property 2*

We will first show that a compact metric space with the property 2* is a Lipschitz
image of a compact set of real numbers.

Lemma 3.1. Let E be a metric space, which has the complete property Q* with a

constant o > 0, and let
_ d(E)V1+sina
2 (\/§—|— val —|—sina)'
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Then for all a € E and r < R there exist A C [0,1] and a bijection f : A — B(a,r)

such that
d(B(a,r))

d(B(a,r))ls —t| < d(f(s), f(t)) < = s —t|.

for all s,t € A.

Proof. Let a € E, r < R and € = sina (> 0). For every triple {z,y, 2} C E we have
by the assumption d(z,y)* > d(z, 2)* + d(y, 2)? + 2ed(z, 2)d(y, z) whenever d(z,y) =

d({z,z,y}). Set
‘= fwﬂ)r.

Since d' < d(FE)/2, there exists b € E such that d(a,b) > d’. Define a function

g: B(a,r) — [d(a,b) — r,d(a,b) + 7]
by setting g(z) = d(z,b). Let z,y € B(a,r). Now

d(z,b)? + d(y, b)? + 2ed(x, b)d(y, b) > 2 (d(a,b) — r)* + 2¢ (d(a, b) — r)°
>2(1+¢)(d —7)* = 4% > d(z,y)?,

and thus d(z,y) < d({z,b,y}). Suppose d(z,b) > d(y,b). Since
d(z,b)* > d(y, b)* + d(z,y)* + 2ed(y, b)d(z,y) > (d(y,b) + ed(,y))*,
we get

ed(z,y) < d(x,b) — d(y,b) = |g(x) — g(y)| < d(=,y)

and further for s,t € g(B(a,r))

_ _ 1
s =t <d(g7(s),97' () < Zls =1,
where g7! : g(E) — FE is the inverse of g. If B(a,r) contains at least two points,
we take A = h™' (g(B(a,r))) C [0,1] and f = g'oh : A — B(a,r), where h(s) =
d(B(a,r))s +inf g(B(a,r)). O

Now we get immediately the following result.

Proposition 3.2. Let E be a compact metric space with the property Q*. Then there
erist A C [0,1] and a Lipschitz surjection f : A — E. (Moreover, f and A can be
chosen such that A = J;_, Ai, where n € N, sets A; are compact and restrictions f|a,
are bi-Lipschitz maps.)

By the proof of Lemma 3.1 it is clear that we do not have to suppose so much in
the previous proposition.

Proposition 3.3. Let E be a compact metric space and suppose that for all a € FE
there are 1 > 0, « > 0 and b € E\{a} such that max<t{b,c,d} > 7/2 + « for all
¢,d € B(a,r). Then there exist A C [0,1] and a Lipschitz surjection f: A — E.



Further we get the following corollaries.

Corollary 3.4. Let E be a compact metric space and suppose that for all a € E there is
r > 0 such that c(z,y, 2)d(z,y) < V/3 for x,y,2 € B(a,r). Then there exist A C [0,1]
and a Lipschitz surjection f : A — E.

Proof. By (1), the condition c(z,y, 2)d(x,y) < v/3 implies that sin o < v/3/2, where o
is the angle at z for the triple {z,y,z}. So by the assumption, for every a € E there
is r > 0 such that max <{z,y, z} > 27 /3 whenever z,y,z € B(a,r). Since E has the
property €2*, the corollary follows from Proposition 3.2. O

Corollary 3.5. Let E be a compact metric space and suppose that there is M € R
such that c(x,y,z) < M for all z,y,z € E. Then there exist A C [0,1] and a Lipschitz
surjection f: A — FE.

Now we are going to show that every bounded metric space with the complete
property €0* is a Lipschitz image of a bounded set of real numbers. We also try to
estimate the optimal Lipschitz constant. For that reason we use the following lemma.

Lemma 3.6. Let E be a bounded metric space, which has the complete property
with a constant o > 0, and let

d(E)
V21 + sina
and a € E. Then d(x,y) < R for all z,y € E\B(a, R).

R=

Proof. Let a € E and z,y € E\B(a, R). Suppose d(z,y) > R. Then
max{d(z,a),d(y,a),d(z,y)} > V2V1 +sinaR = d(E),
which is a contradiction. O

Theorem 3.7. If a bounded metric space E has the complete property 0* with a con-
stant o > 0, then there exist A C [0,1] and a bijective map f : A — E such that

sin « 9

2% s — t] < d(f(s), £(1)) < d(B)

d(E)

for all s,t € A.

Proof. Let a € E, d = d(F), € = sina and

1 V2
A = max , ,
V1+4e+22 /3464221 +¢
d

R= s

For r > 0 denote
E,={z€E : ) <d=a)<r}
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and
_Arvl+e

Let r > 0 and 1, 9, v3 € E,. We shall first show that one of the distances d(z1, z2),
d(z1,z3) and d(z2,z3) must be less than d,. Denote d; = d(z;,a) and d;; = d(x;, z;)
for 7,7 =1,2,3, and suppose d; < dy < d3. Then one or the other inequality is true in
the following three pairs of expressions:

5,

(12) d% Z d% + d%z + 26d1d12
(14) d% 2 d% + d%3 + 2€d1d13
(16) d% 2 d% + d%3 + 2€d2d23
(17) dsy > d5 + d5 + 2edyds

At least one of inequalities (12), (14) and (16) must be true. Otherwise, we would have
(13), (15) and (17). In that case, the smallest distance in {z1, z2, 23} would be at least
V@ + d% + 2ed,dy and another one at least \/d? + d3 + 2ed;d3. The third distance is,
of course, not more than dy + d3. Now we have

d% + d% + 26d1d2 + d% + dg + 2€d1d3
+ 28\/d% + d% + 2€d1d2\/d% + d% + 25d1d3 — (d2 + d3)2

= &+ 2edydy + 0} + 2eddy + 2/ 0% + d3 + 2edydo [} + & + 2edyds — 2dads
> 2 (()\r)2 +2e(Ar)2 +2e(1+¢)(Ar)? — 7'2)
=2r* (144 +2*)A* - 1) >0,

and thus we would have max <{x1,z2,23} < /2 + «, which is a contradiction. If
z,y € E, such that d(z,y) < max{d(z,a),d(a,y)}, then

Ary/1 +¢
V2

by (3) and the choice of A\. Thus min{dis,di3,d2s} < 0,. If z,y € E, such that
d(z,y) = d({z,a,y}), then

d(z,y) <r (\/(52 — 1) +1 —s)\) <

d(z,y) > \/d(z,a)? + d(y,a)? + 2ed(z,a)d(y, a) > v/2(\r)2 + 26(Ar)2 = \rvV2V/1 + €.

This means that for all » > 0 and z,y € E, either d(z,y) > 26, or d(x,y) < §, and in
the latter case d(z,y) < min{d(x,a),d(y,a)}. Further E, has a unique decomposition
into two sets A, and B, such that d(4,) < 6., d(B,) < ¢, and d(A4,, B,) > 20,. (If
E, # () we can choose z € E, and take A, = {z € E, : d(z,2) < d,} and B, = E,\4,.)

Set .1 = F\B(a,R) and G_; = (. Define for all k sets F; and G}, inductively
as follows. Let £ € N and suppose that we have defined the sets F;_; and Gj_; such
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that Eyk—15 = Fj_1 U Gy_1. Suppose first that there exists A*R < r, < A*~'R such
that E,, N Eyxe-1z # 0 and E,, N Eykp # 0. Choose points z; 1 € E,, N Eyx-1p and
wy € By, N Eyxkg. Then we have the following alternatives:

(18) 2p—1 € Fr_1 and d(zg—1,w) < 0p,
(19) Zp—1 € Fi_q and d(zk—1,wg) > 20,,,
(20) 2p—1 € Gr_1 and d(zg—1,wg) < 0y,
(21) Zp—1 € Gp_1 and d(zg—1, wg) > 20,,.

If (18) or (21) is true, set Fy = {z € Eyig : d(z,w) < dyeg} and Gy = Eyrg\Fy. Else
we put Gy = {x € Eyxeg : d(z,wy) < dyeg} and Fy = Exsg\Gyp. If E. N Eyi-1 = 0
or E, NEykgp = 0 for all \*R < r < \*"'R, we define F}, and G arbitrarily such that
E)\kR = Fk U Gk, d(Fk) < 5)\kR, d(Gk) < 5)\kR and d(Fk, Gk) > 25)\kR.

Set F' = Jpo_, Fy, and G = ;- Gk. Then E = F UG U {a}. Define a function
g: E — [—R,d] by setting

_ ) —=d(z,a) forxe g,
9l@) = {d(x,a) for z € FU{a}.

We now show that g is bi-Lipschitz.
If x,y € Fy or z,y € Gy, for some k € N, we have by (3)

(22) ed(w,y) < |d(z,a) —d(y,a)| = |g(z) — g(y)| < d(z,y),

because d(z,y) < 0yrp implies d(x,y) < d({z,a,y}). The same is true for x,y € F_;
by Lemma 3.6. If x € F}, and y € Gy, for some k£ € N, we have

< Uwa)+dy,a) _ |g(@) —g()| _ 2XR _ V2
B d(z,y) dlz,y) ~ 20ur  AM1+e

From now on we suppose that x,y € E such that d(y, a) < d(z,a) and = # a.
If d(y,a) < Ad(z,a), then

1—X _dz,a) —d(y,a) _ |g(z) —g(y)| _ d(z,a) +d(y,a) _ 1+A
1+ A = d(z,a) + d(y, a) = d(z,y) = d(z,a) —d(y, a) = 1—X

Suppose d(y,a) > Ad(z,a). Then either z,y € F_; or z,y € Eys-1g U Eyxp for some
k € N. We have to check the case x € Eys-1p and y € Eyrp for some k. Since
d(y,a) < d(z,a) < d(y,a)/\, we have x € E, or y € E,.. We may assume that
x € E,,. Then z,y, wy € Eyg,a).

Suppose first that d(z, zk—1) < Oxk-1p, d(y, wg) < xep and d(zx—1, wy) < Oy, . Then
we have either x € Fy,_y, y € F), and (18) or x € Gi_1, y € Gy and (20). Since dyr-15 <
26,,, we have d(z, zx_1) < 6,,. Thus d(z,wy) < d(x, 25_1) + d(2k_1, wr) < 26,, and so
d(z,wy) < 6, because z,w, € E,,. Since 6,, < 204;.4) and z,wy, € Ey(; ) we further
have d(z, wy) < dg(g,q)- Therefore d(z,y) < d(z, wg)+d(y, W) < S4(z,0)F0xir < 204(z,0)-
Since x,y € Ey(z,q), we have d(z,y) < 4(g,q) and (22).

Suppose now that d(z,2x_1) < Oye-1g, d(y, wx) < Oxeg and d(zx_1,wg) > 26,,.
Then we have either x € Fy_1, y € Gy and (19) or x € Gx_1, y € F}, and (21). Since
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dze-1g < 26,,, we have d(x, zx_1) < 6. Thus d(z,wy) > d(wy, 2k—1) — d(z, 2k_1) > 0y,

and so d(z,wy) > 20,,, because z,wy € E,,. Therefore d(z,y) > d(z,w;) — d(y, wy) >
20,, — Oxkr > O4(z,0)- Since z,y € Eqg q), we have d(z,y) > 204(z,0) and

d(z,a) +d(y,a) _ lg() —g()| _ 2d(z,a) _ V2
d(ﬂ?, y) d(.’L‘, y) N 25d(w,a) A1+ 5.

The other cases can be treated similarly. The inequality

1-X _lg(z) =gl 1+
1+A 7 dz,y) ~1-2X

1<

holds for all z,y € E. Thus we get A C [0,1] and a surjection f : A — E such that

1+v2V/1+e1 - )\ 1+vV2VT+el1+ )

d(E) NN T8 T < d(f(s), £(1) < d(E) NN —ls =1l
and further the estimate
9
d(E)|s — t| < d(f(s), f(1)) < d(E)|s ¢
for all s,t € A. O

We now give an example of a compact and connected metric space, which has an
order and the complete property €2, but which is not a Lipschitz image of a bounded
set of real numbers.

Example 3.8. Let 1 < p < 2 and x € #P\¢', z = (24),, where z; > 0 for every k.
Set

E = {Zxkek+ten+1 :neNt e [0,xn+1]}u{x} C P,
k=1

where {e, k € N} is the standard base of 7. Now j : y — ||y, is an order on E and
maps E onto [z, ||z||,]. We check that every triple in £ contains an obtuse angle. Let

ni n2 n3
a, = E Trpep Qg = E Tpep + ten,41 and az = E Tkek,
k=1 k=1 k=1

where ||a1||, < ||z, < ||as|lp, n1 < ne < ng < 00, t € [0, Tpy11]. Set

A= i zp and B= f: xh.

k=n1+1 k=no+2

Now

2

d(a1,a3)” — d(a1,a2)* — d(az, a3)” = |lay — asll2 — llar — azllZ — |laz — as]|’

= (A+2% _ + B)Y? — (A+t*)"" — (xp,41 — )P + B)*/?
> (A+al .+ B)*P — (A+ )P — (a2 ., — " + B)*? >0,
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because (a + b)® > a® + b® for a,b > 0 and s > 1. So for {a;,as, as} the angle at a, is

obtuse. However, even
n
E':{Zxkek : nEN} CcE

k=1
can not be a Lipschitz image of a bounded set of real numbers when z ¢ ¢'. Namely,
if AC0,1] and f: A — E'is a Lipshitz map such that

{kaek : nzl,...,no} C f(A),
k=1

the Lipschitz constant of f must be at least Y2, z.

4 Connected, ordered and ptolemaic spaces

Let M be the collection of all the bounded metric spaces. For £ € M we denote
I(F) =inf{Lip(f) : f: A— FE is a surjection and A C [0,1] },
where Lip(f) € [0, 00| is the Lipschitz constant of f. For A C M we set
L(A) = sup{I(E)/d(E) : E€ A}.

Further for 0 < ¢ < 1 and A € M we put L(e, A) = L(Q(e) NA). Clearly € — L(e, A)
is a decreasing function on 0, 1] for fixed A C M and L(e, A) < L(e,B) if A C B C M.
By Proposition 2.4 we have L(1, M) = 3/2 and L(e, M) < C/e with some constant
C > 0 by Theorem 3.7.

We denote by C the collection of the connected metric spaces and let O be the
collection of metric spaces which have an order. We next show that L(e,C) = L(¢, 0) =
1/efor 0 <e <1.

Lemma 4.1. Let E be a connected metric space such that max <t{zx,y,z} > n/2 for
every triple {x,y,z} C E. If f : E — R is a homeomorphism to its image, then f is
an order.

Proof. We can of course assume that E contains more than one point. Suppose that
f is not an order. Then there exists {z,y, 2} C F such that

(23) flz) < fly) < f(2)

and d(z,z) < max{d(z,y),d(y,z)}. We can assume zzy, because max <t{z,y,z} >
7/2. Define g : f(E) — R by setting g(a) = d(x, f~*(a)), where f~! is the inverse of f.
Now ¢ is continuous. Since f(F) is connected, [f(z), f(y)] C f(E). Let b € [f(z), f(v)]

such that g(b) = max{g(a) : a € [f(z), f(y)]}. Now b €]f(z), f(y)[ because of (23).
Now

d(z, f7'(c)) = g(c) T g(b) = d(z, f71(b))
as ¢ T b and
d(z, f7'(e)) = g(e) T g(b) = d(x, (D))
as e | b, where d(x, f~'(b)) > 0. Further by the continuity of f~' we simultaneously

have d(f~'(c), f~'(e)) { 0. From this we conclude that E contain a triple whose
maximum angle is less than 7/2, which is a contradiction. O
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Proposition 4.2. L(¢,C) = L(e, 0) = 1/¢ for all € €]0,1].

Proof. Let 0 < ¢ < 1. By Theorem 3.7 and Lemma 4.1 we have L(e,C) < L(¢g, Q).
Clearly L(e, 0) < 1/e. Namely, if E € Q(e) N O, it follows from Theorem 3.7 that the
completion of E is compact. Since clearly also the completion of F is in Q(¢) N O, we
may assume that F is compact. Take a,b € E such that d(a,b) = d(F) and define a
function g : E — [0,d(FE)] by setting g(x) = d(z,a). As before, we see by (3) that the
inverse of g is 1/e-Lipshitz from d(FE) to E.

We are left to show L(e,C) > 1/e. We define a metric d on an interval [0, N],
N € N, as follows: Define real numbers r, £k = 0,1,... by setting ro = 0 and

Thel = \/er + 1 4 2ery.

Let z,y € [0, N] with x < y. If NN [z, y] = (), we set d(x,y) = |z —y|. Else we put m =
inf(NN[z,y]), M = sup(NN[z,y]), s = min{y — M, m—=z} and t = max{y— M, m—z}.
Then we set

d(z,y) = Vu? + s2 + 2eus,

where

U= \/Tar—m? + 12 + 2673t

Denote this metric space by Ex. Now Ey € Q(e) NC. Since ryy1 — 1 — € as k — o0,
we have

(Ey) _N 1
d(EN) N N g

as N — oo. O

We say that a metric space E has the four-point property if any subset of four
points of E is isometric with some subset of R®. E is called ptolemaic provided for
all z,y, z,w € E the inequality d(z,y)d(z,w) + d(z, 2)d(y, w) > d(z,w)d(y, z) is true.
Denote the set of the metric spaces with four-point property by F and the set of the
ptolemaic metric spaces by P. Since R? is ptolemaic, we have F C P. It is easy to
construct metric spaces, which are ptolemaic but which do not have the four-point
property. For example we can take a quadruple such that one distance between points
equals 2 while the other five distances are 1. Since FN(y/3/2) C O, we have at least
L(e,F) < 1/e for v/3/2 < & < 1. We now show that L(¢,P) | 1 as e 1 1.

Lemma 4.3. Let E be a ptolemaic metric space with the complete property 2. Then
min{d(z,y),d(z, w)} < max{d(z, z),d(z,w), d(y, 2),d(y, w)} for each four pairwise dis-
tinct points x,y,z,w € E.

Proof. 1f opposite is true, then

d(:L‘, y)Qd(z, ’11))2 > (d(l" Z)2 + d(ya UJ)Q _Zd(x’ w)2 + d(ya Z)2)2
S (2d(z, 2)d(y, w) + 2d(x, w)d(y, 2))?

- 4

= (d(z, 2)d(y, w) + d(z, w)d(y, 2))*,

which means that E is not ptolemaic. O
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Proposition 4.4. L(e,P) | 1 ase 1 1.

Proof. Let now E € Q(g)NP. Tt follows from Theorem 3.7 that the completion of F is
compact. Since clearly also the completion of F is in Q(¢) NP, we can assume that E is
compact. Let a,b € E such that d(a,b) = d(E). We define a function g : £ — [0, d(E)]
by setting g(z) = d(z,a). Let z,y € E\{a,b}. If d(z,y) < max{d(z,a),d(a,y)}, then
we have |g(x) —g(y)| > ed(z,y) by (3). Suppose zay. By the previous lemma d(z,y) <
max{d(z,b),d(b,y)}. We may assume that d(y,b) > d(x,b). Denote d = d(FE), p =
d(z,a), ¢ =d(y,a), r = d(z,y), s = d(y,b) and t = d(z,b). Now d*> > ¢*® + s> + 2eqs,
which gives

5 < \/d2+ (62 —1)g% — eq.
We also have t > d — p and r? > ¢ + p? + 2eqp. Thus we get
222
< d? + (262 = 1)¢* — 2eq\/d? + (€2 — 1)@ — d* — p* + 2dp — ¢* — p* — 2eqp
=2 (e = 1)¢* — P’ + dp — eqp — eq/d? + (2 — 1)¢?| < 2p(d — p)

and further
2 2 .9
< S t r < D .
2rt V@ +p* + 2eqp

This yields p > e(eq + p), which gives ¢ < p(1 — ¢)/&?. Thus

9(@) —9W) _p—g_p-q_ e+e-1
d(l"y) r _p+q_52—8+1’
and we get
e2—e+1 1 2 —e+1
L < S G ek
when (v/5 —1)/2 < ¢ < 1. Therefore L(e,P) | 1 as ¢ 1 1. O

5 Travelling salesman theorem

Let E be a bounded metric space and let C; > Cy > 115680. For any x € EF and t > 0
we set

B(z,t) = sup{ c(21, 22, 23) : 21, 20, 23 € B(x, 1), d(2;,2;) > C7't Vi # j }.
We say that an increasing sequence (Ay)gez of subsets of E is a net of E if for all k € Z
(i) for any z,y € Ay, x # y, d(z,y) > 27F,

(ii) for any z € F there exists y € A such that d(z,y) < 27*.
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Now we define

B(E) = inf { D Blx,C27F)(27F)% ¢ (Ag)k s anet of E } :

kEZ $6Ak

For F C R" the conditions S(F) < oo and (4) are equivalent. We are going to
show that for any bounded metric space E the condition (E) < oo implies that E is
a Lipschitz image of a bounded set of real numbers.

Lemma 5.1. Let z,y,z € R? be distinct points, L,, the line passing through y and z
and P : R? — L,, the orthogonal projection to Ly,. Denote dy, = |y — x|, dy, = |z — 2|
and dy, =y — z|. If dy, = |y — P(z)| + |P(x) — |, then

C(J?, Y, Z)2 < dyw + dwz - dyz < C(.’L‘, Y, Z)
8 o dywdwz (dyw + d:cz) o 4 '

Proof. Denote s = |y — P(z)|, t = |P(z) — z| and h = |z — P(z)|. By the Pythagorean
Theorem

dz, —s* d2, —t 1 1
dys + dyz — dyy = dyg — S+ dy; — £ - + :h2< )

= -
dys + 5 dpy + 1 dys +5  dyy +1

and by (1)
2h
c(z,y,z) = o
Hence c(z,y, z)*d?,d> 1 1
o + oz = dys = 4WMQMH+%+J’
from which we get the conclusion. O

Theorem 5.2. Let E be a bounded metric space such that B(E) < oco. Then there
erist A C [0,1] and a Lipschitz surjection f : A — E. Moreover, f can be chosen such
that Lip(f) < C(B(E) + d(E)), where C > 0 is an absolute constant.

Proof. Let (Ag)kez be anet of E such that Y7, 37 1 B(z,C227%)*(27%)? < oo and let
C3, Cy and g( be positive constants such that C3 > 9, Cy > 24(1+C3), Cy > 2C,(14+Cy)
and 04(1 + 04) (1 + 04(1 + 04)) o S \/204(1 + 04) + 1.

Suppose that S(x, Co27*%)27F < ¢ < v/3/4 for some x € D, , where y € E, k € Z
and Dy ), = B(y, 2 %) N Ay. Since C; > Cy > 4, we have d(z1, 22) > C;'Cy27* for all
21,22 € Dy C B(z,C927%). By (1)

d(Dy k) sin <z1 2023 < d(Dy )

Y,k
d(Zl, 23) - 2

. 3
Sin (212923 < g

c(z1, 29, 23) < Qk_ld(Dy,k)s <2<

for any triple {z1,20,23} C Dyy. So Dyp € Q(V1—4e2?) and further #D,; <

18/v/1 — 4¢2 + 1 by Theorem 3.7. Moreover, if 289(1 — 4¢2)® > 225, we have by
Lemma 2.3 and Proposition 4.2 that #D,;, < 4/v/1 —4e2+ 1 < 6. Especially Ay is

finite for each k. Let
U Ak) = {331,3/‘2;-7;3;---}

kEZ
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such that for all kK € Z

Dyn, = Ay,
d(2j11,D;) =max{d(z,D;) : v € Ay} for j=1,...,#A, -1,
where D; = {z1,...,2;} for j e N.
We are going to construct a sequence (G;) of connected weighted graphs with no

cycles. For each j we denote by V; and Ej; the sets of the vertices and the edges
of G. For each j we have an injection g; : D; — V;. For all z,y € D; such that

{9;(z), 9;(y)} € E; we will have w;({g;(z),9;(y)}) = d(z,y), where w; : E; —]0,00[ is
the weight function on the graph G,;. We denote [(G,) = D ecr; wj(e) and for y € D;
we will use the notation

Ni(y) ={z€ D; : {g;(y),9;(2)} € E; }.

Each vertex in V}\g;(D,) will have only one neighbour. Thus the subgraph of G,

induced by g¢;(D;) will also be connected. We will denote this graph and the set of its

edges by G and E?. In our construction the number I[(G}) =}, 5« w;(e) will remain
J

bounded, from which we get the final conclusion.

We define a graph G with 4 vertices and 3 edges as follows. Put Vo = {a1, as, b1, b2}
and define go : Dy — V, by setting go(x;) = a; for i« = 1,2. Further we set Fy =
{{a1, a2}, {a1,b:},{as, b2}}, wo({a1,a2}) = d(z1, x2) and we({a;, b;}) = Csd(z1, x9) for
i =1,2. Now
(24) HG2) < (1+2C3)d(E).

We set I, = {0,d(z1,22)} and define hy : Iy — D, by setting ho(0) = z; and
hQ(d(ZEl, .TQ)) = T9.

Let now j > 2 and assume by induction that we have constructed a graph G; =
(Vj, Ej), wj :+ Ej —]0,00[, an injection g; : D; — V; and a 1-Lipschitz surjection
hj : Ij — Dj, where I; C [0,21(G})]. We also assume that G; and h; satisfy the
following properties:

(*) Let y € D;. If d(y, z1) < Cad(y, 22) and d(z1, 22) < d({#1,9, 22}) for all zy,25 €
N;(y), then there exists b € V;\g,(D;) such that {g,(y),b} € Ej.

(**) If 21,20 € D; such that {g;(21),9;(22)} € Ej, then there exist s;,ss € I;, such
that S99 — 81 = d(Zl, ZQ), hj({Sl, 82}) = {Zl, 22} and Ijﬂ]Sl, 82[: @

We denote © = x41. Let y be a nearest neighbour of z in D; and let £ be the smallest
integer such that x € Ag. In other words #A;_1 < j < #Ag.

Case 1. f3 (a;, 022*’“) 27k > ¢o.
We set V1 = V;U{a, b}, where a # b, V;N{a,b} = 0, and define g1 : Dj11 — Vi1
by setting g;+1(z) = a and g;4+1(v) = g;(v) for v € D;. Further we define
Ej+1 = Ej U {{gj(y)7 CL}, {a'a b}}

and wjy1 : Ej1 —]0,00[ by setting

d(y7 37) for e = {gj(y)7 a’}7

wji1(e) = ¢ Csd(y,z) for e = {a,b},
wj(e) for e € E;.
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Now G4, satisfies the property (*) and

I(Gjs1) — UG,) = (1+ Cs)d(y,z) < (1 + C3)27*=1)
(25) < MB (x,CQZ_k)z (2—1«)3'

Let t € I, such that h;(t) = y. We set
Ly =L U{t +d(y,z)} U Ja,

where J; = I; N [0,t] and J, = ([; N [t,00[) + 2d(y, x), and define hjiq : [jp1 — D)y
by setting
h;(s) for s € Jy,
hjti(s) =4 = for s =t+d(y, z),
h;j(s —2d(y,z)) forse J,.
Now (**) is satisfied, ;11 C [0,2/(G7,,)] and hjyy is surjective and 1-Lipschitz.
For the rest of the cases we assume that g (3:, 022_’“) 27k < g.
Case 2. There exists z € N;(y) such that Cud(y, z) < d(y, 2).

We define Gj11, gj+1, Ij4+1 and hjy; as in the case 1. Now

(26) 1Gy1) ~ UG) = (1+ Co)d(y. ) < o 2dly, 2)

By the construction {g;(v), g;(2)} € E}, for all m > j.
For the rest of the cases we assume that d(y, z) < Cud(y, z) for all z € N;(y).

Case 3. There exists z € N;(y) such that d(z, z) < d(y, 2).

We set V;11 = V; U{a}, where a ¢ Vj}, and define g;11 : Dj11 — Vj41 by setting
gj+1(z) = a and g;41(v) = gj(v) for v € D;. Further we define

Ejn = (B;\{{9;(v), 9;(2)}}) U{{g;(¥), a}, {a, g;(2) }}
and wjy1 : Ej11 —|0, 00[ by setting
d(y,z) for e ={g;(y), a},

wjyi(e) = Q d(z,2) for e = {a, g;(2)},
wj(e)  for e € E;\{{g;(y), 9;(2)}}-

By Lemma 5.1
UGyi1) — UGy) = d(y,2) +d(z, 2) - d(y, 2)
. < Z?’(’lﬁjfic)z(y,md(m, ) (dly, ) + d(z, 2)
< GUEG) oy 4, a0y

< 204(1 + C)B (2, C27%)" (27)”.
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The last inequality holds, because C; > Cy > 2C4.

We next show that G, satisfies the property (*) at z. Suppose that {g;41(2),b} ¢
E;i for all b € VHl\gJH( Dj.1), which implies that {g;(z),b} ¢ E; for all b €
Vi\g;(D;). By (*) N;(2)\{y} # 0. Suppose that d(z,v) < Cyd(z, z) for all v € N;(z).
Then C;ld(y,2) < d(y, z) < d(z,v) < Cud(z,2) < Cyd(y,z) for all v € N;(z ) If
now d(z,v1) < Cud(z,v9) for all v1,v2 € Nj(z), there exist by (*) v/,2" € N;(z) for
which d(y', 2') = d({v',2,2'}). If y & {y, 2}, then ¢/, 2" € N;;1(z) and the property
(*) is satisfied at z. Thus we may assume y' = y. Now 27% < d(y,z) < 2-*-1),
d(z,2) < d(y,2z) < Cyd(y,z) < C27*D d(y,2") < d(y,2) + d(z,2") < Cu(1 +
Cy)d(y,z) < Cy(1 + Cy)2=* 1) and d(z, 2') g d(z,z) +d(z,2') < Cs(1 4+ Cy)d(y,z) <
Cs(1 4 C4)2=* = Since Oy > Cy > 204(1 + Cy) and 2C4(1 + Cy)ep < V3, we have
{y,z,2,2'} € Q(J), where

Cy(1+Cy)
T C(1+Cy)+1

5>\/1—021+C'4)

Since now yzz and yzz', {y,x,z 2’} has an order by Lemma 2.2. Thus d(z,2') =
d({z, z,2'}) and the property (*) is satisfied at z. In the similar way we see that (*) is
satisfied at y.

Let ¢,u € I; such that u — t = d(y, 2), h;j({t,u}) = {y, 2} and IN|t,u[= 0. We set

Liyy = Jy U{t +d(h;(t), )} U Jy,

where J; = I; N [0,¢] and J, = (I; N [u,00]) + d(y,x) + d(z, 2) — d(y, 2), and define
hj+1 : Ij_|_1 — Dj_|_1 by Setting

hj(S) for s € Jy,
hjti(s) =< = for s =t + d(h;(t), z),
hi(s —d(y,z) — d(z, 2) + d(y,z)) fors e J,.
Now (**) is satisfied, I;41 C [0, 2/(G7 4
Case 4. d(y, z) < d(z, z) for all z € N,(y).

We first show that there exists b € V;\g;(D;) such that {g;(y),b} € E;. Suppose
this fails. Now d(y,v1) < Cud(y,z) < Cud(y,vs) for all vy,v, € N;(y). Thus by (*)
there are 21,2, € N;(y) such that d(z1, 22) = d({#1,y, 22}). Since C; > Cy > 2(1 + Cy)
and 4C,e¢ < V/3, we have {21, 7,y, 20} € Q(6), where

20,
0> 14/1—4C%2 > )
=V 10 = 50,1

Since now xyz; and xyzsy, it follows from Lemma 2.2 that yziz9 or yzsz;, which is a
contradiction.

We set V;11 = V; U{a}, where a ¢ V}, and define g;11 : Djy1 — Vji1 by setting
gj+1(x) = a and g;41(v) = gj(v) for v € D;. Further we define

Ejn = (B;\{{9;(v),b}}) U {{9i(v) a}, {a, b}}

)] and Ay is surjective and 1-Lipschitz.
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and wj1 : Ej1; —|0, 00 by setting

d(y,x) for e = {g;(y), a},
wjy1(e) = S w;({g;(y),b}) for e = {a, b},
wj(e) for e € Ej\{g;(y), b}.
Now
(28) UGiit) — U(G;) = dly, z) < 22195 W).0D)

Cs

Since d(z,z) = d({z,y, z}), the property (*) is satisfied at y. For all m > j there
is z € D,, such that {g,,(2),b} € E, and w,({gm(2),b}) = w,;({g;(y),b}) by the
construction. We define I, and h;; as in the cases 1 and 2.

By iterating the above algorithm, we construct a sequence (G;) of graphs and a
sequence h; : I; — Dj; of 1-Lipschitz surjections such that I; C [0,2l(G7)] for all
j > 2. Let ng be the smallest integer such that #A,, > 2. For all n > ny we denote
Tn = G;&An7 An = I#An and fn = h#An-

Since 289(1 — 4e2)® > 225, for any y € E and k the case 2 is applied at most to
four points in B(y,27%t1) N A, by the calculation at the beginning of the proof. Thus
by (26) and the remark after it

2 S we <2<1+Zz> +C3)z(0:n):%tc3)1(a;)

EYm eEE \EJ 1

for all m > 3, where Y,, = {j € {3,...,m} : The case 2 is applied to z,}.

We now show that for any fixed b € U, (Vj\g;(D;)) for all k the case 4 can oc-
cur at most for three points in Ay. Suppose this fails for some k and let #A,_1 <
i < i < iy < iy < #Ag, do < 4y such that {g;(z;),b} € E; for I = 0,...,4.
Then, since max{d(z,D;,—1) : = € Ay} = d(zy,xi,) < d(iy,x;,), there is z €
D;, 1 \{x;,} such that d(x;,,2) < d(z;,,7;,). Since 27F < d(z1,2,) < 2753 for all
21, 22 € {Zig, Tiy, Tiyy Tig, Tiy, 2} C B(@iy, 27F72), B (24, Co27%) 27F < g, C1 > Cy > 4
and 8¢y < /3, we have {z;,, T;,, Ti,, Tis, Ti, 2} € Q(5), where § > /1 — 16¢2. Since
6% > 31/33, {ziy, Tir, Ty, Tig, Tiy, 2} has an order by Lemma 2.3. Since d(z;, z;,_,) =
d(z,, D;,—1) for 1 =1, ..., 4, we must have z;,x;, x;,x;,x;, 2. From this we get d(z;,,z) >
d(Tiy, Tiy) + 6d(Tiy, Ti,) + 6d(Tiy,2) > (1 +26)27% > 27*=D > d(z;,, 2,), which is a
contradiction. Thus by (28) and the remark after it

(30) ZZ ; w; (e <1+22) )—l(G;‘n)]zgg[l(Gm)—l(Gw]

for all m > 3, where Z,, = {j € {3,...,m} : The case 4 is applied to z,}.
Using the estimates (24), (25), (27), (29) and (30), we get for all n > ng

U(T,) < (1+2C5)d(E)

+max{ Q(LQQ*') 2C,(1 + C) } >y B (z, C227%)” (27%)°

€
0 k=no mEAk\Ak 1

+ w«m + o [1Ga) = UT)] = [1Ga,) = UT:))
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Since C3 > 9, Cy > 24(1 + C3) and the net (Ag)y is arbitrary, we have an absolute
constant C such that 21(G}) < C(B(FE) +d(E)) for all j > 2. Now there exists a
compact A C [0,C(B(E) + d(F))] such that A, — A in the Kuratowski sense:

(i) If a = limg_, a,, for some subsequence (a,,) of a sequence (a,) such that a,, €
A, for any n, then a € A.

(ii) If @ € A, then there exists a sequence (a,) such that a, € A, for any n and
a = lim,_, ap-

Let a € A and let (a,) be a sequence such that a, € A, for any n and a, — a
as n — oo. Let m > n > ng. By the construction there is b € A,, such that
la, — b <2 ((T,) — U(Ty)) and fn(an) = fm(b). Using this we get

d(fm(a'm): fn(an)) - d(fm(am)a fm(b)) S ‘a'm - b‘ S |am - a’n| + ‘an - b‘
< am = an| + 2 (((Tr) — UT3)) -

So (fa(ays)) is a Cauchy sequence in E. Thus we can define f : A — E, where E is the
completion of E, by setting for a € A

f(a) = lim_fo(an),
where (a,) is a sequence such that a, € A, for any n and a, — a as n — oo. Clearly

f(a) does not depend on the choice of the sequence (a,). Let a,b € A and let a, — a
and b, — b such that a,,b, € A, for any n. Now, since f, is 1-Lipschitz for any n,

d(f(a), f(0)) < d(f(a), fa(an)) + d(fn(an), fu(bn)) + d(fn(br), [ (b))
d(f(a), fa(an)) + lan = bn| 4 d(fn(bn), f(b)) = |a — b]

as n — oo. So f is 1-Lipschitz. It is also surjective. To check this let z € A, for
some k. Then there is ¢, € Ay such that x = fi(cx). By the construction we have a
sequence (cp)n>k such that ¢, € Ay, fo(cn) =z and |cpy1 — cn] < 2(U(Thg1) — U(TR))
for any n > k. From this we see that (c,) is a Cauchy sequence and thus there is ¢ €
[0,C(B(E)+d(E))] such that ¢,, = ¢. Now ¢ € A by (i) and z = lim,,_,« fn(cs) = f(c).
Thus U,z An C f(A). Since U,z An C E is dense and f(A) is compact, we have
E C f(A) = E. Finally, we restrict f to f~1(E). O
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