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Abstract. We study an inverse problem for the two-dimensional random Schrö-

dinger equation (�+q+k
2)u = 0. The potential q(x) is assumed to be a Gaussian

random function that de�nes a Markov �eld. We show that the backscattered �eld,

obtained from a single realization of the random potential q, determines uniquely

the principal symbol of the covariance operator of q. The analysis is carried out by

combining methods of harmonic and microlocal analysis with stochastic methods.

1. Introduction

Consider the Schrödinger equation with outgoing radiation condition

(�� q + k2)u = Æy; in R
2�

@

@r
� ik

�
u(x) = o(jxj�1=2) as jxj ! 1(1.1)

where the potential q is a random generalized function supported in a compact

domain D. The wave u is decomposed into two parts

u = u0(x; y; k) + us(x; y; k);

where us(x; y; k) is the scattered �eld and

u0(x; y; k) = �k(x� y) = �
i

4
H

(1)
0 (kjx� yj)

is the incident �eld corresponding to a point source at y and H
(1)
0 (� ) is the Hankel

function of the �rst kind. We shall assume that y 2 U; where the domain U � R
2nD,

called themeasurement domain, is bounded and convex. In the measurement domain

U it is possible to make measurements of the scattered wave.

The aim of inverse scattering theory is usually to determine the scatterer q from

appropriate measurements. On the other hand, in many applications the scatterer

can be very complicated and non-smooth. For such scatterers, the inverse problem

is not so much to recover the exact micro-structure of an object but merely to deter-

mine the parameters or functions describing the properties of the micro-structure.

One example of such a parameter is the correlation length of the medium which is re-

lated to the typical size of �particles� inside of the scatterer. In mathematical terms,
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assume that the potential q has been created by a random process, i.e., q = q(x; !0)
is a realization of a random function q(x; !). Here !0 denotes an element of the

probability space 
. As q(x; !) is random, the scattered �eld is also random and

we sometimes emphasize this by writing us(x; y; k) = us(x; y; k; !). The inverse

problem is to determine the parameters describing the random process q(x; !), e.g.,
from the energy of the scattered wave jus(x; y; k; !0)j2.
In applied literature the measured data is often assumed to coincide with the av-

eraged data E jus(x; y; k; !)j2. This corresponds to the case when the measurements

could be made from many independent samples of the scatterer and these measure-

ments could be averaged. This appears to not always be a well justi�ed assumption

since often the scatterer does not change during the period of measurements. Also,

in applications the multiple scattering is often omitted. This leads to a linearization

of the inverse problem which can be justi�ed only when q is small.

A related approach for the scattering from a random medium is the study of the

multi-scale asymptotics of the scattered �eld. In this case the approximations made

can be justi�ed when the frequency k and the spatial frequency of the scatterer

have appropriate magnitudes. This type of asymptotic analysis has been studied

by Papanicolaou and others in various cases, cf. e.g. [40], [41], [6], [9]. Random

Schrödinger operators have also been studied from the point of view of spectral

theory in celebrated papers of Kotani, [26],[27] and extensively generalized by B.

Simon and others (cf. [42],[16],[46],[45],[28]).

To avoid any approximations such as linearization we apply to the above stochastic

inverse problem techniques that are developed for similar deterministic problems.

Actually, our stochastic setup leads to new type of analysis problems. Our tools for

treating them include harmonic and microlocal analysis, which techniques are also

often used in the deterministic case, cf. [11], [31], [32], [48]. An extensive review

for this is given in [50]. For inverse problems involving non-smooth deterministic

structures see e.g. [10], [37], [38], [18], and [5]. From probability theory we apply

e.g. the theory of Gaussian �elds and ergodicity of random processes.

The main result of this paper (Theorem 1.3 below) shows that the mean values

over the frequency k of the backscattered energy jus(x; x; k; !0)j2, obtained from a

single realization q(z; !0), almost surely determine the micro-structure of the random

potential, or more exactly the principal symbol of the covariance operator of the

random function q(x; !). We stress that, after the model for the random potential

is �xed, no approximations are made. In particular, we study the full non-linear

problem. We next describe our results in detail in Subsections 1.1 and 1.2 below.

1.1. The model for the random potential. Fix a bounded simply connected

domain D � R
2 . We assume that the potential q is a generalized Gaussian �eld

supported in D. Recall, that this means that q is a measurable map from the

probability space 
 to the space of distributionsD0(R2) such that for all �1; : : : ; �m 2
C1
0 (R2) the mapping 
 3 ! 7! (hq(!); �ji)mj=1 is a Gaussian random variable.
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We will assume that the probability measure space (
;F ;P) is complete. The

distribution of q is determined by the expectation E q and the covariance operator

Cq : C
1
0 (R2)! D0(R2) de�ned by

h 1; Cq 2i = E (hq � E q;  1ihq � E q;  2i):(1.2)

Let kq(x; y) be the Schwartz kernel of the covariance operator Cq. We call kq(x; y)
the covariance function of q. Then, in the sense of generalized functions, (1.2) reads

as

kq(x; y) = E ((q(x)� E q(x))(q(y)� E q(y))):

It is often assumed that the covariance function kq(x; y) is singular only on the diag-

onal since it is natural to assume that the long range interactions depend smoothly

on location. Also the basic stochastic processes like the Brownian bridge or the

free Gaussian �eld possess this property. As the above property is characteristic for

Schwartz kernels of pseudodi�erential operators, we introduce the following de�ni-

tion.

De�nition 1.1. Let � 2 C1
0 (D), �(x) � 0. A generalized Gaussian random �eld

q on R
2 is said to be microlocally isotropic (of order � � 0) in D, if the realizations

of q are almost surely supported in the domain D and its covariance operator Cq is

a classical pseudodi�erential operator having the principal symbol �(x)j�j�� .

In particular, we are interested in the case � = 2, cf. subsection 1.1 where

examples of the micro-locally isotropic �elds of order two are considered. In Section

3 we will show that the Schrödinger equation has a.s. a unique solution for such

potentials.

We call � the micro-correlation strength of q. In our situation the covariance

function kq(z1; z2) is locally integrable for �xed z2 and has the asymptotics

kq(z1; z2) = ��(z2) log jz1 � z2j+ f(z1; z2)

where f is locally bounded. Hence the function �(z) describes the strength of the

singularity of kq near the diagonal, and it determines approximately the radius of

the set fz1 : kq(z1; z2) > Mg with a given large bound M . Thus micro-correlation

strength function � is closely related to the local correlation length of the random

�eld.

We are ready to formulate the measurement con�guration. Recall that us is the

scattered �eld corresponding to problem (1.1).

De�nition 1.2. Given ! 2 
, the measurementm(x; y; !); x; y 2 U is the pointwise

limit

m(x; y; !) = lim
K!1

1

K � 1

Z K

1

k4jus(x; y; k; !)j2dk:(1.3)

An important special case is the backscattering measurement m(x; x; !).
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The measurement in the above de�nition is an average over all frequencies whence

it is not sensitive to measurement errors. For example, the white noise error in the

measurement is �ltered out by frequency averaging. Note also that the measurement

uses information only from the amplitude (not the phase) of the scattered �eld. It

is truly a non-trivial fact that the above de�nition gives a well-de�ned, �nite and

non-zero quantity. That this is so, is part of Theorem 1.3 below.

1.2. The result. The main result of this paper is

Theorem 1.3. Let D � R
2
be a bounded simply connected domain, U � R

2 nD be a

bounded and convex domain, and let q be a microlocally isotropic Gaussian random

�eld of order two in D, as described in De�nition 1.1. Then

(i) For any x; y 2 U the measurement m(x; y; !) is well-de�ned (that is, the

limit in (1.3) exists almost surely).

(ii) There exists a continuous deterministic function m0(x; y) such that for any

x; y 2 U the equality m(x; y; !) = m0(x; y) holds almost surely. In particular,

the function m0(x; x) is almost surely determined by the backscattering data

m(x; x; !).
(iii) The backscattering data n0(x) := m0(x; x); x 2 U uniquely determines the

micro-correlation strength function � in the domain 
. Moreover, there is a

linear operator T such that

T (n0) = �:

We point out that by the above result the principal structure of the covariance

is determined by measurements from only a single realization of the potential only!

Observe that the needed data is the energy averages of the back-scattered �eld.

However, one should note that the result uses backscattering data from sending lo-

cations that are at a �nite distance from the potential � often one considers far-�eld

data in connection with the deterministic backscattering problem (cf. [15], [14], [47]

and [35]). We refer to the Remark 3 at the end of Section 7 for a more thorough dis-

cussion of the relation of the above result to its deterministic counterparts. Property

(ii) in Theorem 1.3 is sometimes called statistical stability, c.f. [9].

Finally, we note that using the fact that the measurements m(x; y; !) exist, our
analysis could be generalized to other measurements. For instance one can analyze

�xed source point measurements x 7! m(x; y0; !) where y0 2 U is �xed and x 2 U .

This and other physically important measurements will be considered elsewhere in

detail.

Because of notational simplicity, we will assume in the proof of Theorem 1.3 that

E q = 0; one can easily dispense with this assumption (see Remark 1 at the end of

Section 7).

The rest of the paper is organized as follows: Subsection 1.3 describes some nat-

ural examples of random potentials. The smoothness of the random potential is

considered in Section 2. It turns out that q is a proper distribution almost surely.
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Section 3 treats the scattering problem for a class of distributional potentials. Espe-

cially, one obtains that (1.1) has a unique solution in our case. Section 4 considers

oscillatory integrals in order to establish the asymptotic independence of the solu-

tions u(x; y; k1) and u(x; y; k2) for large values of jk1�k2j in the Born approximation.

The validity of this approximation in the context of our measurements is veri�ed in

Section 5. The results of the previous sections are combined in Section 6, where it is

shown that the measurements can be expressed as a deterministic weighted avarage

over the unknown parameter �: Finally, Section 7 veri�es that this data allows us

to recover � almost surely.

1.3. Markov �elds. Here we introduce the notion of Markov �elds which provide

natural examples of microlocally isotropic �elds. Assume that the potential q is a

localization of a generalized Gaussian �eld, that is, q = �Q, where � 2 C1
0 (D) and

Q is a centered (i.e., E Q = 0) generalized Gaussian �eld on R
2 . The reason for

introducing the cuto� � is to avoid the possible e�ects arising from discontinuity at

the boundary @D.

To obtain a more concrete structure we will assume further thatQ has additionally

a Markov structure. Below we will recall the de�nition of such �elds. The basic

properties of generalized Markov �elds can be found in [44]. The de�nition of Markov

�elds mimics the situation where physical particles in a lattice have no long-term

interaction, i.e., only neighboring particles have direct interaction. Assume that

S1 � D is an open set with S1 � D. We set S2 = D n S1 and S� = fx 2 D :
d(x; @S1) � "g; " > 0, a collar neighborhood of the boundary @S1. Intuitively the

Markov property means that the in�uence from the inside to the outside must pass

through the collar.

De�nition 1.4. A generalized random �eld Q on R
2 satis�es the Markov property

if for any S1; S2 and S" as described above, and " > 0 small enough, the conditional

expectations satisfy

E (h ÆQ( )jB(S")) = E (h ÆQ( )jB(S" [ S1))

for any complex polynomial h and for any test function  2 C1
0 (S2).

Here B(Sj) is the �-algebra generated by the random variables Q(�); � 2 C1
0 (Sj),

j = 1; 2, and B(S") is de�ned respectively.

The Markov property has dramatic implications to the structure of the �eld Q

and especially to its covariance operator CQ. Under minor additional conditions

(cf. [44]), we may de�ne the inverse operator (CQ)
�1 which turns out to be a local

operator: it cannot increase the support of a test function. By a well-known theorem

of J. Peetre [43] (CQ)
�1 must be a linear partial di�erential operator. As CQ is non-

negative operator, (CQ)
�1 has to be of even order. To obtain an isotropic situation

we �nally assume that (CQ)
�1 is a non-degenerate elliptic operator, is of 2nd order,

has smooth coe�cients, and �nally its principal part is positive and homogeneous.



6 MATTI LASSAS, LASSI PÄIVÄRINTA, AND EERO SAKSMAN

This implies that

(CQ)
�1 = P (z;Dz) = �

2X
j;k=1

@

@zj
a(z)

@

@zk
+ b(z);(1.4)

where a(z) > 0 and b(z) are smooth real functions in R
2 . Then the �eld Q is micro-

locally isotropic of order two as CQ is a pseudodi�erential operator with an isotropic

principal symbol.

To motivate the assumption that the order of (CQ)
�1 is two, let us consider the

case where (CQ)
�1 would be of fourth order or higher, with smooth coe�cients. Then

one could easily verify (cf. the proof of Theorem 2.3) that the realizations of q are in

the Sobolev class Hs;p
comp(R

2) for all s < 1 and 1 < p <1. As our aim is to consider

the case of non-smooth potentials, the second order case is the most interesting in

view of many applications. An important example of such random �elds of this type

is obtained by the free Gaussian �elds, which appear in two dimension quantum

�eld theory (c.f. e.g. [19]). The free Gaussian �eld on the bounded domain D,

corresponding to Dirichlet boundary values, has the (Dirichlet-)Green's function as

the kernel of its covariance operator. This corresponds to choices a(z) = 1, b(z) = 0.
Examples with variable a(z) can be constructed easily.

Finally, the covariance operator Cq of the potential q has the kernel

kq(z1; z2) = �(z1)kQ(z1; z2)�(z2):

This implies that q is microlocally isotropic of order two in D and has the micro-

correlation strength function �(z) = �(z)2 a(z)�1:

2. Regularity of the stochastic potential

We will study what kind of regularity (or irregularity) is implied for the potential

by De�nition 1.2. Actually it turns out that q(!) is not a function (or even a

measure); almost surely it is a proper distribution. This is not so surprising since

similar phenomena are well known in the case of a free Gaussian �eld. However, the

potential just barely fails to be a function: almost every realization of the potential

satis�es

q(!) 2 H��;p
0 (D) for all " > 0 and 1 < p <1:(2.1)

Here, Hs;p(R2) = F�1((1+ j�j2)�s=2FLp(R2)) is the standard Sobolev space, de�ned

with the Fourier transform F and Hs;p
0 (D) is the closure of C1

0 (D) in Hs;p(R2). In
this section we verify (2.1), which is crucial for the success of the subsequent analysis

of our problem. For example, it enables us to prove in the following section the

uniqueness for the corresponding scattering problem, even though the uniqueness is

known to fail for certain integrable potentials.

We start by recording a result which yields a criterion for realizations of a random

�eld to lie in
T

p>1 L
p(D): Here and below c denotes a generic constant the value of

which may change even inside a formula.
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Lemma 2.1. Assume that the covariance operator K of a random �eld F on the

open bounded set D � R
n
has a regular kernel (denoted also by K(x; y)) satisfying

jK(x; y)j � c <1 for every x; y 2 D:

Then the realizations of F belong almost surely to
T

p>1 L
p(D):

Proof. This is an immediate consequence of [8, Prop. 3.11.15]. To sketch a direct

proof of this result, one may �rst mollify F and observe that in the smooth case

E (kFkp)p = cp
R
D
jK(x; x)jp=2dx: �

We next analyze the singularity of the covariance operator of q which we denote

by C = Cq.

Proposition 2.2. The Schwartz kernel of the covariance operator C may be decom-

posed as

C(x; y) = c0(x; y) log jx� yj+ r1(x; y);

where c0 2 C1
0 (D �D) and the term r1 satis�es br1 2 L1(R4); and, consequently

(2.2) sup
x;y2D

jr1(x; y)j <1:

Here br1 denotes the Fourier transform of r1 with respect to both variables x; y:

Proof. By de�nition, C(x; y) is a kernel of a (compactly supported) classical pseu-

dodi�erential operator with symbol a(x; �) = �(x)(1� (�))j�j�2+b(x; �) in the class

S�2(R2 � R
2) (c.f. [22]), where the smooth cuto�  2 C1

0 (R2) equals 1 near the

origin, and b 2 S�3(R2 � R
2): We obtain

2�2C(x; y) = �(x)

Z
R2

ei(x�y)��(1�  (�))j�j�2d� +
Z
R2

ei(x�y)��b(x; �)d�

= I(x; y) + r2(x; y);

where I(x; y) may clearly be written in the desired form c0(x; y) log jx� yj+ r(x; y).
In order to analyze the residual term r2(x; y); write R(x; y) = r2(x; x � y); and

observe that br1 2 L1(R4) follows as soon as we show that bR is integrable. A simple

computation shows that bR is the Fourier transform of the symbol b with respect to

x: Since the support of b is compact with respect to x, and we have the uniform

estimates j@�x b(x; �)j � c�(1 + j�j)�3; � � 0; it follows that jFxb(�; �)j � c(1 +

j�j)�3(1 + j�j)�3: This veri�es that bR 2 L1: The proof is complete. �

The following implication is needed for realizations of q.

Theorem 2.3. Almost surely q(!) 2 H��;p(D) for all " > 0 and 1 < p <1.

Proof. Recall that for given s 2 R the Bessel potential Js provides an isomorphism

Js : H t;p(R2) ! H t+s;p(R2) for all t 2 R and 1 < p < 1. Moreover, Js is a

pseudodi�erential operator, whence it preserves singular supports. Thus it is enough

to verify that locally the covariance of J"q has a uniformly bounded kernel for any

small " > 0. That is, by letting J"loc stand for a suitable localization of J" we have
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to study the kernel J"loccJ
"
loc. It is well known that for small " > 0 the kernel has

form

J"(x; y) =
c

jx� yj2�"
+ S(x; y);

where S has a lower order singularity. Now the claim follows by combining Propo-

sition 2.2 and the fact Z
B(0;R)

j log jxjj
jxj2�"

dx <1

for any radius R > 0: �

3. Direct scattering problem for a distributional potential.

3.1. Unique continuation. We showed above that the random potential q(!) be-
longs with probability one to the Sobolev space H��;p(D) for all 1 � p < 1 and

� > 0. Consequently, we need to study the existence and properties of the solution

for the Schrödinger equation for such irregular potentials. In this section we ac-

complish this by considering scattering from a deterministic non-smooth potential

q0 2 H��;p(D), and the obtained results have independent interest.

The direct scattering theory from a potential that is in a weighted L2 space

is classical (c.f. [7],[3]). For the Lp scattering theory the key tool is the unique

continuation of the solution. Jerison and Kenig showed in [23] that the strong

unique continuation principle for Lp-potentials in R
n holds for p � n=2 and fails

for p < n=2 in dimensions n > 2. In dimension two the unique continuation holds

in a space of functions that is close to L1 [23]. For Sobolev space potentials, the

selfadjointness of the operator has been studied in [34]. Below in Lemma 3.2 we

show a positive result for negative index Sobolev spaces.

More precisely, we study the scattering problem

(3.1)

(
(�� q0 + k2)u = Æy�
@
@r
� ik

�
u(x) = o(jxj�1=2)

where the potential q0 2 H��;p0
comp

(R2), p�1 + (p0)�1 = 1, 1 < p < 2. We claim that the

problem (3.1) is equivalent to the Lippmann-Schwinger equation

(3.2) u(x) = u0(x)�
Z
R2

�k(x� y)q0(y)u(y)dy:

In the proof we show that the pointwise product q0u in the integrand of (3.2)

is well de�ned and that the integral exists in the sense of distributions. We will

then show that (3.2) has a unique solution u 2 H2p;�
loc (Rn). The starting point is the

unique continuation principle. Roughly speaking, it says that if u is a compactly

supported solution of the Schrödinger equation with q0 2 H��;r; r > n=2 and if �

is small then u must vanish identically. It appears to the authors that this result

could also be obtained as a special case of D. Tataru's and H. Koch's recent unique

continuation results based on Lp Carleman estimates [25]. In our case, we present a
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direct and simple proof for unique continuation. We start by observing that known

pointwise multiplication results allow us to de�ne the product distribution q0u.

Lemma 3.1. Assume that u 2 H�;2p
loc (Rn), q0 2 H

��;p0
0 (Rn), 1 < p <1, � > 0. Then

the product q0u is well-de�ned as an element of H��;ep
0 (Rn), where ep = 2p

2p�1 and

(3.3) jjq0ujjH��;ep

0 (Rn)
� cjjq0jjH��;p0

0 (Rn)
jjujjH�;2p(Rn):

Proof: Take � 2 C1
0 (Rn) to be a test function. By duality, the product q0u 2

D0(Rn) is a well de�ned through

(3.4) hq0u; �i = hq0; �ui

when q0 2 H��;p0
comp

(Rn) and u 2 H�;p
loc
(Rn). By using Bony's paraproducts one can

verify the following pointwise multiplier estimate in Sobolev spaces ([49, pp. 105])

(3.5) k�ukH�;p(Rn) � c
�
k�kLr1(Rn)kukH�;r2(Rn) + kukLr1(Rn)k�kH�;r2(Rn)

�
for 1=p = 1=r1 + 1=r2. From (3.4) and (3.5) with r1 = r2 = 2p it readily follows by

duality that q0u 2 H
��;ep
0 (Rn) where ep = 2p

2p�1 : �

Proposition 3.2 (Unique continuation principle into an interior domain). Assume

that p0 2 (n=2;1), together with 0 < � < n
4
(2=n � 1=p0). Let q0 2 H��;p0

comp (R
n). If

u 2 H�;2p
loc (Rn) is compactly supported and satis�es the Schrödinger equation

(�� q0 + k2)u = 0

in the weak sense, then u = 0 identically.

Proof: Assume that the support of q is contained in the bounded domainD � R
n :

To prove the unique continuation we use the well-known techniques of exponentially

growing solutions for the Schrödinger equation, cf. [20], [24]. To this end we write

the equation (� + k2)u = q0u as

(� + 2i� � r)e�i��xu = e�i��xq0u;

where � 2 Cn is such that � � � = k2. Since u is supposed to have compact support

we have v := e�i��xu 2 H�;2p
comp

(R2). For v we obtain the equation

(3.6) v = G�(q0v)

where the Faddeev operator G� is de�ned as the Fourier multiplier

G�(f)(x) = F�1(
�1

�2 + 2� � �
f̂)(x):

It is well known (see for example the proof of Theorem 4.1 in [36]) that for 0 � s � 1
2

(3.7) kG�kH�s

0 (D)!Hs(D) �
c

j�j1�2s
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where Hs(D) = Hs;2(D) and Hs
0(D) = Hs;2

0 (D) are L2-based Sobolev spaces. By

[24], G� is a bounded operator

(3.8) G� : L
r(D)! Lr0(D);

for r = 2n
n+2

if n � 3 and for r > 1 for n = 2. We continue �rst in the case n � 3.
Interpolation of (3.7) and (3.8) yields

(3.9) jjG�jjH��;ep

0 (D)!H�;2p(D)
� cj�j�(1�2s)�

where � = �s and � = 1� n
2p0

. Finally, (3.3), (3.6), and (3.9) show that

(3.10) jjvjjH�;2p(D) �
c

j�j(1�2s)�
jjvjjH�;2p(D)

Choosing 0 < s < 1
2
and � large enough, we conclude that v and hence u must

vanish identically. Finally in the case n = 2 we interpolate (3.7) and (3.8) for r > 1
and by letting r! 1 the same conclusion follows. �

Remark. Note that for n = 2 the uniqueness follows for u 2 H";r
loc
(R2) when

r > 2, 0 < " < 1
r
, and q0 2 H�";r0

comp
(R2).

3.2. Existence and uniqueness for solutions of the scattering problem.

After having proven the unique continuation principle, the proofs of Theorems 3.3

and 3.4 below are relatively straightforward extensions of classical proofs for regular

potentials. For the convenience of the reader, we include the details.

Theorem 3.3. For q0 2 H��;p0
comp (R

n), with n � 2, p0 2 (n=2;1), and 0 < � < n
4
( 2
n
�

1
p0
), the Lippmann-Schwinger equation (3.2) has a unique solution u 2 H�;2p

loc (Rn).

Proof: Let D be a bounded domain such that supp (q0) � D. Consider the

equation (3.2) in H�;2p(D). Since the operator Hk,

Hkf = �k � f;(3.11)

de�nes a bounded operator Hk : H�s
0 (D) ! Hs(D) for s � 1 we see from Sobolev

embedding and Rellich's compact embedding theorem thatHk : H
��;ep
0 (D)! H�;2p(D)

compactly. This and Proposition 3.2 give that the operator Kk : H�;2p(D) !
H�;2p(D), Kkf = Hkq0f is compact.

Thus by Fredholm's alternative it is enough to show that in H�;2p(D) the homo-

geneous equation

(3.12) u = Hkq0u

has only the trivial solution u = 0. If u 2 H�;2p(D) satis�es (3.12) then u belongs

to the Schwartz class S 0 and by taking the Fourier transform we obtain in the sense

of distributions that (�+ k2)u(x) = q0u: In particular u must be smooth in R
n nD

and satisfy (� + k2)u = 0 there. Note that by (3.12) the values of u in D de�ne u

in all of Rn .
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As the fundamental solution and its derivatives satisfy the radiation condition,

we see from (3.12) that u also satis�es the radiation condition in (1.1). Thus, as u

is a classical solution in R
n nD satisfying the radiation condition, it has a far �eld

expansion (cf. [12, Thm. 2.14]). By Rellich's lemma (cf. [12, Lem. 2.11]) and the

unique continuation principle it is enough to show that the far �eld u1 of u, de�ned

by

u(x) =
eikjxj

4�jxj(n�1)=2
u1

�
x

jxj

�
+ o

�
jxj�(n�1)=2

�
as jxj ! 1, vanishes for u.

Note that

�u = (q0 � k2)u 2 H��;ep(R2) +H
�;2p
loc (Rn):

This implies that ru 2 L2
loc and that u and �u belong locally to spaces that are

dual to each other. Take r > 0 so large that D � B(0; r). Thus by approximating

u by smooth functions we get from Green's formula

Im

Z
jxj=r

u
@

@�
u ds = Im

Z
jxj�r

�
jruj2 + (q0 � k2)juj2

�
dx = 0:

Thus Z
jxj=r

 ���� @@� u
����2 + k2juj2

!
ds =

Z
jxj=r

���� @@� u� iku

����2 ds! 0

as r ! 1. Especially, this implies that jjujjL2(fjxj=rg) ! 0 as r ! 1. This is

possible only if u1 � 0. Thus the assertion is proven. �

Theorem 3.4. For q0 2 H��;p0
comp (R

n), with n � 2, p0 2 (n=2;1), and 0 < � <
n
4
( 2
n
� 1

p0
), the scattering problem (3.1) is equivalent to the Lippmann-Schwinger

equation and thus has a unique solution u 2 H�;2p
loc (Rn).

Proof: As reasoned in the proof of the previous theorem a solution of the

Lippmann-Schwinger equation satis�es (3.1). Suppose u 2 H�;2p
loc (Rn) \ S 0 is a solu-

tion of (3.1). We need to show that

(3.13) us(x) =

Z
�k(x� y)q0(y)u(y) dy:

Since (�+k2)us = q0u 2 H��;ep
comp

(Rn) and �k(x��) 2 H
�;2p
loc

(Rn) and both functions

are real-analytic outside a large ball we have from (3.1) in the sense of distributions

that

(3.14)

Z
jyj�r

�k(x� y)(� + k2)us(y) dy = Hk(q0u):
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Denote the operator that operates to us in the left hand side of (3.14) by T . Now

for � 2 C1(Rn),

T� = �+

Z
jyj=r

�
�k(� � y)

@

@r(y)
�(y)�

@

@r(y)
�k(� � y)�(y)

�
ds(y):

Thus, approximating us with smooth functions we obtain

us(x) +

Z
jyj=r

(�k(x� y)
@

@r(y)
us(y)�

@

@r(y)
�k(x� y)us(y)) ds(y) = Hk(q0u):

From the radiation condition it follows that the boundary integral in the above

formula approaches zero as r ! 1, cf. [12, Thm. 2.4]. This proves (3.13) and

hence the theorem. �

Note that, in view of Theorem 2.3, Theorem 3.4 implies that the original stochastic

scattering problem (1.1) has a unique solution almost surely.

4. The asymptotic independence of the first order Born term

By iterating the Lippmann-Schwinger equation, one can formally represent u as

the Born series,

(4.1) u(x; y; k) = u0(x; y; k) + u1(x; y; k) + u2(x; y; k) + : : :

where u0(x; y; k) = �k(x� y) and un+1 = (�+ k2 + i0)�1(qun): A considerable part

of our work consist of analyzing the di�erent terms in this development. We will

later prove in subsection 5.2 that the series (4.1) converges for large enough values

of k. In the proof of our main result we need to establish asymptotic independence

for the �rst terms in the Born series, corresponding to di�erent values of k: The

veri�cation of this fact leads to estimation of certain oscillatory integrals, and needs

a fairly involved computation. As a useful tool we apply the calculus of conormal

distributions. The results of this section will be applied later in section 6.

As the �rst term in the Born series is

u1(x; y; k) =

Z
D

�k(x� z)q(z)�k(z � y) dz;

we start with the asymptotics of �k(z) = � i
4
H

(1)
0 (kjzj), when k ! 1. These are

given by

�k(z) =

s
1

kjzj
ei(kjzj��=4)F (

1

kjzj
); F (t) =

1X
j=0

djt
j; t > 0;(4.2)

where d0 = � ip
8�

and dj are constants whose actual values are not important for us

in the sequel. The series (4.2) and its derivative have the property that for N > 1
(c.f. [1, formulae 9.1.27, 9.2.7�9.2.10])

jF (t)�
NX
j=0

djt
jj � ctN+1; j

d

dt
(F (t)�

NX
j=0

djt
j)j � ctN ; 0 < t < 1:(4.3)



INVERSE SCATTERING PROBLEM FOR A RANDOM POTENTIAL 13

Using �rst three terms in the asymptotics of �k, we write

u1(x; y; k) = eu1(x; y; k) + b(x; y; k)(4.4)

where, for k � 1

eu1(x; y; k) = Z
D

�
(3)

k (x� z)q(z)�
(3)

k (z � y) dz;

�
(3)

k (z) = (kjzj)�
1
2 ei(kjzj��=4)

3X
j=0

dj (kjzj)�j:

Let us denote by O(k�n11 k�n22 ) functions h(x; y; k1; k2) which satisfy an estimate

jh(x; y; k1; k2)j � ck�n11 k�n22 for x; y 2 U and k1; k2 � 1 where c is independent

of x; y; k1; and k2. Next we compute the asymptotic expansion for the covariance

of eu1 thus showing that the �elds eu1 with di�erent frequencies are asymptotically

independent. We emphasize that formula (4.8) below is crucial for the construction

of �(z) in Section 7.

Proposition 4.1. For k1; k2 � 1 the random variable eu1 satis�es uniformly for

x; y 2 U the estimates

jE (eu1(x; y; k1)eu1(x; y; k2))j � cn
(k1 + k2)4(1 + jk1 � k2j)n

;(4.5)

jE (eu1(x; y; k1)eu1(x; y; k2))j � c0n(k1 + k2)
�n;(4.6)

where n is arbitrary. Moreover, for k1 = k2 = k we have the asymptotics

E (eu1(x; y; k)eu1(x; y; k)) = R(x; y)k�4 +O(k�5)(4.7)

where R 2 C1(U � U). Especially, it holds that

R(x; x) =
1

28�2

Z
R2

�(z)

jz � xj2
dz for x 2 U:(4.8)

Proof. Denote �(z; x; y) = jx� zj + jz � yj: As the covariance operator Cq has a

weakly singular kernel C(z1; z2) = kq(z1; z2) with asymptotics given as in Proposition

2.2, we see that

E (eu1(x; y; k1)eu1(x; y; k2)) = 3X
j1;j2;l1;l2=0

Ij1;j2;l1;l2(k1; k2; x; y)(4.9)

where

Ij1;j2;l1;l2(k1; k2; x; y) =(4.10)

dj1dj2dl1dl2

k1+j1+j21 k1+l1+l22

Z
R4

exp
�
ik1�(z1; x; y)� ik2�(z2; x; y)

�
E (q(z1)q(z2))

jx� z1jj1+
1
2 jz1 � yjj2+

1
2 jx� z2jl1+

1
2 jz2 � yj

l2+
1
2

dz1dz2:

Assumption 1.1 with � = 2 states that C(z1; z2) is the Schwartz kernel of a

pseudodi�erential operator Cq with a classical symbol c(x; �) 2 S�21;0(R
2 � R

2), and
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the principal symbol of Cq is given by cp(z; �) = �(z)(1 + j�j2)�1: The support of

Cq(z1; z2) is contained in D �D. We may write (c.f. [22])

Cq(z1; z2) = (2�)�2
Z
R2

ei(z1�z2)��c(z1; �) d�:(4.11)

All symbols appearing below will be classical symbols [22].

In order to obtain uniform estimates with respect to variables x and y we shall

introduce them as variables in the covariance in the following way. Let us de�ne the

function C1(z1; z2; x; y) = Cq(z1; z2)�(x)�(y) where � 2 C1
0 (R2) equals one in the

domain U and has its support outside D.

The formula (4.11) now takes the form

C1(z1; z2; x; y) = (2�)�2
Z
R2

ei(z1�z2)��c1(z1; x; y; �) d�(4.12)

where c1(z1; x; y; �) 2 S�21;0(R
6�R2). In fact, c1 2 S�21;0((D�R4)�R2), but we consider

it extended by zero to values z1 62 D: By de�nition, (4.12) means that C1(z1; z2; x; y)
is a conormal distribution in R

8 of Hörmander type having conormal singularity on

the surface S1 = f(z1; z2; x; y) 2 R
8 : z1�z2 = 0g. Using notations of [22], ifX � R

n

is an open set and S � X is a smooth submanifold of X, we denote by I(X;S) the
distributions in D0(X) that are smooth in X nS and have a conormal singularity at

S. The set of distributions in I(X;S) supported in a compact subset of X is denoted

by Icomp(X;S). Let D � R
8 be an open set containing D�D� supp (�)� supp (�)

so that C1 2 Icomp(D;S1 \D).
We employ the fact that conormal distributions are invariant under a change of

coordinates. Actually, our plan is to consider several di�erent coordinates systems.

The �rst set of coordinates that we consider are (V;W; x; y), de�ned as V =
z1 � z2 and W = z1 + z2. Denote by � the change of coordinates � : (V;W; x; y) 7!
(z1; z2; x; y) and consider the pull-back C2 = ��(C1). Then a direct substitution

shows that

C2(V;W; x; y) = (2�)�2
Z
R2

eiV ��c2(V;W; x; y; �) d�;

c2(V;W; x; y; �) = c1(z1(V;W; x; y); x; y; �)

which means that C2 2 I(R8 ;S2) where S2 = f(V;W; x; y) : V = 0g.
To �nd out how the symbol transforms in the change of coordinates, we have to

represent C2(V;W; x; y) with a symbol that does not depend on V . We can achieve

this by way of the representation theorem for conormal distributions [22, Lemma

18.2.1] because of the special form of the surface S2 = fV = 0g. We have:

C2(V;W; x; y) = (2�)�2
Z
R2

eiV ��c3(W;x; y; �) d�;(4.13)

c3(W;x; y; �) �
1X
l=0

h�iDV ; D�ilc2(V;W; x; y; �)jV=0 2 S�21;0(R
6 � R

2):
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In particular, we see that c3(W;x; y; �) has the principal symbol

cp3(W;x; y; �) = �(z1(V;W; x; y))(1 + j�j2)�1�(x)�(y)
��
V=0

:(4.14)

The second set of coordinates that we consider are (v; w; x; y) de�ned below. For

this, to consider the oscillatory integrals (4.10) we change the coordinates so that

�(z1; x; y)� �(z2; x; y) will be a coordinate. We will do this change of coordinates

in two steps. First we change the coordinates (z1; z2; x; y) to (Z1; Z2; x; y), where
Zj = Zj(x; y; zj) 2 R

2 , j = 1; 2 are related to ellipses having focal points in x and

y. More precisely, we write

Zj = (tj; sj) 2 R
2 ;

tj =
1

2
�(zj; x; y); sj =

1

2
�(zj; x; y)� arcsin(e1�

rzj�(zj; x; y)

jjrzj�(zj; x; y)jj
);

where e1 = (1; 0). In other words, here tj corresponds to the semi-major axis of

the ellipse having focal points x and y and containing the point zj. The variable sj
speci�es a 'normalized' angle of the normal vector of the ellipse with the x-axis at

the point zj. Since the domain U is convex and D is simply connected, our de�nition

of the new coordinates is well-posed in a neighborhood of the domain D.

Secondly, we change from (Z1; Z2; x; y) to coordinates (v; w; x; y) where v = Z1�
Z2; w = Z1+Z2. Together, the above steps de�ne the coordinates (v; w; x; y) and the

map � : (v; w; x; y) 7! (z1; z2; x; y). Note that the �rst component of v(z1; z2; x; y)
equals (�(z1; x; y)� �(z2; x; y))=2.
To simplify the notation, we denote X1 = D, X2 = ��1(D) and X3 = ��1(D)

so that � : X3 ! X1 and � : X2 ! X1. We are ready to represent the conormal

distribution C1(z1; z2; x; y) in coordinates (v; w; x; y) as the pull-back distribution

C4 = � �(C1) 2 I(X3;S3 \ X3), S3 = f(v; w; x; y) : v = 0g. By the invariance of

conormal distributions under the change of variables we may write

Icomp(X1;S1 \X1)

��

�����������������
��

�����������������

Icomp(X2;S2 \X2) Icomp(X3;S3 \X3)

To apply this diagram and the integral representation (4.13) of C2 2 Icomp(X2;S2 \
X2), consider the transformation � = ��1 Æ � . We will below use [22, Theorem

18.2.9], to provide a representation for the pull-back C4 = ��C2. Since surfaces S2
and S3 have the special form S2 = fV = 0g and S3 = fv = 0g, and � maps S3 \X3

onto S2 \X2, we obtain

C4(v; w; x; y) = (2�)�2
Z
R2

eiv��c4(w; x; y; �) d�;
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where c4(w; x; y; �) 2 S�21;0(R
6 � R

2) is a symbol satisfying

c4(w; x; y; �) =(4.15)

c3(�2(v; w; x; y); ((�
0
11(v; w; x; y))

�1)t�)jdet�011(v; w; x; y)j
�1
��
v=0

+ r(w; x; y; �):

Here, r(w; x; y; �) 2 S�31;0(R
6 � R

2) and the coordinate transform � is decomposed

into two parts, the R
2 -valued function �1(v; w; x; y) = V (v; w; x; y) and the R

6 -

valued function �2(v; w; x; y) = (W (v; w; x; y); x; y). This yields for the di�erential

�0 of � the corresponding representation

�0 =

�
�011 �012
�021 �022

�
:

We note that the transformation rule in �� in [22, Theorem 18.2.9] is presented

for half-densities. The proof of the analogous result for distributions, however, is

immediate.

Plugging the principal symbol of c3(x; �) given in (4.14) to formula (4.15), we see

that the principal symbol of c4(w; x; y; �) is

cp4(w; x; y; �) = �(z1(v; w; x; y))(1 + j(�011(v; w; x; y))
�1)t�j2)�1

��
v=0

� �(x)�(y)J(w; x; y)

where J(w; x; y) = jdet �011(0; w; x; y)j�1.
We are ready to compute the asymptotics of Ij1;j2;l1;l2(k1; k2; x; y). We denote

~j = (j1; j2; l1; l2). By writing the integral I~j = Ij1;j2;l1;l2(k1; k2; x; y) in coordinates

(v; w; x; y) we obtain

I~j = k
�(1+j1+j2)
1 k

�(1+l1+l2)
2

Z
R4

exp(i
�
(k1 + k2)e1� v + (k1 � k2)e1�w

�
)�

�C4(v; w; x; y)H
~j(v; w; x; y) dvdw(4.16)

where e1 = (1; 0) is the unit vector and H
~j = H

~j(v; w; x; y) is

H
~j =

dj1dj2dl1dl2

jx� z1jj1+
1
2 jz1 � yjj2+

1
2 jx� z2jl1+

1
2 jz2 � yj

l2+
1
2

det (� 0(v; w; x; y))

where z1 = z1(v; w; x; y) and z2 = z2(v; w; x; y).

Since H
~j is smooth in X3 in all variables and the class I(R8 ;S3) is closed un-

der multiplication with a smooth function, we have C4(v; w; x; y)H
~j(v; w; x; y) 2

I(R8 ;S3). To evaluate the oscillatory integrals (4.16) in a convenient way, we need

to represent this conormal distribution with a symbol that does not depend on v.

Again, by using the representation theorem for conormal distributions [22, Lemma
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18.2.1], we obtain

C4(v; w; x; y)H
~j(v; w; x; y) = (2�)�2

Z
R2

eiv��c
~j
5(w; x; y; �) d�;(4.17)

c
~j
5(w; x; y; �) �

1X
l=0

h�iDv; D�il(c4(w; x; y; �)H
~j(v; w; x; y))jv=0:

In particular, we see that c
~j
5(w; x; y; �) has the principal symbol

c
~jp
5 (w; x; y; �) = �(z1(v; w; x; y))(1 + j((�011(v; w; x; y))

�1)t�j2)�1�

� �(x)�(y) J(w; x; y)H~j(v; w; x; y)
���
v=0

:(4.18)

By substituting (4.17) in to (4.16) and using the Fourier inversion rule we obtain

the important formula

I~j = k
�(1+j1+j2)
1 k

�(1+l1+l2)
2 (Fwc

~j
5)((k2 � k1)e1; x; y;�(k1 + k2)e1)(4.19)

where Fw denotes the Fourier transform in the w variable,

Fwc
~j
5(�; x; y; �) =

Z
R2

e�i��wc
~j
5(w; x; y; �) dw:

As the symbol c
~j
5(w; x; y; �) is C

1 smooth and compactly supported in the (x; y; w)

variables, we see that jD�
wc

~j
5(w; x; y; �)j � c�(1 + j�j)�2 for all j�j � 0, where c� is

independent of (w; x; y) 2 R
6 . This implies that after n integrations by parts

jI~j(k1; k2; x; y)j � cn
1

1 + jk1 + k2j2
k�j1�j2�11 k�`1�`2�12 (1 + jk1 � k2j)�n

for all n � 0: By considering separately the cases jk1 � k2j � jk1 + k2j=2 and

jk1 � k2j � jk1 + k2j=2 we deduce that

(4.20) jI~j(k1; k2; x; y)j � c0n(1 + jk1 � k2j)�n(1 + jk1 + k2j)�4�j1�j2�l1�l2 ; n > 0:

This veri�es the estimate (4.5).

Before proving (4.6) we consider the asymptotics when k1 = k2 = k. We denote

0 = (0; 0; 0; 0). For ~j 6= 0 we have I~j(k; k; x; y) = O(k�5): Thus, in order to establish

(4.7) it is enough to consider I0(k; k; x; y). To obtain the leading order asymptotics

of I0, we consider the contributions of the principal symbol and the lower order

remainder terms separately. Write

c05(w; x; y; �) = c0p5 (w; x; y; �) + cr(w; x; y; �);

where cr(w; x; y; �) 2 S�31;0(R
6 � R

2) is smooth and compactly supported in the

(w; x; y) variables. Thus jD�
wcr(w; x; y; �)j � c�(1+ j�j)�3 for all multi-indices � and

we infer as above that

jFwcr(0; x; y;�2ke1)j=O(k�3);
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for all n > 0. Thus the contribution of cr to I0 is estimated by the right hand side of

(4.7). Hence it is enough to consider the principal part. To this end, we substitute

the principal symbol (4.18) into formula (4.19) and obtain

I0(k; k; x; y) =(4.21)

k�2�(x)�(y)

Z
R2

�(z1(0; w; x; y))H
0(0; w; x; y)J(w; x; y)

1 + 4k2j((�011(0; w; x; y))�1)te1j2
dw +O(k�5):

Since one may compute that a = 4j((�011(0; w; x; y))�1)te1j2 6= 0 we may apply for

for large k the development (1 + k2a)�1 = a�1k�2
P1

j=0 k
�2j(�a)�j: We obtain the

desired formula (4.7) with

R(x; y) =
1

4

Z
R2

�(z1(0; w; x; y))H
0(0; w; x; y)J(w; x; y)

j((�011(0; w; x; y))�1)te1j2
dw:

Moreover, for y = x we compute �011 =

�
cos� + � sin� � sin�
sin�� � cos� cos�

�
, where � =

w2=w1. It follows that J(w; x; x) = det (�011) = 1 and j((�011)�1)te1j = 1: More-

over, we also have det (� 0(0; w; x; x)) = 1
4
, and (det(dz1

dw
(v; w; x; x)jv=0))�1 = 4. Put

together, these observations yield (4.8) for R(x; x).
Finally we prove estimate (4.6). Observe that E (eu1(x; y; k1)eu1(x; y; k2)) is given

by a linear combination of terms eI~j analogous to (4.10) where, in addition to chang-

ing constants dj, we only replace k2 with �k2. Notice also that in the proof of

formula (4.19) one may allow k2 to be negative, whence the estimate (4.6) follows

immediately. �

Lemma 4.2. In the decomposition (4.4) the random variable b(x; y; k) satis�es a.s.
the condition

jb(x; y; k)j � c0(1 + jkj)�3; x; y 2 U; k > 0

where the constant c0 depends only on H�1;1
0 (D)-norm of q(z; !).

Proof. By (4.3), jj�k(� �x)jjH1;1(D)+ jj�
(3)

k (� �y)jjH1;1(D) � ck1=2 for k > 1, x; y 2
U . This implies

jb(x; y; k)j � jjqjjH�1;1
0 (D)

�
jj�k(� �x)� �

(3)

k (� �x)jjH1;1(D)jj�k(� �y)jjH1;1(D)+

+ jj�(3)

k (� �x)jjH1;1(D)jj�k(� �y)� �
(3)

k (� �y)jjH1;1(D)

�
� cjjqjjH�1;1

0 (D)(1 + jkj)�1�m:

�

The above results have the following corollary that plays a crucial role in sequel.

Corollary 4.3. Assume that k1; k2 > 1 and x; y 2 U . Then

E

��Re (k21eu1(x; y; k1))Re (k22eu1(x; y; k2))�� � cn(1 + jk1 � k2j)�n; n > 0;
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where cn is independent of x; y 2 U , and one may replace one or both of the real

parts by imaginary parts.

Proof. When k1; k2 > 1 we have that jk1 + k2j�n � jk1 � k2j�n. The claim now

follows immediately from estimates (4.5) and (4.6) by simply observing that for any

a; b; c; d 2 R we may recover all the products ac; ad; bc and bd as linear combinations

of real or imaginary parts of the numbers (a + ib)(c� id) = (ac� bd) + i(bc� ad):
�

5. Higher order terms

5.1. The second term. In this subsection we consider the second term u2 of the

Born series (4.1), given by

(5.1) u2(x; y; k) =

Z
D

Z
D

�k(x� z1)q(z1)�k(z1 � z2)q(z2)�k(z2 � y) dz1dz2:

Our aim is to provide estimates that will be used later to show that the contribution

of u2 can be ignored in the measurement (1.3). It turns out that the estimation of

the size of uj(x; y; k) is most di�cult in the case j = 2: However, the following result
yields exactly the needed estimate.

Theorem 5.1. For all x; y 2 U it holds almost surely that

lim
K!1

1

K � 1

Z K

1

jk2u2(x; y; k; !)j2dk = 0:

Proof. One may assume that x = 0; so we will abbreviate u2(k) = u2(0; y; k; !)
(the dependence on y and w is suppressed in the notation). A main reduction will

be that we replace the Hankel functions, one by one, in (5.1) by the principal terms

in the asymptotics (4.2). It will be useful to abbreviate

(5.2) fk(z) = �k(z)� d0(kjzj)�1=2eikjzj and gk(z) = d0(kjzj)�1=2eikjzj;

where the constant d0 comes from the asymptotics (4.2). We need two auxiliary

results. The �rst one collects together useful knowledge on the behaviour of fk, gk,

and �k(� � y) with increasing k (in this section we always assume that k � 1).

Lemma 5.2. Let " 2 [0; 1]: Then
(i) kgkkH";p(D); k�k(� � y)kH";p(D) � cpk

"�1=2
for p > 1 and y 2 U:

(ii) kfk(� � y)kH";p(D) � cpk
2"�3=2

for p > 1 and y 2 U:

(iii) kfk(z1 � z2)kH";p(D�D) � cpk
2"�3=2

for p 2 (1; 4=3):

Proof. Assume y 2 U and recall that dist (U;D) =: d > 0. Recall that

jH(1)
0 (t)j �

c
p
t
; j

d

dt
H

(1)
0 (t)j �

c
p
t
; t � d:(5.3)
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Then by denoting R = supfjy � zj : y 2 U; z 2 Dg we haveZ
D

jfy(z)jpdz �
Z

d�juj�R

�k(u)
pdu � cpk

�p=2(R1�p=2 � d1�p=2) = ck�p=2

where c is independent of y, and by the same manner one may estimate the gradient

r�k(� � y): We thus have

sup
y2U

jj�k(� � y)jjLp(D) � ck�1=2; sup
y2U

jjr�k(� � y)jjLp(D) � ck1=2:(5.4)

These estimates interpolate for 0 � s � 1 to what was claimed for �k. Next, the

statement (i) for gk is obtained similarly by noting that direct computation of rgk
shows that gk obeys bounds similar to (5.3).

In order to prove (ii), observe that the asymptotics (4.3) yield the estimates

(5.5) kfkkL1(D) � ck�3=2; krfkkL1(D) � ck1=2;

from which the claim again follows by interpolation.

To prove (iii), we again use the asymptotics (4.3) and observe that jr�k(z)j �
ck1=2 max(jzj�1; jzj�1=2) for all z. Moreover, by direct computation jrgk(z)j �
ck1=2 max(jzj�3=2; jzj�1=2). These together yield that

(5.6) jrfk(z)j � ck1=2max(jzj�1=2; jzj�3=2); k � 1:

By direct computation, we obtain jjfkjjLp(B) � cp;B(k
�2 + k�

3p

2 )
1
p for p < 4=3 in any

bounded domain B. By combining this with (5.6) we obtain by interpolation the

counterpart of (iii) for the function z 7! fk(z) on any bounded subdomain of R2 .

The estimate for the map (z1; z2) 7! fk(z1 � z2) follows since D is bounded. �

In order to state the second Lemma, recall that the operator Hk was de�ned

through (3.11) in Section 3. We also need to consider the operator Kk which com-

bines the multiplication operator with q to Hk, i.e. Kkf = Hk(qf):

Lemma 5.3. For any p > 1, s 2 (0; 1) and k � 1 it holds that

jjKkjjHs;2p!Hs;2p � ck�1+2(s+(1�1=p));(5.7)

jjKkjjHs;2p!L1 � ck1+2s�1=p;(5.8)

where the constant c = c(!) is �nite almost surely.

Proof. For 0 < s < 1 and 1 � p � 2 � r � 1 one has that Hk : H�s;p
0 (D) !

Hs;r(D) with the norm estimate

jjHkjjH�s;p

0 (D)!Hs;r(D) � ck�1+2(s+(1=p�1=r)):(5.9)

This estimate follows easily from the proof of Theorem 3.1 in [36]. An application

of (5.9) together with Lemma 3.1 and Theorem 2.3 immediately yields the claim.

�
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Let us now replace the left-most Hankel-factor in the integral (5.1) de�ning u2(k)
by the approximation gk and consider

u2;`(k) := d0k
�1=2

Z
D

Z
D

eikjz1jq(z1)jz1j�1=2�k(z1 � z2)q(z2)�k(z2 � y) dz1dz2:

By the de�nition of the operator Kk we have

ju2;`(k)� u2(k)j = jhq; fkKk(�k(� � y))ij;

where the brackets refer to distribution duality. According to the previous Lemmata

we may estimate the left hand side above by

kqkH�";(1+")0(D)kfkKk(�k(� � y))kH";1+"(D)

� c0kfkkH";2+2"(D) k Kk kH";2+2"(D)!H";2+2"(D) k�k(� � y)kH";2+2"(D)

� c0k
2"�3=2k�1+2("+(1�(1+")

�1))k"�1=2;

where c0 = c0(!): Here Theorem 2.3 veri�es that kqkH�";(1+")0(D) <1 almost surely.

Thus we obtain that

(5.10) u2(k) = u2;`(k) +O(k"
0�3) for all "0 > 0:

We next apply the same asymptotics to the �k-term on the right and consider

u2;r(k) := d20k
�1
Z
D

Z
D

eik(jz1j+jz2j)�k(z1 � z2)q(z1)q(z2)(jz1jjz2 � yj)�1=2 dz1dz2:

In this approximation the induced error term to u2;`(k) is given by

ju2;r(k)� u2;`(k)j = jhq; hkKk(fk(� � y)ij;

where hk(z1) = d0e
ikjz1jjkz1j�1=2: Note that jz1j�1=2 is smooth on D. Clearly

khkkH";1(D) � ck"�1=2; and hence we may apply again Lemma 5.2 and obtain anal-

ogously to the previous computation

u2;`(k) = u2;r(k) +O(k"�1=2k�1+2("+(1�(1+")
�1))k�3=2+2")

= u2;r(k) +O(k"
0�3) for all "0 > 0:(5.11)

To complete the reduction, we apply the same asymptotics to the remaining �k-

term in the integral de�ning u2;r(k) and consider

v(k) := d30

Z
D

Z
D

eik(jz1j+jz2j+jz1�z2j)q(z1)q(z2)(jz1 � z2jjz1jjz2 � yj)�1=2 dz1dz2:

Following our de�nitions, this integral is understood in the sense that one �rst does

the integration (distributional duality) with respect to the z1 variable. However, one

veri�es without di�culty that we also have u2;r(k) = h�k(� � �); ski; where

sk(z1; z2) = d20k
�1q(z1)q(z2)e

ik(jz1j+jz2j)(jz1jjz2 � yj)�1=2; (z1; z2) 2 D �D:

One easily veri�es that a1(z1)a2(z2) 2 H�2";1(R4) whenever a1; a2 2 H�";1(R2), and
� > 0: Thus, according to Theorem 2.3 and the Sobolev embedding theorem we have
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that q1
q2 2 H
�";1
0 (D�D) for all " > 0: Observe that keik(jz1j+jz2j)kH";1(D�D) � ck".

A simple duality argument using (3.5) shows that

kskkH�";1

0 (D�D) � ck"�1; for all " > 0:

Combining this estimate with Lemma 5.2 we obtain

jk�3=2v(k)� u2;r(k)j = jhfk(� � �); skij � kfk(� �� )kH";5=4(D�D)kskkH�";5
0 (D�D)

� ck3"�5=2:

In conjunction with (5.10) and (5.11) this �nally gives

(5.12) u2(k) = k�3=2v(k) +O(k"
0�5=2) for all "0 > 0:

We now enter the main di�culty of the proof, that is, the estimation of v(k):
Our basic idea is to circumvent pointwise estimates with respect to k altogether.

Namely, in order to prove the Theorem it will be enough to show that

(5.13)

Z 1

1

jv(k)j2dk <1 a:s:

To see this, we notice that by choosing "0 = 1=4 in (5.12) one may write

1

K

Z K

1

jk2u2(k)j2dk � 2

Z K

1

k

K
jv(k)j2dk +O(K�1=2)

� 2

Z 1

1

min(1;
k

K
)jv(k)j2dk +O(K�1=2):

This last integral converges a.s. to zero by the dominated convergence theorem as

k !1:

Towards (5.13) we will shortly express v as a one-dimensional Fourier transform

and get rid of the variable k. Before that a couple of auxiliary considerations are

needed. First of all, in order not to have problems with interpreting the distribution

dualities that will emerge, we introduce the modi�cation vÆ, Æ > 0, of v that is

obtained by replacing q by the standard molli�cation qÆ := q � �Æ, where �Æ(x) =
Æ�2�(x=Æ) and � 2 C1

0 (R2) is a radially symmetric function satisfying
R
�(x)dx = 1:

We denote the molli�cation operator by MÆ : f 7! f � �Æ: Observe for later use that
the covariance operator of qÆ equals CÆ = MÆCMÆ. Clearly vÆ(k) ! v(k) as Æ ! 0:
In order to verify (5.13) it is enough to show that

(5.14) sup
Æ2(0;1)

Z 1

1

E jvÆ(k)j2dk <1;

since an application of the Fubini theorem and Fatou's lemma then yields that

E (
R1
1
jv(k)j2dk) <1, which immediately implies (5.13).

We need to take a closer look at the phase function A(z1; z2) := jz1j+ jz1 � z2j+
jz2 � yj. First of all, A is smooth on D � D apart from the subset where z1 = z2:
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Moreover, the gradient of A is bounded from below and above;

(5.15) 0 < c1 � jrA(z1; z2)j � c2 <1 for (z1; z2) 2 D �D; z1 6= z2:

The upper bound is evident. For the lower bound it is enough to observe that a

simple computation yields

(5.16) (z1; z2) � rA(z1; z2) � c0 > 0 for z1 6= z2; z1; z2 2 D:

Moreover, it shows that the surfaces

�t := f(z1; z2) 2 D �D j A(z1; z2) = tg; t > 0

are locally boundaries of starshaped domains with respect to the origin (observe

that �t need not to be connected). One also deduces by using (5.15) and (5.16)

that there is a radial strech Bt yielding a bi-Lipschitz chart Bt : Ht ! �t over a

subdomain At := H�1
t (�t) of the unit ball. We hence see that the surfaces �t; with

varying t provide a fairly regular foliation of the domain D �D.

The considerations in the preceding paragraph justify a generalized co-area for-

mula for integrals on D �D:

(5.17)

Z
D�D

g(z1; z2) dz1dz2 =

Z t1

t0

�Z
�t

g(z1; z2)
1

jrA(z1; z2)j
dH3(z1; z2)

�
dt;

where the inner integral is with respect to the 3-dimensional Hausdor� measure

on �t; and g is any integrable Borel-function on D � D: Above the maximal and

minimal values t0 = t0(y) > 0 and t1 = t1(y) certainly depend on y 2 U (as the

whole foliation does).

Lemma 5.4. Given 
 2 (0; 2) there is a �nite constant c such that for every t 2
[t1(y); t2(y)] we haveZ

�t

jz1 � z2j�
dH3(z1; z2) � c andZ
�t��t

jzj � z0kj
�
dH3(z1; z2)dH3(z01; z

0
2) � c for k; j = 1; 2:

Proof. For any (z1; z2) 2 �t let us denote (w1; w2) = B�1
t (z1; z2), whence (w1; w2) =

(�(z1; z2)z1; �(z1; z2)z2), where the scalar factor � = �(z1; z2) 2 R
+ satis�es uni-

formly � � a > 0. Since the map Bt is bi-Lipschitz, the 3-dimensional Hausdor�

measure changes only by a bounded factor under Bt: Hence, a change of variables

in the �rst integral in the assertion yields thatZ
�t

jz1 � z2j�
dH3(z1; z2) �
Z
B�1
t

(�t)

a�
jw1 � w2j�
cdH3(w1; w2):

The last written integral can be estimated by the integral over the whole sphere S3;

which is easily seen to be �nite.

In order to treat the second integral we �rst note that by elementary geometry

one has jx�yj � jxjjx0�y0j=2; where x0 = x=jxj (and similarly for y) stands for the
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corresponding unit vector. For the values of interest it holds that jzjj; jz0kj � b > 0;
where b is the distance of D to the origin. Hence the second integral is bounded

from above by

(5.18) 2
b�

Z
�t(0;x)��t(0;x)

j(zj)0 � (z0k)
0j�
dH3(z1; z2)dH3(z01; z

0
2):

Using again the change of variables as before with respect to both z and z0 we obtain

that (5.18) is dominated by the expression

2
b�
c2
Z
H�H

j(wj)
0 � (w0

k)
0j�
dH3(w1; w2)dH3(w0

1; w
0
2);

where H = f(z1; z2) 2 S3 : jz1j; jz2j > bg. The last written integral is readily seen

to be �nite by an application of the Fubini theorem. �

We return to our main theme and use (5.17) to write

(5.19) vÆ(k) = bSÆ(k); k > 0;

where for t 2 R one has

SÆ(t) :=

Z
�t

qÆ(z1)qÆ(z2)(jz1 � z2jjz1jjz2 � yj)�1=2jrA(z1; z2)j�1 dH3(z1; z2):

We claim that (5.14) follows as soon as we verify that there is a �nite constant

M <1 such that

(5.20) E jSÆ(t)j2 �M for all Æ 2 (0; 1) and t 2 [t1; t2]:

Namely, we then have

E kSÆk2L2(R) �M(t2 � t1) <1;

and (5.14) will be a consequence of Parseval's formula.

It remains to estimate E jSÆ(t)j2. In fact, by using the well-known Wick formulae

for the expectation of n-fold products of centered Gaussian variables we obtain

E (qÆ(z1)qÆ(z2)qÆ(z
0
1)qÆ(z

0
2)) =

CÆ(z1; z2)CÆ(z
0
1; z

0
2) + CÆ(z1; z

0
1)CÆ(z2; z

0
2) + CÆ(z1; z

0
2)CÆ(z2; z

0
1)

and thus

E jSÆ(t)j2 =
Z
�t��t

(jz1 � z2jjz1jjz2 � yj)�1=2jrA(z1; z2)j�1 �

� (jz01 � z02jjz
0
1jjz

0
2 � yj)�1=2jrA(z01; z

0
2)j

�1

�(CÆ(z1; z2)CÆ(z
0
1; z

0
2) + CÆ(z1; z

0
1)CÆ(z2; z

0
2) + CÆ(z1; z

0
2)CÆ(z2; z

0
1))

� dH3(z1; z2) dH3(z01; z
0
2):
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From Proposition 2.2 it is immediate that for any given a > 0 there is a �nite

constant ca such that jCÆ(z1; z2)j � cajz1 � z2j�a for any Æ 2 (0; 1) and (z1; z2) 2
D �D: By (5.15) we obtain for any t 2 [t1; t2] the estimate

sup
Æ2(0;1)

E jSÆ(t)j2(5.21)

� c

Z
�t��t

R(z1; z2; z
0
1; z

0
2)T (z1; z2; z

0
1; z

0
2) dH

3(z1; z2)dH3(z01; z
0
2);

where

R(z1; z2; z
0
1; z

0
2) = jz1 � z2j�1=2jz01 � z02j

�1=2

and

T (z1; z2; z
0
1; z

0
2) =

X
fr1;r2;r3;r4g=fz1;z2;z01;z

0

2g

(jr1 � r2jjr3 � r4j)�a:

In this last formula we sum over all permutations of the four-element set. It is now

clear by symmetry, Lemma 5.2, and an application of Hölder's inequality on (5.21)

that the integral (5.21) is �nite for all t 2 [t1; t2] as soon as a is chosen small enough.

This completes the proof of of the �rst part of the Theorem 5.1. �

5.2. The convergence of the Born series. In this subsection we verify that the

Born-series converges to the solution (if k is large enough) and that the higher order

terms decay in an appropriate way.

Theorem 5.5. (i) There is a (random) index k0 = k0(!) such that k0 < 1
almost surely and, if k � k0 then the Born series (4.1) converges for any x; y 2 U

to the solution u(x; y; k):

(ii) For any � > 0 and k � k0 there exist c = c(�; !), �nite almost surely, such

that
1X
n=3

sup
x;y2U

jun(x; y; k)j � ck�5=2+�:

Proof. We start from the expression un(x; y; k) = (Kn
k�k(� � y))(x). By Lemma

5.2 (i) and Lemma 5.3 we may estimate that

jjun(�; y; k)jjL1(U) � jjKkjjHs;2p!L1jjKkjjn�1Hs;2p!Hs;2p jj�k(� � y)jjHs;2p

� cnk1+2s�1=pk(n�1)(�1+2(s+1�1=p))k�1=2+s:(5.22)

Here the constant c = c(!) is independent of y and thus the desired estimate follows.

Let us denote s � 1 + 1
p
= �1 and 2(s + 1 � 1

p
) = �2, whence we can take �1 > 0

and �2 > 0 arbitrarily small. With these choices (5.22) yields that

jjun(�; �; k)jjL1(U�U) � cnk1=2+�1�n(1��2)
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and consequently

1X
n=3

jjun(�; �; k)jjL1(U�U) � c3k�5=2+(�1+3�2)
1

1� ck�2�1
:

This proves (ii) as soon as we choose k0 large enough so that ck"2�10 < 1=2:
To obtain (i), observe that an iteration of the Lippmann-Schwinger equation yields

the n:th remainder term in the form (Kk)
n+1u, which converges to zero by the

operator norm estimate for Kk used in (5.22). �

6. Existence of the measurement: convergence of the ergodic

averages

Now we are ready to analyze the measurement m(x; y; !).

Theorem 6.1. For x; y 2 U the limit (1.3) exist almost surely and equals

lim
K!1

1

K � 1

Z K

1

k4jus(x; y; k; !)j2dk = R(x; y)(6.1)

where R(x; y) is the smooth function on U � U given in Proposition 4.1.

Before giving the proof we �rst describe the philosophy behind Theorem 6.1. Let

us write

us(x; y; k) = eu1(x; y; k) + ur(x; y; k);(6.2)

where ur = (b + u2 + u3 + u4 + : : :) stands for the remainder term (recall that

u1 = eu1 + b). The results of the previous section will yield that the contribution

of ur is negligible in the measurement, whence it remains to understand the mean

behaviour of jeu1j2: The analytic estimates of Section 4 show that the expectation

E k4jeu1(x; y; k)j2 tends to a limit as k !1. In addition, the same estimates verify

that the terms k21eu1(x; y; k1) and k22eu1(x; y; k2) become asymptotically independent

as k2 grows towards in�nity (see the �gure below). This makes it plausible that one

could recover limk!1 E jk4eu1(x; y; k)j2 as a suitable ergodic average, in view of the

strong law of large numbers, and this turns out to be true.

We record an elementary lemma.

Lemma 6.2. Let X and Y be zero-mean Gaussian random variables. Then

E ((X2 � E X2)(Y 2 � E Y 2)) = 2(E XY )2:

Proof. By scaling one may obviously assume that E X2 = E Y 2 = 1: Denote
E XY = cos� 2 [�1; 1]: Then (X; Y ) and (X; cos(�)X + sin(�)Y 0) have the same

distribution, where Y 0 is an independent copy of X. The result follows now by a

straightforward computation. �

Let us recall an ergodic theorem suitable for our purposes. The following is

obtained e.g. as an immediate corollary of [13].
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Almost uncorrelated

k

ju1(x; y; k; !0)jk2

Theorem 6.3. Let Xt, t � 0 be a real valued stochastic process with continuous

paths. Assume that for some positive constants c; " > 0 the condition

jE XtXt+rj � c(1 + r)�"

holds for all t; r � 0. Then almost surely

lim
K!1

1

K

Z K

1

Xtdt = 0:

The ergodicity of the term eu1 is veri�ed in the following proposition.

Proposition 6.4. For any x; y 2 U we have almost surely

lim
K!1

1

K � 1

Z K

1

k4jeu1(x; y; k)j2dk = R(x; y):(6.3)

Proof. According to Lemma 4.1 we have limk!1 E (k4jeu1(x; y; k)j2) = R(x; y):
Hence it is clear that the claim follows as soon as we show that

lim
K!1

1

K � 1

Z K

1

Y (x; y; k)dk = 0;(6.4)

where Y (x; y; k) = k4(jeu1(x; y; k)j2 � E jeu1(x; y; k)j2): Since
Y (x; y; k) = k4

�
(Re eu1(x; y; k))2 � E (Re eu1(x; y; k))2)+

+(Im eu1(x; y; k))2 � E (Im eu1(x; y; k))2)� ;
we may combine Corollary 4.3 together with Lemma 6.2 to obtain

EjY (x; y; k1)Y (x; y; k2)j �
c

1 + jk1 � k2j2
;
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for any k1; k2 � 1: Statement (6.4) now follows immediately from Theorem 6.3. �

We are ready for

Proof of Theorem 6.1. By denoting ur(x; y; k) = b(x; y; k)+u2(x; y; k)+uR(x; y; k)
we may decompose

us(x; y; k) = eu1(x; y; k) + b(x; y; k) + u2(x; y; k) + uR(x; y; k):

According to Lemma 4.2 and Theorem 5.5 we have a.s. limk!1 k2(b(x; y; k) +
uR(x; y; k)) = 0. Together with Theorem 5.1 this yields that almost surely

lim
K!1

1

K � 1

Z K

1

k4jur(x; y; k)j2 dk = 0:(6.5)

The desired statements now follow directly by combining (6.5) and Proposition 6.4,

as the obtained cross term may be estimated with the aid of the Cauchy-Schwartz

inequality in the space [1; K] equipped with the weight (K � 1)�1dk. �

7. Conclusion: proof of Theorem 1.3

The results obtained so far (Theorem 6.1 from the previous section) prove directly

parts (i) and (ii) of our main result, Theorem 1.3: the measurement (1.3) is almost

surely well de�ned for any x; y 2 U .
It remains to prove part (iii) of the Theorem, which deals with the recovery of �

from the measurements. Observe that in our case m0(x; x) = R(x; x) for any x 2 U ,
and, by the formula (4.8) in Section 4, we have that

(7.1) R(x; x) =
1

28�2

Z
D

1

jx� zj2
�(z) dz:

Especially, the function x 7! R(x; x) is continuous. Hence, by performing measure-

ments in a dense set of points x 2 U , Theorem 6.1 shows that almost surely we can

recover R(x; x) for all x 2 U:
Thus, the relation (7.1) shows that we are left with a simple deconvolution prob-

lem: the values of the convolution

H(x) := (h � �)(x); h(z) :=
1

28�2jzj2

are known in a open set U that has a positive distance to the support of � 2 C1
0 (R2),

and we are to show that this knowledge is enough to recover �: For that end, observe

�rst that �z(jzj�2p) = 4p2jzj�2p�2: Thus our data determines also the convolutions

cp�
p
xH(x) =

Z
D

1

jx� zj2p
�(z) dz

for p > 1 and x 2 U . Let us denote

S(x; r) =

Z
jz�xj=r

�(z) djzj;
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which corresponds to the Radon transform along circles. Fix any x 2 U: It follows

that we are able to recover the integralsZ
R+

S(x; r)

r2
Q(

1

r2
) dr;

where Q(t) =
Pp

j=0 ajt
j, p � 0. The support of the continuous function r 7! S(x; r)

lies in a �nite interval [a; b] with a; b > 0, and obviously the functions of the form

Q(1=r2) are dense in C([a; b]). Thus the function S(x; r) is uniquely determined for

all r > 0:
The observation that we just made can be stated in another form: the data yields

the knowledge of integrals of � over all circles that are centered in the open set U .

This is a classical problem of integral geometry, of the Radon type, which can be

solved in a simple manner, cf. eg. [4] and the extensive list of references therein.

Namely, let g(z) = exp(�jzj2=2) for z 2 R
2 , and observe that knowing the integrals

over the above mentioned circles we may compute the convolution g��(z) for z 2 U .
However, g � � is clearly real analytic and the set U is open, whence we know g � �
everywhere. As the Fourier transform of g is smooth and non-zero all over R2 ; it

follows that we can recover � uniquely. This completes the proof of our main result.

�

Remark 1. Above we have assumed that the potential is Gaussian and centered,

but it is possible to dispense with the assumption that E q = 0 in Theorem 1.3.

Namely, assume that E q = p 2 C1
0 (D) and denote q0 = q � p. Then

E (q(z1)q(z2)) = E (q0(z1)q0(z2)) + p(z1)p(z2):(7.2)

We brie�y analyze how the above proof should be modi�ed for this case. We have

again that q 2 H�";p
0 (D) a.s. Thus the results for the direct scattering problem given

in Section 3 are valid without any change, and we see in particular that the higher

order Born terms u3 + u4 + : : : do not contribute to measurement (1.3).

When the term p(z1)p(z2) in formula (7.2) is added to the covariance operator in

formula (4.9), we see that this causes only a S�11;0 perturbation for the symbol of

the covariance operator Cq. Hence the proof of Proposition 4.1 remains unchanged.

With small modi�cations the considerations in Subsection 5.1 remain valid, too.

Finally, as the stationary phase method yields E eu1(x; y; k) = o(k�1), we obtain

Theorem 1.3 by �nishing the proof as in Sections 6 and 7.

Remark 2. One may also consider as the measurement the average

lim
K!1

1

K � 1

Z K

1

Z
U

k4jus(x; x; k; !)j2�(x)dxdk

with � 2 C1
0 (U): The main result can also be stated in terms of this kind of `distri-

butional measurements'. In this setup the proof of Theorem 1.3 remains essentially

unchanged. One should also note that the function R(x; x) is uniquely determined
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from integrals
R
U
R(x; x)�(x)dx against a countable dense set of smooth test func-

tions �:

Remark 3. It is interesting to compare non-stability of the stochastical inverse

problem with the the deterministic one. In Theorem 1.3 the operator T is linear and

thus the reconstruction of � requires solving of a linear ill-posed inverse problem.

More precisely, by the observations in the present section, T corresponds to a Radon

transform over circles, which gives a pretty clear picture of the ill-posedness. This

is markedly di�erent from the corresponding deterministic problems. Let us assume

that in the deterministic case one possesses additional information as data: assume

that besides the amplitude jus(x; y; k)j one also knows the phase arg us(x; y; k) and
this data is given for pairs (x; y) 2 U � U . Then one can in principle �nd from the

extended data us(x; y; k), x; y 2 U , k 2 R+ the solution us(x; y; k) for x; y 2 R
2 nD,

k 2 R+ by using analytic continuation. This yields the far �eld data for all �; !; and

k, which is �nally known to determine the Fourier transform of q̂(�) (cf. e.g. [39,

pp. x-xi], or [48] for an alternative solution based on exponentially growing plane

waves).

Remark 4. We mention that in the backscattering case y = x it is possible

to avoid the use of the pseudodi�erential calculus in Section 4, although the proof

remains fairly technical. By this manner it is possible to relax somewhat the as-

sumption of smoothness of �:

Appendix A: Markov random fields

We follow here the monograph of Rozanov [44] and recall in more detail the

relation of local operators to the Markov random �elds.

As in Section 1.1 we consider a bounded domain D � R and a Gaussian centered

random variable q having values in D0(D):We simply call q a �eld onD: The Markov

property of q was de�ned previously in De�nition 1.4. One can also characterize the

Markov property in terms of conditional independence. Recall that of three sub-

�-algebras �i; i = 0; 1; 2 of � the �-algebras �1 and �2 are called conditionally

independent with respect to �0 if the conditional probabilities satisfy

P (A1 \ A2j�0) = P (A1j�0)P (A2j�0)

for any A1 2 �1 and A2 2 �2. Let S1; S2; S" be as in Section 1.1. Thus, S1 � D is

an arbitrary open subset, S2 = D n S1, and S" = fx 2 Djd(x; @S1) < "g: We have

Theorem 7.1. A generalized random �eld q is Markov, if and only if the �-algebras

B(S1) and B(S2) are conditionally independent with respect to B(S"), for any S1; S2
and S" as above.

The above claim follows readily from the de�nition and basic properties of the

conditional probability and generalized random variable. We refer to [44, pp.54, 56,

97] for the proof and the de�nition of a Gaussian Markov �elds.
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In order to be able to express the Markov property in terms of the covariance op-

erator we need to introduce the notion of a biorthogonal �eld p: A centered Gaussian

�eld p on D is biorthogonal to the �eld q if

(7.3) E (hq;  1ihp;  2i) = ( 1;  2);  i 2 C1
0 (D) ; i = 1; 2;

and in addition there is the equality Hq(D) = Hp(D): Here, given a �eld � on D

and open subset S � D we denote

H�(S) = spanfh�; �ij� 2 C1
0 (S)g;

where the closure in taken in L2(
); i.e. in the space of square integrable random

variables. By the de�nition, the biorthogonal function is unique, and the covariance

operator Cp can be thought as a (partial) inverse operator of the covariance operator

Cq of our original �eld. We have the following:

Theorem 7.2. If the �eld q is Markov, then the covariance operator Cp of the

biorthogonal �eld is local in the sense that hCp 1;  2i = 0 if  1;  2 2 C1
0 (D) have

disjoint supports.

See [44, pp.112-113] for this fact.

In order to obtain a converse statement we must assume slightly more than just

biorthogonality from the relation between q and p. That is, p must be dual to

q: Let us de�ne H+
� (S) =

T
">0H�(S"); where the intersection is taken over all "-

neighborhoods S" of the subset S � D: The biorthogonal �eld p is the dual �eld of

q if the equality

Hp(S) = H+
q (D n S)?(7.4)

holds for all open subsets S � D: There are useful su�cient conditions ([44, Lemma

1-2, pp. 108-109]) for the duality to hold. We then have (c.f. [44, Theorem on p.

112]) the converse result

Theorem 7.3. Assume that the �eld p is dual to the �eld q ( i.e. (7.4) holds). Then

q is Markov if the covariance operator Cp is local.

Put together, if the duality holds, then the Markov property is equivalent to the

locality of the dual �eld.

By using above results, one easily veri�es that there are always Markov �elds q on

D such that the inverse of the covariance operator C�1
q = Cp has the principal part

�a(x)�; assuming that a 2 C1(D) satis�es infD a(x) > 0: Actually, by considering

the operator �r � a(x)r, we obtain this statement easily from the following result

in [44].

Theorem 7.4. Assume that the covariance operator Cp of the biorthogonal �eld p

is a partial di�erential operator of order 2` � 1 with smooth coe�cients, and it
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satis�es the coercivity inequality (c > 0)

hQp�; �i � c
X
j�j�`

kD��k2L2(D); � 2 C1
0 (D):

Then the �eld q is Markov.

See [44, Theorem 3 p.129] for this statement.
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