CONTINUITY OF THE MAXIMAL OPERATOR IN
SOBOLEV SPACES

HANNES LUIRO

Abstract. We establish the continuity of the Hardy-Littlewood maximal oper-
ator on Sobolev spaces W1P(R"), 1 < p < co. As an auxiliary tool we prove an
explicit formula for the derivative of the maximal function.

1. INTRODUCTION

The classical Hardy-Littlewood maximal operator M is defined on L},.(R") by
setting for all f € L} (R")

loc

W M@= @l s [ 1w,
r>0 r>0 m(BT) B(z,r)
B(z,r)
for every z € R" ; here m denotes the Lebesgue measure in R” and
B, = B(0,r).

The theorem of Hardy, Littlewood and Wiener asserts that M is bounded on
LP(R™) for 1 < p < oco. This theorem is one of the cornerstones of harmonic
analysis. Applications e.g. to the study of Sobolev-functions indicate that it is also
useful to know how it preserves differentiability properties of functions. Quite re-
cently, Kinnunen observed [K] that M is bounded on the Sobolev-space W1:?(R"),
for 1 < p < 0o. Extensions and related results can be found from e.g. [KL], [Ko],
[KS], [HO].

Continuity of the maximal operator in LP(R™) follows from its sublinearity
and boundedness. Because of boundedness in W1P(R"), it is very natural to
ask whether the maximal operator is continuous in WP(R"), 1 < p < oo, or
not. This question was posed in [HO, Question 3| where it was attributed to T.
Iwaniec. In general, bounded non-sublinear operators need not to be continuous.
An important example of this kind of phenomenon is the result of Almgren and
Lieb [AL] who proved that the (known to be bounded) symmetric rearrangement
R : WHP(R™) — WLP(R™) is not continuous when 1 < p < n andn > 1. On
Sobolev-spaces, M is not sublinear and the issue of the continuity of M is not
trivial even though we know the boundedness.

Our main result (Thm. 4.1 below) is the positive answer to the question of
Iwaniec. A central role in our proof is played by a careful analysis of the set R f(x)
(see 2.1 below), which consists of the radii  for which equality is achieved in (1). As
a useful auxiliary tool we establish in Thm. 3.1 an explicit formula for the derivative
of the maximal function.

2. DEFINITIONS AND AUXILIARY RESULTS

Let us first introduce some notation. If A C R" and r € R", we define
d(r, A) := ir€1£|r —al, and Ay :={z € R" : d(z,A) < A} for A > 0.
a
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We endow W1P(R") with the norm

If1l10 = Iflle +[IV£llp

where Vf is the weak gradient of f. Let us also denote by ||f||p,4a the LP-norm of
xaf for all measurable sets A C R™.
The following new concept will be central in this work.

Definition 2.1. Let f € LP(R"), 1 <p < oo. The set Rf(x) is defined as

Rf(z) ={r>0: Mf(z) =limsup ][ |f(y)|dy, for some ry > 0}.

Tp—T
B(z,r)
Remarks. We comment on the above definition and the properties of the sets
Rf(x). Firstly, the definition clearly implies that R f(z) is always closed. Moreover,
for fixed z € R" define u, : [0,00) — R by

1 (0) = |f(z)] and ug(r) = ][ F@)|dy when r € (0,00).
B(z,r)

First of all, the functions u, are continuous for almost all z. The continuity on
(0,00) is clearly true for all z and at 0 it follows a.e., because almost every point
x € R™ is a Lebesgue’s point for f. Moreover, by Hélder’s inequality we have

2) ua(r) < [Ifllp(m(B,))s ",

where ¢ is the conjugate exponent of p, and hence lim,_,, u.(r) =0.

These facts together imply that, for almost all z, the function u, has at least
one maximum point in [0, c0). Furthermore, they guarantee that for all z € R” the
set Rf(z) is nonempty and

Mf(z) = ][ f(y)|dy ifr € Rf(z) and r >0, Yz € R" , and
B(z,r)
M f(z) = |f(x)| for almost every x such that 0 € Rf(z).

Also, it is useful to observe that for every R > 0 (assuming f # 0) it is true that
sup{r : r € Rf(z),z € B(O,R)} < .

The following lemma tells us how the sets Rf(z) and Rg(x) are related to each
other, especially when ||f — g||, is small.

Lemma 2.2. Let 1 < p < oo and suppose f; — f in LP(R™) when j — oo .Then
for all R >0 and A > 0 it holds that

m({r € B(0,R) : Rfj(z) £ Rf(z)(n}) = 0 ifj = oc.

Proof. First we remark that one can show that the above set is Lebesgue-
measurable always when f; and f are in LP(R"). It is sufficient to prove the
claim in the case where both f and f; are non-negative, because Rf(z) = R|f|(z).
Observe that Rf(z) is [0,00) for all z if f = 0 a.e., whence this case is trivial.
Let A > 0,R > 0 and € > 0. For almost every z € B(0, R) there exists a natural
number i(z) € N so that

(3) ][ Fy)dy < Mf(z) - ﬁ when d(r, Rf(z)) > .

B(z,r)
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This can be seen in the following way: If the claim is not true there is a sequence
of radii (r)g2, so that
fly)dy — M f(z) and d(rg,Rf(z)) > A.
B(waTk)

By moving to a subsequence, if needed, we may assume that r, — r as k = oo,

because (2) implies that the sequence (r})52; must be bounded. It follows that

r € Rf(x). This is a contradiction, since, obviously r satisfies d(r, Rf(z)) > A.
From (3) we conclude that there exists ¢ € N so that

B(0,R) C {z: ][ fly)dy <Mf()——., if d(ir,Rf(z >)\}UE :AUE,
B(z,r)

where E is a measurable set with m(E) < £. The weak type (1,1)-estimate for the
maximal operator implies that there exists jo € N so that

m({xeB(O,R) M- fi)(@)] > 5 }) < e when j > jo.

For all j we observe that

AC{w: ][ fily)dy < M f(z) — —,, if d(r,Rf(x >/\}
B(z,r)
Ute:| § sy - f 5idy| 2 5. for some r,dir. Rf(@) > A}
B(z,r) B(z,r)

Continuing the same reasoning, and using the fact |M f(x) — M f;(x)| < |M(f —
fi)(x)], we get
Ajc{z: ][ fily)dy < M f;(z) — T’ if d(r, Rf(z)) > A}

B(z,r)
Ute:IM( ~ 1)@ > )
::CjUD]‘.

It holds that
Cj C {.’I? : Rf](:c) - Rf((ll')(,\)} .

By combining the above observations, we conclude that for all j

B(O,R)C{.Z‘:Rfj( CRf ()\)}UEUD UB

Observe finally that B; C D; and, by our choice of jo we have m(D;) < e if j > jo,
and therefore
m({z € B0, R) : Rf;() ¢ Rf()n}) < 2¢ ,
if j>Jo. o
Let us introduce more notation. Assume that f € LP(R"), 1 < p < co. Let ¢;

be one of the standard basevectors of R* . For all h € R, |h| > 0 we define the
functions f} and fj(h) by setting

fite) = PR = ang 20 0) = fGo + e
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Now we know that f/ ) — f in LP(R") when |h| — 0 and, if p > 1, for functions
f € WHP(R™) we have (see [GT, 7.11]) that fi — D;f in LP(R™) when |h| — 0.
Corollary 2.3. Let f € LP(R*), 1 < p < co. Then for alli,1 <i <n, R >
0, A > 0 one has

m({z € B0, R) : RI(@) & Rfi (@) or Ry (@) £ RS n}) — 0.
Proof. Now fi( ny f and as a consequence of Lemma 2.2 it is clearly sufficient
to prove that
m({z € B : Rf(z) ¢ Rfi(h)(x)(x)}) —S0ash—0.
But this also follows easily from Lemma 2.2, because for |h| < 1 one has that
{xeBr:Rf(x) ¢ Rfi(h)(l')(,\)}
={z € Bg: Rfi(_h)(x + hei) € Rf(x + hei)(n }
C{y € Bri1 : RFL_py(y) € RE(W)(x)} — hei-
O

Remark. The previous corollary will became useful after the following observation.
Let us denote by

w(A, B) := inf{5 >0:AC B((;) and B C A((g)}
the Hausdorff distance of the sets A and B. Let f be in LP(R™). With the new
notation, the corollary says that
m({z € Bg : 1(Rf(z),Rf(z + he;)) > A}) = 0 when h — 0.

Therefore we easily infer that there is a sequence (ht)f2,, hx > 0 with hy — 0,
and such that 7(Rf(z), Rf(z + hre;)) = 0 as k — oo for almost every z € Bg.
This is the decisive fact needed in the following section.

3. A FORMULA FOR THE DERIVATIVE OF THE MAXIMAL FUNCTION
Let us denote by D;f(z) the partial derivative a%t,- .

Theorem 3.1. Let f € WYP(R"), 1 < p < oco. Then we have for almost all
z € R" that
(1) D;M f(z) = ][ D;|f|(y)dy for allr € Rf(z),r >0 and
B(z,r)
(2) DiM f(z) = Di|f|(z) if 0 € Rf(x).
Proof. Tt is sufficient to prove the claim for non-negative functions, because
Mf=M|f|land |f| € WLP(R") if f € WLP(R™). Let R > 0. We start by choosing

a sequence (hg)p>,, hx > 0 and hy — 0 so that 7(Rf(x),Rf(x + hre;)) — 0 as
k — oo for almost all z € Br (see the Remark after Corollary 2.3). Then we have

(i) IDiMf — (M f)j, llp.Br =0 as k— oo,
(ii) |\Dif — fr.
(iii) IM(Dif — fi)llp,pr = 0 as k — co.

Now, by extracting a subsequence if needed, we may assume that the convergences
above are true pointwise almost everywhere as well. Moreover, we recall that the
set

lp.Br = 0 as k — oo,

{r € R" : Ik € Ns.t.0 € Rf(z + hre;) with M f(x + hie;) # f(x + hre;)}
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has measure zero as an countable union of the sets having measure zero. Let
x € Bg be a point outside the union of all these unwanted sets of measure zero (in
particular, the pointwise analogies of (i-iii) hold at x) and let r € Rf(z).

Now, because (R f(z), Rf(z + hie;)) — 0, we find radii rp, € Rf(z + hre;) so
that r, — r when k — oco. If r > 0 we can estimate:

DM f(z) = lim ——(Mf(z + hyes) — Mf(z))

k—o0 hk
<pimo( f iwa- f s
_kggo h, Y y
B(z+hre;,rx) B(w,r)
1 / fy+ hwes) = 5)
k—o0 m(B(x,rk)) B(z,ri) hi
= D;f(y)dy
B(z,r)

The last equation holds, because m(B,, ) — m(B,) and
XB(E,”'k)f’ilk — XB(z,r)Dz'f in L1 (]Rn) as k — o0.
On the other hand, we get that

DMI@) > Jim (S f fwd)

k—o0 N
B(z+hge;,r) B(z,r)

. 1 [y + hiei) — f(y) [

k—co m(B(z,T)) hi .

Let then be r = 0. The proof of the lower bound of D; M f(z) applies now, too,
and we get that D; M f(x) > D, f(z) . If we have ry = 0 for infinite many k, we can
decide straightforwardly that D;M f(z) = D;f(x). If r, > 0 starting from some
ko, we get by the same way as when studying the upper bound of D; M f(x) in the
case r > 0 that

DiMf(z) < Jim ][ fi () dy = Dif(z),

B(zrk)
because
dim | [ f@dy - Dif@)] = tim | f (fiw) - Dif) dy |
B(z,ry) B(z,ry)

< lim M(f;, — Dif)(z) =
k—ro0
Now we have showed the claim in the ball B(0,R). Since R was arbitrary, this
completes the proof. O

4. CONTINUITY OF THE MAXIMAL OPERATOR IN WhP(R")

By using Theorem 3.1 and Lemma 2.2, we can establish quite easily our main
result which verifies the continuity of the maximal operator in W1P(R").

Theorem 4.1. M : WLP(R*) — WLP(R™) is continuous for all 1 < p < 0o.

Proof. Let f; — f in WHP(R™) when j — oo. We have to show that ||M f; —
Mf|l1,, = 0. Because we know the continuity of M in LP(R™), it is sufficient to
prove that |[D;M f; — D;M f|l, — 0 for all 4, 1 <4 < n. Also it is clear that we
may assume the functions f; and f to be non-negative.
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We start by choosing R > 0 so that ||2M D; f||p,c, < €, where C1 = R*\ B(0, R) .
By absolute continuity we choose a > 0 so that ||2M D, f||p,a < ¢ always when
m(A) < a and A is measurable subset of B(0, R) .

We let (compare with the remark after Definition 2.1) u,(r) stand for the average
of D;f in the ball B(z,r) and u,(0) = D;f(x). As already observed, for almost
every z € R functions u, are continuous on [0, 0c). Moreover they converge to 0
when r — oo . Therefore there exists 6 > 0 such that

€
m({x € Bg : |uz(r1) — ug(r2)| > ——— for some 7,79, [r1 — r2| < 6})
m R))P

=: m(Cg) < % .

The set Cs is easily shown to be measurable. Furthermore, Lemma 2.2 says that
we can find jo so that

m({z : Rf;(2) ¢ Rf(2)5)}) = m(C7) < 5 when j > jo.

Then, let j > jo be fixed. It follows from Theorem 3.1 that almost everywhere in
R’n

DM f(z) — DiM f(z)| = | f Dif;(y) dy — ][ Dif(y)dy|

B(z,r1) B(z,rs2)
<| § Dy - § Disydy
B(wiTl) B(waTl)
+ | ][ Dif(y)dy — ][ D;if(y)dy |
B(z,r1) B(z,rs2)
<MDif; - Dif)@) +| § Difwydy~ f Diswdyl
B(z,r1) B(z,rs2)

for all 11 € Rfj(x),r2 € Rf(z). This inequation applies also to the cases r1 =0
or r = 0 when we agree that

][ Dif(y)dy = Dif(z).
B(z,0)

This is obvious because for almost every z it is true that M f(z) > f(z), and by
Theorem 3.1 D;M f(z) = D;f(z) if 0 € Rf(z).

Now, if z ¢ C1 |JC2|JC?, we can pick 11 € Rfj(z) and r2 € Rf(x) so that
|ry — r2| < &. Our choice of § implies that

5= | ][ Dif(y)dy — ][ Dif(y)dy| < ——— .
B ?
B(z,r1) B(z,r2) (m( R))
If + € C;UCo|JC?, we estimate that s < 2MD;f(z). Observe also that
m(Cy|JCY) < a.
Combining the above estimates it follows that

3
IDiM f; = DiM f|lprr <|M(Dif; — Dif)llpr~ + | ———7|lp,Br
(m(Br))»
+12MD;f|lp,c, + [12MD;if||p,couc; -
The first term in the righthandside of the inequation converges to zero when j — oo.

The rest of the terms are less than e, because of the choices of R and a. As ¢ was
arbitrary we conclude that ||D;M f; — D;Mf||, = 0 as j — oo. The proof is
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complete. O

uestion. How good estimates one can find for the modulus of continuity of
g
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