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Abstract. We prove that quasiconformal maps onto domains which satisfy
a suitable growth condition on the quasihyperbolic metric are uniformly con-
tinuous when the source domain is equipped with the internal metric. The
obtained modulus of continuity and the growth assumption on the quasihy-
perbolic metric are shown to be essentially sharp. As a tool we prove a new
capacity estimate.

1. Introduction

It is well-known that a quasiconformal mapping between suÆciently nice do-

mains is uniformly continuous. In this paper we consider the following question.

Suppose that we are given the growth condition

(1.1) k
(x0; x) � �

�
dist(x0; @
)

dist(x; @
)

�
on the quasihyperbolic metric k
 of a domain, where � : (0;1) ! (0;1) is an

increasing function and x0 is a �xed point in 
. Under which conditions on 
0

and � can we conclude that each quasiconformal mapping f : 
0 ! 
 is uniformly

continuous when 
 is equipped with the euclidean metric and 
0 with the internal

distance Æ(x; y); i.e., the in�mum of lengths of curves that join x to y in 
0; or
some other natural metric on 
0:
Let us comment on the history of the problem. Becker and Pommerenke [3]

proved that a conformal mapping f from the unit disk onto a domain 
 is uni-

formly �-H�older continuous, 0 < � � 1, if (and only if) the hyperbolic metric �

in 
 satis�es a logarithmic growth condition

(1.2) �
(z0; z) �
1

�
log

dist(z0; @
)

dist(z; @
)
+ C0;

where z0 = f(0) and C0 <1. Here dist(�; @
) denotes the Euclidean distance to

the boundary of 
. Notice that the hyperbolic metric �
 above is comparable to

k
 by the Koebe distortion theorem. Gehring and Martio [5] proved a version of
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this statement in all dimensions for possibly multiply connected domains. Their

assumption on on 
 was that

(1.3) k
(x0; x) �
1

�
log

dist(x0; @
)

dist(x; @
)
+ C0

for some (each) x0 2 
 and a constant C0 = C0(x0) <1: They showed that this

rather easily imples that, given 
0 and a quasiconformal mapping f : 
0 ! 
;
f is uniformly H�older continuous on each (open) ball B � 
0 with an exponent

� and constant M which depend only on n, K, and the constants � and C0 but

are independent of B. Given points x; y were then assumed to be joinable by a

\nice" curve  along which this estimate was applied in order to obtain a global

distortion estimate. The \niceness" of  required that the length of it was no

more than a constant times jx� yj and that  stayed suÆciently far away from

the boundary, when measured in a certain averaged sense.

Very recently, Koskela, Onninen, and Tyson [13] improved on the above results

by showing that, under the logarithmic growth condition (1.3), a mapping f
as above is always uniformly H�older continuous when 
0 is equipped with the

internal metric Æ(x; y) and 
 with the euclidean metric.

Before stating our �rst result, let us indicate what kinds of functions � in the

growth condition (1.1) are critical. Consider the unbounded simply connected

domain


 = f[x; y] 2 R2 : x � �1; jyj � exp(�x)g

Then (1.1) holds with x0 = (0; 0) and �(t) = Ct+C and there exists a conformal

mapping from the unit disk onto 
. Thus this growth order does not guarantee

uniform continuity even when 
0 is the unit disk. On the other hand, using the

Koebe distortion theorem, one easily checks that the growth order �(t) = ts +C
is suÆcient for the uniform continuity of conformal mappings from the disk onto


; for any s < 1: In fact, even the integrability condition

(1.4)

Z 1

0

dt

��1(t)
<1

suÆces. Our �rst result comes rather close to verifying that this condition is

always suÆcient.

In what follows, we denote by Æ
(x; y) the internal distance between a pair of

points x; y 2 
, i.e., the in�mum of the lengths of curves in 
 joining x to y.
For technical reasons, it is more convenient to write the growth condition (1.1),

following Gotoh [8], in the form

(1.5) dist(x; @
) � dist(x0; @
)'(k
(x0; x));

where we assume that ' : [0;1)! (0;1) is non-increasing, and that

(1.6)

Z
1

0

'(t) dt <1:
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To relate (1.1) to (1.5), simply notice that we may take

'(t) =
1

��1(t)

for t large. Given a 2 R we de�ne

(1.7) �(s) =

Z
1

s

'(t) dt and  a(t) =
�
��1(t)

��a
:

Theorem 1.1. Let 
;
0 ( Rn, n � 2 be domains and assume that 
 satis�es
(1.5) and that (1.6) holds. Suppose that there is a > n� 1 such that the function
 a is concave. Then each quasiconformal mapping f : 
0 ! 
 satis�es

(1.8) jf(x0)� f(y0)j � C�
�
C log

C

Æ
0(x0; y0)

�
for every pair x0; y0 of distinct points in 
0.

The above concavity condition does not hold for '(t) = t�s + C; when s = n;

in other words, when �(t) = t1=n + C: We do however believe that Theorem

1.1 holds even without this condition (also see [13] pp. 429{430). The modulus

of continuity given in (1.8) is essentially sharp even when 
0 is the disk, see

Section 5 below. For example, when �(t) = ts + C; 0 < s < 1; we may take

�(t) = t1�
1

s ; and when �(t) = C log t + C; we have �(t) = exp(�Ct); and we

recover H�older continuity. Moreover, the integrability condition is really needed

because otherwise 
 may fail to be bounded.

Our second result allows us to omit the concavity condition, but we need to

use another distance function on 
0.

Theorem 1.2. Let 
;
0 ( Rn, n � 2 be domains and assume that 
 satis�es
(1.5) and that (1.6) holds. Then each quasiconformal mapping f : 
0 ! 


satis�es

(1.9) jf(x0)� f(y0)j � C�
�
C log

C

diam[x0; y0]
0

�
for every x0; y0 2 
0, where [x0; y0]
0 is any quasihyperbolic geodesic joining x0 to
y0 in 
0.

Note that this gives us the result of Theorem 1.1 without the concavity as-

sumption if we assume instead that the Gehring-Hayman inequality is satis�ed

in 
0. The Gehring-Hayman inequality states that there is a constant M so that

(1.10) diam[x0; y0]
0 �MÆ(x0; y0)

for every x0; y0 2 
0. It is known to hold in many natural situations [4], [10],

[2], in particular for simply connected domains and more generally for domains

quasiconformally equivalent to uniform domains. Again the given modulus of

continuity is essentially sharp, see Section 5.



4 STANISLAV HENCL AND PEKKA KOSKELA

Our proofs of Theorem 1.1 and Theorem 1.2 rely on certain capacity estimates

in domains satisfying the given growth condition on the quasihyperbolic metric.

Speci�cally, we establish the following result.

Theorem 1.3. Let 
 be a proper subdomain of Rn, n � 2, with diameter one
which satis�es (1.5) and that (1.6) holds. Suppose that there is a > n � 1 such
that the function  a is concave. Let Q0 denote a �xed Whitney cube containing

the basepoint x0. Then

(1.11) cap(E;Q0; 
) � C(��1(C diamE))1�n

for all continua E � 
.

Here cap(E; F ; 
) denotes the n-capacity between a pair of disjoint continua

E and F in the domain 
, see Section 2. The given bound on the capacity is

sharp, but we do not know if one could omit the concavity assumption.

We prove Theorem 1.3 by a chaining argument involving the Poincar�e inequal-

ity on Whitney cubes in 
. Our argument here is an improvement on the tech-

niques introduced in [13] and in [11]. Theorem 1.2 will be obtained from a version

of Theorem 1.3, which is proven without the concavity assumption. In this ana-

log, only continua E of a special type are considered.

This paper is organized as follows. Section 2 reviews the notations used in the

paper and gives most of the necessary de�nitions. In Section 3, we introduce the

quasihyperbolic metric and prove some of it's important properties. Section 4

contains the proofs of the capacity estimates and the �nal section, Section 5, is

devoted to the discussion of uniform continuity.

2. Notations and definitions

We denote by Rn, n � 1, the euclidean space of dimension n. The Lebesgue

measure in Rn is denoted by m, although we usually abbreviate dm(x) = dx. We

write #M for the number of elements of a set M .

For a cube Q � Rn with center x and side length s(Q) and for a factor � > 0,

we denote by �Q the dilated cube which is again centered at x but has side length
�s(Q). The center of a cube Q is denoted by cQ. Given an integrable function u
on an open set A � Rn we write

uA = �

Z
A

u(x)dx =
1

m(A)

Z
A

u(x)dx:

For an increasing function ' : [0;1) ! [0;1) with '(0) = 0, we denote by

H1
'
the Hausdor� '-content: H1

'
(E) = inf

P
i
'(ri), where the in�mum is taken

over all coverings of E � Rn with balls B(xi; ri), i = 1; 2; : : :. When '(t) = ts

for some 0 < s <1 we write H1
s
= H1

'
.
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For disjoint compact sets E and F in the domain 
, we denote by cap(E; F ; 
)
the conformal (or n-) capacity of the pair (E; F );

cap(E; F ; 
) = inf
u

Z



jrujn dx;

where the in�mum is taken over all continuous functions u in the Sobolev space

W
1;n
loc

(
) which satisfy u(x) � 0 for x 2 E and u(x) � 1 for x 2 F .
For K � 1 and 
;
0 as above, we say that a homeomorphism f : 
 ! 
0 is

K-quasiconformal if

1

K
cap(E; F ; 
) � cap(E 0; F 0; 
0) � K cap(E; F ; 
)

whenever E and F are disjoint compact sets in 
, where E 0 = f(E) and F 0 =

f(F ). For the basic theory of quasiconformal maps, we refer the reader to the

monograph [16] of V�ais�al�a.

Let 
 be a bounded domain inRn, n � 2. Set s(
) = n�1=2 diam
. We denote

by W =W(
) a Whitney decomposition of the domain 
 into Whitney cubes Q,
i.e., 
 = [Q2W Q, the cubes inW have pairwise disjoint interiors, vertices in the

set

2�Ns(
) � Zn := f(2�js(
)l1; : : : ; 2
�js(
)ln) : j 2 N; l1; : : : ; ln 2 Zg;

and satisfy diamQ � dist(Q; @
) � 4 diamQ for each Q 2 W. For the existence

of such a decomposition, we refer to Stein's book [15, VI.1]. For any �, 1 <
� < 5=4, the expanded collection of cubes f�Q : Q 2 Wg has bounded overlap,

speci�cally,

sup
x2


X
Q2W

��Q(x) � 12n <1:

See, e.g., [15, VI.1.3, Proposition 3]. For j 2 N we set

(2.1) Wj = fQ 2 W : j � k
(cQ; x0) < j + 1g:

We will also suppose that x0 is the center of the Whitney cube Q0.

By C we will denote various positive constants that may depend on n, ', a,M ,

K, dist(x0;
) and dist(f�1(x0); @

0). These constants may vary from expression

to expression as usual.

3. Preliminary results on the quasihyperbolic metric

Throughout this section, 
 will denote a proper subdomain in the euclidean

space Rn, n � 2. Recall that the quasihyperbolic metric k
 in the domain 
 is

de�ned to be

k
(x; y) = inf


k
- length();
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where the in�mum is taken over all recti�able curves  in 
 which join x to y
and

k
- length() =

Z


ds

dist(x; @
)

denotes the quasihyperbolic length of  in 
. This metric was introduced by

Gehring and Palka in [7]. A curve  joining x to y for which k
- length() =
k
(x; y) is called a quasihyperbolic geodesic. Quasihyperbolic geodesics joining

any two points of a proper subdomain of Rn always exist, see [6, Lemma 1]. If

 is a quasihyperbolic geodesic in 
 and x0; y0 2 , we denote by (x0; y0) the
portion of  which joins x0 to y0. Given any two points x; y 2 
 we denote by

[x; y]
 the quasihyperbolic geodesic that joins x and y.
When x and y are suÆciently far apart, k
(x; y) is roughly equal to the number

N(x; y) of Whitney cubes Q that intersect a quasihyperbolic geodesic  joining

x to y. More precisely,

N(x; y)=C � k
(x; y) � CN(x; y)

for all x; y 2 
 with jx� yj � dist(x; @
)=2, where C = C(n).
The following estimate is always true for all x 2 
 (see [7])

(3.1) k
(x0; x) � log
dist(x0; @
)

dist(x; @
)
:

Lemma 3.1. Let  be a quasihyperbolic geodesic in 
 starting at the basepoint
x0. Then

cardfQ 2 W1 [ : : : [Wj : Q \  6= ;g � Cj

for all j 2 N.

Proof. This follows from the fact that the length of a geodesic is comparable with

the number of Whitney cubes it intersects and the de�nition of Wj (2.1). �

For each cube Q 2 W we �x a quasihyperbolic geodesic  joining x0 with cQ.
We denote by P (Q) the collection of all Whitney cubes which intersect . The

shadow S(Q) of a Whitney cube Q is de�ned by

S(Q) =
[

Q12W

Q2P (Q1)

Q1:

Using only Lemma 3.1 we obtain analogously to [13, Lemma 2.3] the following

lemma.

Lemma 3.2. For every j 2 N and x 2 
 we haveX
Q2W1[:::[Wj

�S(Q)(x) � Cj:
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Lemma 3.3. Suppose that 
 satis�es (1.5) and that (1.6) holds. Then for every
Q 2 W

diamS(Q) � C1 dist(x0; @
)�(Ck
(cQ; x0)):

Proof. Clearly for every ~Q 2 S(Q) inequality (1.5) and dist(c ~Q; @
) � diam ~Q
give us

(3.2) diam ~Q � C dist(x0; @
)'(k
(x0; c ~Q)) � C dist(x0; @
)�
�
k
(x0; c ~Q)=2

�
:

Now it is enough to show that for every Q1; Q2 2 S(Q) we have dist(cQ1 ; cQ2) �
C�(Ck
(x0; cQ)). Let i be a quasihyperbolic geodesic joining x0 and cQi

for

i = 1; 2 and choose points xi 2 Q \ i. Clearly

jcQ1 � cQ2j � length(1(x1; cQ1)) + diamQ+ length(2(x2; cQ2)):

Now the �rst inequality in (3.2) implies for i = 1; 2 that

length(i(xi; cQi
)) � C

X
~Q2W

~Q\i(xi;cQi)6=;

diam ~Q

� C dist(x0; @
)

1X
j=maxf0;k
(x0;cQ)�Cg

'(j) � C dist(x0; @
)�(Ck
(x0; cQ)):

Together with (3.2) for ~Q = Q this implies the desired result. �

As a corollary to this lemma we obtain the following known fact (see [8]).

Corollary 3.4. Suppose that 
 ( Rn satis�es (1.5) and that (1.6) holds. Then

 is a bounded domain (because S(Q0) is bounded).

Lemma 3.5. Suppose that 
 satis�es (1.5) and ' satis�es (1.6). Assume that a
curve  in 
 satis�es

(3.3) #fQ 2 W : Q \ (x1; x2) 6= ;g � Ck
(x1; x2) + C

for every x1; x2 2 . Then there are j 2 N and a cube Q 2 Wj such that Q\ 6= ;

and

(3.4) diam() � C dist(x0; @
)�(j=2):

Proof. Denote j = minfi 2 N0 : there is Q 2 Wi such that Q \  6= ;g. From

the properties of Whitney cubes, (1.5) and de�nition of j we have

(3.5) diam() �
X
Q2W

Q\ 6=;

diamQ � C
X
Q2W

Q\ 6=;

dist(cQ; @
)

� C dist(x0; @
)
X
Q2W

Q\ 6=;

'(k
(x0; cQ)) � C dist(x0; @
)

1X
i=j

Mi'(i)

where Mi = #fQ 2 Wi : Q \  6= ;g.
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Denote Am = fQ : Q 2 Wi for some i � m and Q\ 6= ;g for any m � j. We

claim that

(3.6) #Am =Mj + : : :+Mm � Cm:

This inequality is clearly true if #Am < 3 and thus we may assume that Am
contains at least three cubes. Find Qm

1 ; Q
m

2 2 Am which lay on  as far as

possible from each other and �x x1 2 Q
m

1 \ and x2 2 Q
m

2 \. That is, for every
Q 2 Am n fQ

m

1 ; Q
m

2 g we have Q \  � (x1; x2). From (3.3) we obtain

C(Mj + : : :+Mm) = C#Am � Ck
(x1; x2) + C

� C + C
�
k
(x1; cQm

1
) + k
(cQm

1
; x0) + k
(x0; cQm

2
) + k
(cQm

2
; x2)

�
� C + Cm

which gives us (3.6).

Now we multiply (3.6) by am = '(j)�'(j + 1) and sum these inequalities for

m from j to in�nity. The left hand side is equal to

(3.7)

1X
m=j

�
am

mX
i=j

Mi

�
=

1X
i=j

 
Mi

1X
m=i

�
'(m)� '(m+ 1)

�!
=

1X
i=j

Mi'(i)

and is less or equal to the right-hand side

(3.8) C

1X
m=j

m
�
'(m)� '(m+ 1)

�

= Cj'(j) + C

1X
m=j+1

'(m) � C

Z 1

j=2

'(t) dt:

From (3.5), (3.7) and (3.8) we obtain (3.4). �

In order to later apply the previous lemma in connection to quasiconformal

mappings we record the following fact.

Proposition 3.6. Let 
;
0 ( Rn, n � 2 be domains and assume that f : 
0 !


 is a quasiconformal mapping. Let 0 be a quasihyperbolic geodesic in 
0 and
denote  = f(0). Then

#fQ 2 W : Q \ (x1; x2) 6= ;g � Ck
(x1; x2) + C

for every x1; x2 2 .

This result is essentially contained in [6, Theorem 3], according to which qua-

siconformal mappings are bi-Lipschitz for large distances in the quasihyperbolic

metric. To deduce the above statement, also use the facts that the quasihyper-

bolic metric can be estimated in terms of the number of the Whitney cubes that

intersect the corresponding geodesic and that a quasiconformal mapping maps

Whitney cubes to Whitney type objects.
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4. Capacitary estimates

Proof of Theorem 1.3. This proof goes analogously to the proofs of theorems 1.4.

and 4.2. in [13]. For the completeness of our proofs we give the details. Let

u 2 W
1;n
loc (
) be a test function for the n-capacity for the pair (Q0; E), i.e.,

u : 
 ! [0; 1] is a continuous function and u(x) = 1 for x 2 E and u(x) = 0 for

x 2 Q0.

For each x 2 E, let Q(x) denote the Whitney cube containing x. We de�ne

a subchain P 0(Q(x)) � P (Q(x)) as follows: P 0(Q(x)) = fQs; : : : ; Qfg consists of

a chain of Whitney cubes, which begins with the terminal cube Qs = Q(x) and
continues back along the chain P (Q(x)) until it reaches the �rst cube for which
Qf 2 Wj0

where j0 is a �xed integer such that j0 � ��1(diamE). From now on

let j0 be �xed.
We claim that without loss of generality we can suppose that uQ(x) � 2=3 and

uQf
� 1=3. First, suppose that uQ(x) < 2=3 for some x 2 E. Then we can use

some known results from the literature ([17], [9, Theorem 5.9]) to deduce thatZ



jru(x)jn dx � C

�
log

1

diamE

�1�n

(see [13] for details). Note that in view of (3.1) and (1.5) we obtain '(t) � e�t

and thus �(t) � e�t: Since � is non-increasing, this implies that this estimate of

capacity is no worse than (1.11).

Next suppose that the �nal cube Qf in the path P 0(Q(x)) satis�es uQf
> 1=3.

Then we have two cubes Q0 and Qf in the domain 
 and a continuous W 1;n
loc -

function u satisfying u = 0 on Q0 and uQf
> 1=3. We can �nd a chain of Whitney

cubes which joins Q0 to Qf i.e. cubes fQig
l

i=0 such that Q0 is the central cube,

Qi \Qi+1 6= ; for all i 2 f0; : : : ; l � 1g, Ql = Qf and

(4.1) l � Cj0 � C��1(diamE)

where the last inequality follows from the fact that the length of a geodesic

is comparable with the number of Whitney cubes it intersects and the choice

of j0. In this situation a straightforward chaining argument involving Poincar�e

inequality on the cubes from P 0(Q(x)) (c.f. [12] pp 519{520 or [14] Lemma 8)

gives us the estimate

(4.2) 1 � C

lX
i=1

diamQ�

Z
Qi

jru(y)jdy:

By applying H�older's inequality twice we obtain

(4.3)

1 � C

lX
i=1

�Z
Qi

jrujn
�1=n

� C

 
lX

i=1

Z
Qi

jrujn

! 1

n

l
n�1

n � C
�Z




jrujn
� 1

n

l
n�1

n :
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Thus (4.1) gives us (1.11) in this situation.

Therefore we may really assume that uQ(x) � 2=3 and uQf
� 1=3. As before,

for a chain P 0(Q(x)) of cubes we may obtain an estimate

(4.4) 1 � C
X

Q2P 0(Q(x))

diamQ�

Z
Qi

jru(y)jdy:

We now choose a Frostman measure � on the continuum E with the growth

function  a(t) (see e.g. [1, Theorem 5.1.12]), i.e., a Borel measure supported on

E satisfying

(4.5) �(E \ B(x; r)) �  a(r)

for all balls B(x; r) and

�(E) � CH1
 a
(E) � C a(diamE);

where the last inequality follows from the concavity of  a.
Integrating (4.4) over the set E with respect to the Frostman measure � and

applying H�older's inequality we obtain

�(E) � C

Z
E

X
Q2P 0(Q(x))

�Z
Q

jrujn
�1=n

d�(x):

By interchanging the order of summation and integration we obtain in view of

the choise of Qf that

�(E) � C

1X
j=j0

X
Q2Wj

�(S(Q) \ E)
�Z

Q

jrujn
�1=n

:

H�older's inequality gives us

�(E) � C
� 1X
j=j0

X
Q2Wj

�(S(Q) \ E)1+1=(n�1)
�1�1=n�Z




jrujn
�1=n

:

We require an estimate for the double sum on the right hand side, which we

give in the following lemma:

Lemma 4.1. Let 
 be a domain in Rn, n � 2, with diameter one which satis�es
(1.5) and suppose (1.6) holds. Assume that the function  a is concave. Suppose
that � is a Borel measure on Rn which satis�es the growth condition �(B(x; r)) �
 a(r) where a > 1=Æ. Then for any set E � 
 we have

1X
j=j0

X
Q2Wj

�(S(Q) \ E)1+Æ � C�(E)j1�aÆ0 :
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We defer the proof of this lemma momentarily. The measure � satis�es the

assumptions of the previous lemma for Æ = 1=(n� 1) and thus

�(E) � C�(E)1�1=n
�
j
1�a=(n�1)
0

�1�1=n�Z



jrujn
�1=n

:

Therefore j0 � ��1(diamE) and the choice of the growth function for the Frost-

man measure � gives usZ



jrujn � C�(E)
�
��1(diamE)

�1�n+a
� C

�
��1(diamE)

�1�n
:

�

Proof of Lemma 4.1. From the growth condition on �, Lemma 3.3, concavity of

 a (we can suppose that C1 dist(x0;
) > 1) and de�nition (1.7) of  a we have
1X
j=j0

X
Q2Wj

�(S(Q) \ E)�(S(Q) \ E)Æ

�

1X
j=j0

X
Q2Wj

�(S(Q) \ E) a(diamS(Q))Æ

�

1X
j=j0

X
Q2Wj

�(S(Q) \ E) a
�
C1 dist(x0;
)�(Cj)

�Æ

� C

1X
j=j0

X
Q2Wj

�(S(Q) \ E) a
�
�(Cj)

�Æ

� C

1X
j=j0

j�aÆ
X
Q2Wj

�(S(Q) \ E)

Set aj =
P

Q2Wj
�(S(Q)\E) and let Aj = a1+: : :+aj. Thanks to the elementary

inequality
��j�aÆ � (j + 1)�aÆ

�� � Cj�1�aÆ we can apply summation by parts to

obtain
1X
j=j0

j�aÆaj � C

1X
j=j0

j�1�aÆAj:

By Lemma 3.2, Aj � C�(E)j for each j so
1X
j=j0

X
Q2Wj

�(S(Q) \ E)1+Æ � C�(E)

1X
j=j0

j�aÆ � C�(E)j1�aÆ0 :

�

Theorem 4.2. Let 
 be a domain in Rn, n � 2, with diameter one which
satis�es (1.5) and suppose (1.6) holds. Assume that a curve  in 
 satis�es

#fQ 2 W : Q \ (x1; x2) 6= ;g � Ck
(x1; x2) + C
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for every x1; x2 2 . Then

(4.6) cap(;Q0; 
) � C
�
��1

�
C diam

��1�n
:

Proof. Let a function u 2 W
1;n
loc (
) be a test function for the n-capacity for the

pair (Q0; ), i.e., u : 
 ! [0; 1] is a continuous function and u(x) = 1 for x 2 
and u(x) = 0 for x 2 Q0.

Thanks to Lemma 3.5 we can �nd a sequence of cubes which joins Q0 to

; i.e., cubes fQig
l

i=0 such that Q0 is the central cube, Qi \ Qi+1 6= ; for all

i 2 f0; : : : ; l � 1g, Ql \  6= ; and

(4.7) l � C��1
�
C

diam

dist(x0; @
)

�
� C��1

�
C diam

�
:

Without loss of generality we may suppose that uQl
� 1=2 (see proof of Theo-

rem 1.3) and clearly uQ0 = 0. Analogously to (4.2) and (4.3) we obtain

1 � C
�Z




jrujn
� 1

n

l
n�1

n :

This inequality and (4.7) imply (4.6). �

5. Uniform continuity

Proof of Theorem 1.1. We follow the ideas from [13, Theorem 1.1] and again

we give some details for the completeness of our arguments. Since 
 is bounded

(Corollary 3.4) we may scale it to have diameter one. Fix a Whitney cube F = Q0

in 
 with center x0 and let F 0 = f�1(F ) and ~F = f�1(3
2
Q0). By elementary

properties of quasiconformal mappings, there exists Æ = Æ(n;K) > 0 so that the

set of points x 2 Rn with dist(x; F 0) � Æ diamF 0 is contained in ~F .

Let x0; y0 2 
0. Since f is automatically H�older continuous on ~F we may assume

that either x0 or y0 (say x0) is in 
0 n ~F . Recall that in view of (3.1) and (1.5)

the inequality (1.8) cannot give us a better modulus of continuity than H�older

continuity.

Next, note that if Æ
0(x0; y0) � 1
4
Æ diamF 0, then

(5.1)
jf(x0)� f(y0)j

Æ
0(x0; y0)
� C(n;K)

diam


diamF 0
� C

which gives us again a modulus of continuity that is no worse than (1.8). Thus

it suÆces to verify (1.8) only in the case 4Æ
0(x0; y0) < Æ diamF 0 � dist(x0; F 0).

Choose a continuum E 0 � 
0 joining x0 to y0 with diamE 0 � 2Æ
0(x0; y0) <
1
2
Æ diamF 0. Then diamE 0 < 1

2
Æ diamF 0 � dist(E 0; F 0). A fundamental property

of the conformal capacity (see Fact 3.1(e) of [11]) states that in this case

cap(E 0; F 0; 
0) � C(n)

�
log

dist(E 0; F 0)

diamE 0

�1�n

:
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Set E = f(E 0). By Theorem 1.3,

(5.2) cap(E; F ; 
) � C
�
��1

�
C diamE

��1�n
:

Therefore �
��1

�
C diamE

��1�n
� CK

�
log

dist(E 0; F 0)

diamE 0

�1�n

� CK

�
log

1
2
Æ diamF 0

diamE 0

�1�n

;

which implies

diamE � C�
�
C log

C

diamE 0

�
:

Since jf(x0)� f(y0)j � diamE and diamE 0 � 2Æ
0(x0; y0), the proof of Theorem
1.1 is complete. �

Proof of Theorem 1.2. This proof is analogous to the previous one and therefore

we only point out the details which are di�erent. Boundedness of 
 follows

from Lemma 3.5. If diam[x0; y0]
0 � Æ diamF 0=2; then analogously to (5.1), we

obtain (1.9). In this proof we denote E 0 = [x0; y0]
0 and E = f(E 0). Thanks

to Proposition 3.6 we can use Theorem 4.2 for  = f([x0; y0]
0) to conclude the

analog of (5.2). The other details and computations are similar. �

Let us close the paper by commenting on the sharpness of the estimates in

Theorem 1.1, Theorem 1.2, and Theorem 1.3.

Example 5.1. Let ' : [0;1)! (0;1) be a non-increasing continuous function
so that

R1
0
' = 1 and

(5.3) c1'(t) � '(t+ 1) for every t > 0:

De�ne � : [0;1) ! [0; 1] by formula (1.7) and set f(x) = '(��1(x)) for every

x 2 (0; 1]. De�ne


 =
n
x 2 Rn : x1 2 (0; 1];

nX
2

x2
i
< f 2(x1)

o
[

�
B(e1; '(0)) \ fx1 > 1g

�
;

where e1 is the unit vector (1; 0; � � � ; 0): Set x0 = e1 and Ea = fte1 : t 2 [a=2; a]g
for a > 0: Then

(5.4) dist(x; @
) � C'(Ck
(x0; x)) for every x 2 
 and

cap
�
Ea; Q0; 


�
� C(��1(Ca))1�n for a small enough:

In Example 5.1, condition (1.5) holds, (for ~'(t) = C'(Ct)) and the bound

(1.11) for capacity of a continuum is sharp. The growth assumption (5.3) is in

practise harmless.



14 STANISLAV HENCL AND PEKKA KOSKELA

Proof. The function f is clearly increasing and continuous. For k 2 N set yk =
�(k). From (5.3) we obtain

(5.5) yk+1 � yk+2 =

Z
k+2

k+1

' � c1'(k + 1) = c1f(yk+1):

Given x 2 (0; 1=2]; we can �nd k 2 N such that yk+1 � x � yk. Then f(x) �
f(yk) = '(k) � '(k + 1)=c1 = f(yk+1)=c1 and therefore (5.5) and (5.3) give us

f
�
x� c21f(x)

�
� f

�
yk+1 � c1f(yk+1)

�
� f(yk+2) =

= '(k + 2) � c21'(k) = c21f(yk) � c21f(x):

Because (5.3) easily shows that f(x) � Cx; this inequality implies that dist(xe1; @
) �
f(x) for every x 2 (0; 1=2].
It is not diÆcult to verify from dist(xe1; @
) � f(x), f(yk) = '(k) and (5.3)

that

k
(yke1; yk+1e1) =

Z
yk

yk+1

dt

dist(te1; @
)
�

(yk � yk+1)

'(k)
� C:

Therefore k
(x0; yke1) � k. Recall that x 2 [yk+1; yk]. Then ��1(x) � k �
k
(x0; xe1) and we have

dist(xe1; @
) � f(x) = '(��1(x)) � '(Ck
(x0; xe1)):

Because f is increasing, we easily conclude that (5.4) holds for all x 2 
: Fix
k0 2 N such that yk0e1 =2 Q0. For 0 < a < 1=2 we �nd A 2 N such that

yA+1 � a � yA and therefore, when a is suÆciently small, A � ��1(Ca). If a is

small enough we further have A > 2k0. De�ne a function

u([x1; : : : ; xn]) =

8>>><
>>>:
0 if x1 � yA;
A�1�k
A�k0

+ 1
A�k0

x1�yk+1

yk�yk+1
if yk+1 � x1 � yk

where k 2 fk0; : : : ; A� 1g;

1 if yk0 � x1:

Clearly u 2 W 1;n
loc , u � 1 on Q0 and u � 0 on Ea. Since f(yk+1) � f(yk) � '(k)

we obtain using (5.5) that

j
 \ fx 2 Rn : yk+1 < x1 < ykgj � (yk � yk+1)'(k)
n�1 � (yk � yk+1)

n:

Therefore Z



jrujn =

A�1X
k=k0

Z

\fx:yk+1<x1<ykg

1

(A� k0)n(yk � yk+1)n
�

�
C

(A� k0)n�1
� CA1�n � C(��1(Ca))1�n:

�
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Regarding Theorem 1.1 and Theorem 1.2, we let n = 2 and consider a con-

formal mapping of the disk onto 
; where 
 is given in Example 5.1. Using

the fact that the capacity is preserved under conformal mappings and the fact

that the lower bound for the capacity is optimal, as discussed above, one easily

checks that the given modulus of continuity is optimal. It also seems plausible

that domains of this type are, in higher dimensions, quasiconformally equivalent

to the unit ball, which would show that the dimension independent modulus of

continuity given in Theorem 1.1 and Theorem 1.2 is sharp in all dimensions.
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