CONTINUITY OF THE MAXIMAL OPERATOR IN SOBOLEV SPACES

HANNES LUIRO

Abstract. We establish the continuity of the Hardy-Littlewood maximal operator on Sobolev spaces $W^{1,p}(\mathbb{R}^n)$, 1 . As an auxiliary tool we prove an explicit formula for the derivative of the maximal function.

1. Introduction

The classical Hardy-Littlewood maximal operator \mathcal{M} is defined on $L^1_{loc}(\mathbb{R}^n)$ by setting for all $f \in L^1_{loc}(\mathbb{R}^n)$

(1)
$$\mathcal{M}f(x) = \sup_{r>0} \int_{B(x,r)} |f(y)| \, dy = \sup_{r>0} \frac{1}{m(B_r)} \int_{B(x,r)} |f(y)| \, dy \,,$$

for every $x \in \mathbb{R}^n$; here m denotes the Lebesgue measure in \mathbb{R}^n and $B_r = B(0,r)$.

The theorem of Hardy, Littlewood and Wiener asserts that \mathcal{M} is bounded on $L^p(\mathbb{R}^n)$ for $1 . This theorem is one of the cornerstones of harmonic analysis. Applications e.g. to the study of Sobolev-functions indicate that it is also useful to know how it preserves differentiability properties of functions. Quite recently, Kinnunen observed [K] that <math>\mathcal{M}$ is bounded on the Sobolev-space $W^{1,p}(\mathbb{R}^n)$, for 1 . Extensions and related results can be found from e.g. [KL], [Ko], [KS], [HO].

Continuity of the maximal operator in $L^p(\mathbb{R}^n)$ follows from its sublinearity and boundedness. Because of boundedness in $W^{1,p}(\mathbb{R}^n)$, it is very natural to ask whether the maximal operator is continuous in $W^{1,p}(\mathbb{R}^n)$, $1 , or not. This question was posed in [HO, Question 3] where it was attributed to T. Iwaniec. In general, bounded non-sublinear operators need not to be continuous. An important example of this kind of phenomenon is the result of Almgren and Lieb [AL] who proved that the (known to be bounded) symmetric rearrangement <math>\mathcal{R}:W^{1,p}(\mathbb{R}^n)\mapsto W^{1,p}(\mathbb{R}^n)$ is not continuous when 1< p< n and n>1. On Sobolev-spaces, \mathcal{M} is not sublinear and the issue of the continuity of \mathcal{M} is not trivial even though we know the boundedness.

Our main result (Thm. 4.1 below) is the positive answer to the question of Iwaniec. A central role in our proof is played by a careful analysis of the set $\mathcal{R}f(x)$ (see 2.1 below), which consists of the radii r for which equality is achieved in (1). As a useful auxiliary tool we establish in Thm. 3.1 an explicit formula for the derivative of the maximal function.

2. Definitions and auxiliary results

Let us first introduce some notation. If $A \subset \mathbb{R}^n$ and $r \in \mathbb{R}^n$, we define

$$d(r,A):=\inf_{a\in A}|r-a|\,, \text{ and } A_{(\lambda)}:=\{x\in\mathbb{R}^n:d(x,A)\leq\lambda\} \text{ for } \lambda\geq0\,.$$

²⁰⁰⁰ Mathematics Subject Classification. 42B25, 46E35, 47H99.

Key words and phrases. Maximal function, Sobolev spaces, continuity, regularity.

The author has been supported by the Academy of Finland, project 201015.

We endow $W^{1,p}(\mathbb{R}^n)$ with the norm

$$||f||_{1,p} = ||f||_p + ||\nabla f||_p$$

where ∇f is the weak gradient of f. Let us also denote by $||f||_{p,A}$ the L^p -norm of $\chi_A f$ for all measurable sets $A \subset \mathbb{R}^n$.

The following new concept will be central in this work.

Definition 2.1. Let $f \in L^p(\mathbb{R}^n)$, $1 \leq p < \infty$. The set $\mathcal{R}f(x)$ is defined as

$$\mathcal{R}f(x) = \{r \ge 0 : Mf(x) = \limsup_{r_k \to r} \int_{B(x,r_k)} |f(y)| \, dy \,, \text{ for some } r_k > 0 \} \,.$$

Remarks. We comment on the above definition and the properties of the sets $\mathcal{R}f(x)$. Firstly, the definition clearly implies that $\mathcal{R}f(x)$ is always closed. Moreover, for fixed $x \in \mathbb{R}^n$ define $u_x : [0, \infty) \to \mathbb{R}$ by

$$u_x(0) = |f(x)| ext{ and } u_x(r) = \int\limits_{B(x,r)} |f(y)| \, dy ext{ when } r \in (0,\infty) \, .$$

First of all, the functions u_x are continuous for almost all x. The continuity on $(0, \infty)$ is clearly true for all x and at 0 it follows a.e., because almost every point $x \in \mathbb{R}^n$ is a Lebesgue's point for f. Moreover, by Hölder's inequality we have

(2)
$$u_x(r) \le ||f||_p(m(B_r))^{\frac{1}{q}-1}$$

where q is the conjugate exponent of p, and hence $\lim_{r\to\infty} u_x(r) = 0$.

These facts together imply that, for almost all x, the function u_x has at least one maximum point in $[0, \infty)$. Furthermore, they guarantee that for all $x \in \mathbb{R}^n$ the set $\mathcal{R}f(x)$ is nonempty and

$$Mf(x) = \int_{B(x,r)} |f(y)| \, dy \text{ if } r \in \mathcal{R}f(x) \text{ and } r > 0 \,,\, \forall x \in \mathbb{R}^n \,, \text{ and}$$

$$Mf(x) = |f(x)|$$
 for almost every x such that $0 \in \mathcal{R}f(x)$.

Also, it is useful to observe that for every R > 0 (assuming $f \not\equiv 0$) it is true that

$$\sup\{r: r \in \mathcal{R}f(x), x \in B(0,R)\} < \infty.$$

The following lemma tells us how the sets $\mathcal{R}f(x)$ and $\mathcal{R}g(x)$ are related to each other, especially when $||f-g||_p$ is small.

Lemma 2.2. Let $1 \le p < \infty$ and suppose $f_j \to f$ in $L^p(\mathbb{R}^n)$ when $j \to \infty$. Then for all R > 0 and $\lambda > 0$ it holds that

$$m(\lbrace x \in B(0,R) : \mathcal{R}f_i(x) \not\subset \mathcal{R}f(x)_{(\lambda)} \rbrace) \to 0 \text{ if } j \to \infty.$$

Proof. First we remark that one can show that the above set is Lebesgue-measurable always when f_j and f are in $L^p(\mathbb{R}^n)$. It is sufficient to prove the claim in the case where both f and f_j are non-negative, because $\mathcal{R}f(x)=\mathcal{R}|f|(x)$. Observe that $\mathcal{R}f(x)$ is $[0,\infty)$ for all x if $f\equiv 0$ a.e., whence this case is trivial. Let $\lambda>0, R>0$ and $\varepsilon>0$. For almost every $x\in B(0,R)$ there exists a natural number $i(x)\in\mathbb{N}$ so that

(3)
$$\int\limits_{B(x,r)} f(y) \, dy < M f(x) - \frac{1}{i(x)}, \text{ when } d(r, \mathcal{R}f(x)) > \lambda.$$

This can be seen in the following way: If the claim is not true there is a sequence of radii $(r_k)_{k=1}^{\infty}$ so that

$$\int\limits_{B(x,r_k)} f(y) \; dy \; \to M f(x) \; \text{ and } \; d(r_k,\mathcal{R}f(x)) > \lambda \, .$$

By moving to a subsequence, if needed, we may assume that $r_k \to r$ as $k \to \infty$, because (2) implies that the sequence $(r_k)_{k=1}^{\infty}$ must be bounded. It follows that $r \in \mathcal{R}f(x)$. This is a contradiction, since, obviously r satisfies $d(r, \mathcal{R}f(x)) \ge \lambda$.

From (3) we conclude that there exists $i \in \mathbb{N}$ so that

$$B(0,R) \subset \big\{x: \int\limits_{B(x,r)} f(y)\,dy \,< Mf(x) - \frac{1}{i}, \text{ if } d(r,\mathcal{R}f(x)) > \lambda\big\} \bigcup E \,\,=: A \bigcup E\,,$$

where E is a measurable set with $m(E) < \varepsilon$. The weak type (1,1)-estimate for the maximal operator implies that there exists $j_0 \in \mathbb{N}$ so that

$$m(\left\{x \in B(0,R) : |M(f-f_j)(x)| \ge \frac{1}{4i}\right\}) < \varepsilon \text{ when } j \ge j_0.$$

For all j we observe that

$$\begin{split} A \subset & \big\{ x: \int\limits_{B(x,r)} f_j(y) \, dy \, < M f(x) - \frac{1}{2i}, \text{ if } d(r,\mathcal{R}f(x)) > \lambda \big\} \\ \bigcup & \big\{ x: \Big| \int\limits_{B(x,r)} f(y) \, dy \, - \int\limits_{B(x,r)} f_j(y) \, dy \, \Big| \geq \frac{1}{2i}, \text{ for some } r, d(r,\mathcal{R}f(x)) > \lambda \big\} \\ & = : A_j \bigcup B_j \; . \end{split}$$

Continuing the same reasoning, and using the fact $|Mf(x) - Mf_j(x)| \le |M(f - f_j)(x)|$, we get

$$A_{j} \subset \left\{ x : \int_{B(x,r)} f_{j}(y) \, dy < M f_{j}(x) - \frac{1}{4i}, \text{ if } d(r, \mathcal{R}f(x)) > \lambda \right\}$$

$$\bigcup \left\{ x : |M(f - f_{j})(x)| \ge \frac{1}{4i} \right\}$$

$$= : C_{j} \bigcup D_{j}.$$

It holds that

$$C_i \subset \{x : \mathcal{R}f_i(x) \subset \mathcal{R}f(x)_{(\lambda)}\}.$$

By combining the above observations, we conclude that for all j

$$B(0,R) \subset \{x : \mathcal{R}f_j(x) \subset \mathcal{R}f(x)_{(\lambda)}\} \bigcup E \bigcup D_j \bigcup B_j$$
.

Observe finally that $B_j\subset D_j$ and, by our choice of j_0 we have $m(D_j)<\varepsilon$ if $j\geq j_0$, and therefore

$$m(\{x\in B(0,R): \mathcal{R}f_j(x)\not\subset \mathcal{R}f(x)_{(\lambda)}\})<2\varepsilon\ ,$$
 if $j\geq j_0$. $\hfill\Box$

Let us introduce more notation. Assume that $f \in L^p(\mathbb{R}^n)$, $1 \leq p < \infty$. Let e_i be one of the standard basevectors of \mathbb{R}^n . For all $h \in \mathbb{R}$, |h| > 0 we define the functions f_h^i and $f_{\tau(h)}^i$ by setting

$$f_h^i(x) = rac{f(x + he_i) - f(x)}{|h|}$$
 and $f_{ au(h)}^i(x) = f(x + he_i)$.

Now we know that $f_{\tau(h)}^i \to f$ in $L^p(\mathbb{R}^n)$ when $|h| \to 0$ and, if p > 1, for functions $f \in W^{1,p}(\mathbb{R}^n)$ we have (see [GT, 7.11]) that $f_h^i \to D_i f$ in $L^p(\mathbb{R}^n)$ when $|h| \to 0$.

Corollary 2.3. Let $f \in L^p(\mathbb{R}^n)$, $1 \leq p < \infty$. Then for all $i, 1 \leq i \leq n$, R > 0, $\lambda > 0$ one has

$$m(\{x \in B(0,R): \mathcal{R}f(x) \not\subset \mathcal{R}f^i_{\tau(h)}(x)_{(\lambda)} \text{ or } \mathcal{R}f^i_{\tau(h)}(x) \not\subset \mathcal{R}f(x)_{(\lambda)}\}) \xrightarrow{h \to 0} 0.$$

Proof. Now $f_{\tau(h)}^i \to f$ and as a consequence of Lemma 2.2 it is clearly sufficient to prove that

$$m(\lbrace x \in B_R : \mathcal{R}f(x) \not\subset \mathcal{R}f^i_{\tau(h)}(x)_{(\lambda)}\rbrace) \to 0 \text{ as } h \to 0.$$

But this also follows easily from Lemma 2.2, because for |h| < 1 one has that

$$\{x \in B_R : \mathcal{R}f(x) \not\subset \mathcal{R}f^i_{\tau(h)}(x)_{(\lambda)}\}$$

$$= \{x \in B_R : \mathcal{R}f^i_{\tau(-h)}(x + he_i) \not\subset \mathcal{R}f(x + he_i)_{(\lambda)}\}$$

$$\subset \{y \in B_{R+1} : \mathcal{R}f^i_{\tau(-h)}(y) \not\subset \mathcal{R}f(y)_{(\lambda)}\} - he_i.$$

Remark. The previous corollary will became useful after the following observation. Let us denote by

$$\pi(A, B) := \inf\{\delta > 0 : A \subset B_{(\delta)} \text{ and } B \subset A_{(\delta)}\}\$$

the Hausdorff distance of the sets A and B. Let f be in $L^p(\mathbb{R}^n)$. With the new notation, the corollary says that

$$m(\lbrace x \in B_R : \pi(\mathcal{R}f(x), \mathcal{R}f(x + he_i)) > \lambda \rbrace) \to 0 \text{ when } h \to 0.$$

Therefore we easily infer that there is a sequence $(h_k)_{k=1}^{\infty}$, $h_k > 0$ with $h_k \to 0$, and such that $\pi(\mathcal{R}f(x), \mathcal{R}f(x+h_ke_i)) \to 0$ as $k \to \infty$ for almost every $x \in B_R$. This is the decisive fact needed in the following section.

3. A FORMULA FOR THE DERIVATIVE OF THE MAXIMAL FUNCTION

Let us denote by $D_i f(x)$ the partial derivative $\frac{\partial f}{\partial x_i}$.

Theorem 3.1. Let $f \in W^{1,p}(\mathbb{R}^n)$, $1 . Then we have for almost all <math>x \in \mathbb{R}^n$ that

$$(1)\ D_i M f(x) = \int\limits_{B(x,r)} D_i |f|(y) \ dy \quad for \ all \ r \in \mathcal{R} f(x) \ , r > 0 \quad and$$

(2)
$$D_i M f(x) = D_i |f|(x)$$
 if $0 \in \mathcal{R} f(x)$.

Proof. It is sufficient to prove the claim for non-negative functions, because Mf = M|f| and $|f| \in W^{1,p}(\mathbb{R}^n)$ if $f \in W^{1,p}(\mathbb{R}^n)$. Let R > 0. We start by choosing a sequence $(h_k)_{k=1}^{\infty}$, $h_k > 0$ and $h_k \to 0$ so that $\pi(\mathcal{R}f(x), \mathcal{R}f(x+h_ke_i)) \to 0$ as $k \to \infty$ for almost all $x \in B_R$ (see the Remark after Corollary 2.3). Then we have

(i)
$$||D_i M f - (M f)^i_{h_k}||_{p,B_R} \to 0 \text{ as } k \to \infty,$$

(ii)
$$||D_i f - f_{h_i}^i||_{p,B_R} \to 0 \text{ as } k \to \infty,$$

(iii)
$$||M(D_i f - f_{h_k}^i)||_{p,B_R} \to 0 \text{ as } k \to \infty.$$

Now, by extracting a subsequence if needed, we may assume that the convergences above are true pointwise almost everywhere as well. Moreover, we recall that the set

$$\{x \in \mathbb{R}^n : \exists k \in \mathbb{N} \text{ s.t. } 0 \in \mathcal{R}f(x + h_k e_i) \text{ with } Mf(x + h_k e_i) \neq f(x + h_k e_i)\}$$

has measure zero as an countable union of the sets having measure zero. Let $x \in B_R$ be a point outside the union of all these unwanted sets of measure zero (in particular, the pointwise analogies of (i–iii) hold at x) and let $r \in \mathcal{R}f(x)$.

Now, because $\pi(\mathcal{R}f(x), \mathcal{R}f(x+h_ke_i)) \to 0$, we find radii $r_k \in \mathcal{R}f(x+h_ke_i)$ so that $r_k \to r$ when $k \to \infty$. If r > 0 we can estimate:

$$\begin{split} D_{i}Mf(x) &= \lim_{k \to \infty} \frac{1}{h_{k}} (Mf(x + h_{k}e_{i}) - Mf(x)) \\ &\leq \lim_{k \to \infty} \frac{1}{h_{k}} \Big(\int_{B(x + h_{k}e_{i}, r_{k})} f(y) \, dy - \int_{B(x, r_{k})} f(y) \, dy \Big) \\ &= \lim_{k \to \infty} \frac{1}{m(B(x, r_{k}))} \int_{B(x, r_{k})} \frac{f(y + h_{k}e_{i}) - f(y)}{h_{k}} \, dy \\ &= \int_{B(x, r)} D_{i}f(y) \, dy \; . \end{split}$$

The last equation holds, because $m(B_{r_k}) \to m(B_r)$ and

$$\chi_{B(x,r_k)}f_{h_k}^i \to \chi_{B(x,r)}D_i f$$
 in $L^1(\mathbb{R}^n)$ as $k \to \infty$.

On the other hand, we get that

$$D_{i}Mf(x) \ge \lim_{k \to \infty} \frac{1}{h_{k}} \Big(\int_{B(x+h_{k}e_{i},r)} f(y) \, dy - \int_{B(x,r)} f(y) \, dy \Big)$$

$$= \lim_{k \to \infty} \frac{1}{m(B(x,r))} \int_{B(x,r)} \frac{f(y+h_{k}e_{i}) - f(y)}{h_{k}} \, dy = \int_{B(x,r)} D_{i}f(y) \, dy \, .$$

Let then be r=0. The proof of the lower bound of $D_iMf(x)$ applies now, too, and we get that $D_iMf(x) \geq D_if(x)$. If we have $r_k=0$ for infinite many k, we can decide straightforwardly that $D_iMf(x)=D_if(x)$. If $r_k>0$ starting from some k_0 , we get by the same way as when studying the upper bound of $D_iMf(x)$ in the case r>0 that

$$D_i M f(x) \le \lim_{k \to \infty} \int_{B(x, r_k)} f_{h_k}^i(y) \, dy = D_i f(x) \,,$$

because

$$\lim_{k \to \infty} \Big| \int_{B(x,r_k)} f_{h_k}^i(y) \, dy - D_i f(x) \Big| = \lim_{k \to \infty} \Big| \int_{B(x,r_k)} \Big(f_{h_k}^i(y) - D_i f(y) \Big) \, dy \Big|$$

$$\leq \lim_{k \to \infty} M(f_{h_k}^i - D_i f)(x) = 0.$$

Now we have showed the claim in the ball B(0,R). Since R was arbitrary, this completes the proof.

4. Continuity of the maximal operator in $W^{1,p}(\mathbb{R}^n)$

By using Theorem 3.1 and Lemma 2.2, we can establish quite easily our main result which verifies the continuity of the maximal operator in $W^{1,p}(\mathbb{R}^n)$.

Theorem 4.1. $M: W^{1,p}(\mathbb{R}^n) \mapsto W^{1,p}(\mathbb{R}^n)$ is continuous for all 1 .

Proof. Let $f_j \to f$ in $W^{1,p}(\mathbb{R}^n)$ when $j \to \infty$. We have to show that $||Mf_j - Mf||_{1,p} \to 0$. Because we know the continuity of M in $L^p(\mathbb{R}^n)$, it is sufficient to prove that $||D_iMf_j - D_iMf||_p \to 0$ for all $i, 1 \le i \le n$. Also it is clear that we may assume the functions f_j and f to be non-negative.

We start by choosing R>0 so that $\|2MD_if\|_{p,C_1}<\varepsilon$, where $C_1=\mathbb{R}^n\setminus B(0,R)$. By absolute continuity we choose $\alpha>0$ so that $\|2MD_if\|_{p,A}<\varepsilon$ always when $m(A)<\alpha$ and A is measurable subset of B(0,R).

We let (compare with the remark after Definition 2.1) $u_x(r)$ stand for the average of $D_i f$ in the ball B(x,r) and $u_x(0) = D_i f(x)$. As already observed, for almost every $x \in \mathbb{R}^n$ functions u_x are continuous on $[0,\infty)$. Moreover they converge to 0 when $r \to \infty$. Therefore there exists $\delta > 0$ such that

$$m(\{x \in B_R : |u_x(r_1) - u_x(r_2)| > \frac{\varepsilon}{(m(B_R))^{\frac{1}{p}}} \text{ for some } r_1, r_2, |r_1 - r_2| < \delta\})$$

=: $m(C_2) < \frac{\alpha}{2}$.

The set C_2 is easily shown to be measurable. Furthermore, Lemma 2.2 says that we can find j_0 so that

$$m(\{x: \mathcal{R}f_j(x) \not\subset \mathcal{R}f(x)_{(\delta)}\}) =: m(C^j) < \frac{\alpha}{2} \text{ when } j \geq j_0$$
 .

Then, let $j \geq j_0$ be fixed. It follows from Theorem 3.1 that almost everywhere in \mathbb{R}^n

$$|D_{i}Mf_{j}(x) - D_{i}Mf(x)| = \Big| \int_{B(x,r_{1})} D_{i}f_{j}(y) dy - \int_{B(x,r_{2})} D_{i}f(y) dy \Big|$$

$$\leq \Big| \int_{B(x,r_{1})} D_{i}f_{j}(y) dy - \int_{B(x,r_{1})} D_{i}f(y) dy \Big|$$

$$+ \Big| \int_{B(x,r_{1})} D_{i}f(y) dy - \int_{B(x,r_{2})} D_{i}f(y) dy \Big|$$

$$\leq M(D_{i}f_{j} - D_{i}f)(x) + \Big| \int_{B(x,r_{1})} D_{i}f(y) dy - \int_{B(x,r_{2})} D_{i}f(y) dy \Big|$$

for all $r_1 \in \mathcal{R}f_j(x), r_2 \in \mathcal{R}f(x)$. This inequation applies also to the cases $r_1 = 0$ or $r_2 = 0$ when we agree that

$$\oint_{B(x,0)} D_i f(y) dy := D_i f(x).$$

This is obvious because for almost every x it is true that $Mf(x) \ge f(x)$, and by Theorem 3.1 $D_iMf(x) = D_if(x)$ if $0 \in \mathcal{R}f(x)$.

Now, if $x \notin C_1 \bigcup C_2 \bigcup C^j$, we can pick $r_1 \in \mathcal{R}f_j(x)$ and $r_2 \in \mathcal{R}f(x)$ so that $|r_1 - r_2| < \delta$. Our choice of δ implies that

$$s := \Big| \int_{B(x,r_1)} D_i f(y) \, dy \, - \int_{B(x,r_2)} D_i f(y) \, dy \, \Big| < \frac{\varepsilon}{(m(B_R))^{\frac{1}{p}}} \; .$$

If $x \in C_1 \cup C_2 \cup C^j$, we estimate that $s \leq 2MD_i f(x)$. Observe also that $m(C_2 \cup C^j) < \alpha$.

Combining the above estimates it follows that

$$||D_{i}Mf_{j} - D_{i}Mf||_{p,\mathbb{R}^{n}} \leq ||M(D_{i}f_{j} - D_{i}f)||_{p,\mathbb{R}^{n}} + ||\frac{\varepsilon}{(m(B_{R}))^{\frac{1}{p}}}||_{p,B_{R}} + ||2MD_{i}f||_{p,C_{1}} + ||2MD_{i}f||_{p,C_{2} \cup C_{j}}.$$

The first term in the righthandside of the inequation converges to zero when $j \to \infty$. The rest of the terms are less than ε , because of the choices of R and α . As ε was arbitrary we conclude that $||D_iMf_j - D_iMf||_p \to 0$ as $j \to \infty$. The proof is

complete. \Box

Question. How good estimates one can find for the modulus of continuity of M?

ACKNOWLEDGEMENTS

I would like to thank Eero Saksman for the advisement and support he has given me. I also thank Juha Kinnunen and Jani Onninen for their valuable comments on the manuscript.

REFERENCES

- [AL] F.J. Almgren and E.H. Lieb, Symmetric decreasing rearrangement is sometimes continuous. J. Amer. Math. Soc., 2 (1989), 683-773.
- [GT] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edn, Springer-Verlag, Berlin 1983.
- [HO] P. Hajłasz and J. Onninen, On boundedness of maximal functions in Sobolev spaces. Ann. Acad. Sci. Fenn. Math., to appear.
- [K] J. Kinnunen, The Hardy-Littlewood maximal function of a Sobolev-function, Israel J.Math. 100 (1997), 117-124.
- [KL] J. Kinnunen and P. Lindqvist, The derivative of the maximal function, J.Reine Angew.Math. 503 (1998), 161-167.
- [KS] J. Kinnunen and E. Saksman, Regularity of the fractional maximal function, Bull. London Math. Soc. 35 (2003), no. 4, 529-535.
- [Ko] S. Korry, Boundedness of Hardy-Littlewood maximal operator in the framework of Lizorkin-Triebel spaces, Rev. Mat. Complut. 15 (2002), 401-416.

Department of Mathematics and Statistics, University of Jyväskylä, P.O.Box 35 (MaD), 40014 University of Jyväskylä, Finland

E-mail address: haluiro@maths.jyu.fi