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Abstract. Let f 2W 1;n(
;Rn ) be a continuous mapping so that
the components of the preimage of each y 2 Rn are compact. We
show that f is open and discrete if jDf(x)jn � K(x)J

f
(x) a.e

where K(x) � 1 and Kn�1=�(log(e+K)) 2 L1(
) for a function
� that satis�es

R
1

1
1=�(t)dt = 1 and some technical conditions.

This divergence condition on � is shown to be sharp.

1. Introduction

Let 
 be a connected, open subset of Rn with n � 2. In this paper we

consider continuous mappings f 2 W
1;p
loc

(
;Rn); p � 1:We suppose that

there is a measurable function K : 
 ! [1;1) so that the distortion

inequality

jDf(x)jn � K(x)Jf(x)

holds almost everywhere in 
; where Df(x) is the di�erential matrix

of f at x; jDf(x)j is the operator norm of this matrix, and Jf(x) is

the determinant of Df(x): We say that f is of �nite distortion K if

furthermore Jf is locally integrable.

If above K is bounded, then necessarily f 2 W
1;n
loc

(
;Rn); and we re-

cover the class of mappings of bounded distortion, also called quasireg-

ular mappings (cf. [22], [23], [9], [26]). One of the fundamental prop-

erties of mappings of bounded distortion is the remarkable result by

Reshetnyak [21] that such a mapping is either constant or both discrete

and open. This means that the preimage of each point is a discrete set

of points and that f maps open sets to open sets.

A principal goal in the theory of mappings of �nite distortion has

been to try and obtain analogs of Reshetnyak's result. In [10] Iwaniec

and �Sver�ak proved in dimension two, using the Beltrami equation,

that each non-constant mapping f 2 W
1;2(
;R2) of �nite distortion

K 2 L
1(
) is both open and discrete. Subsequently, Heinonen and

Koskela [6] proved in higher dimensions that a quasi-light mapping

f 2 W
1;n
loc

(
;Rn) of �nite distortion K 2 Lp(
); p > n� 1; is open and

discrete. Here the quasi-lightness means that that the components of

the preimage of each y 2 Rn are compact. Manfredi and Villamor [20]

then showed that the quasi-lightness assumption can be disposed of.

1991 Mathematics Subject Classi�cation. 30C65, 26B10, 73C50.
Key words and phrases. Mapping of �nite distortion, dicreteness, openness.

1



2 STANISLAV HENCL AND PEKKA KOSKELA

The most recent result in this direction is due to Hencl and Mal�y [7].

They showed that, for a quasi-light mapping f 2 W
1;n
loc

(
;Rn) of �nite

distortion, the integrability assumption K 2 L
n�1(
) is suÆcient for

discreteness and openness. The general case remains open.

It is then natural to inquire if the integrability of K could be further

relaxed. To this end, let us �rst recall a construction by Ball [1]. He

gives an example of a non-constant, Lipschitz continuous quasi-light

mapping of �nite distortionK; de�ned in a domain 
; so that f maps a

line segment to a point and withK 2 Lp(
) for all p < n�1:Moreover,

the preimage of every other point consists of at most a single point.

Regarding the distortion function K; one can in fact check that

(1.1)
K

n�1

�(log(e+K))
2 L1(
)

whenever

Z
1

1

dt

�(t)
<1. Iwaniec and Martin [9] have conjectured that

each non-constant mapping f 2 W
1;n
loc

(
;Rn) of �nite distortion that

satis�es (1.1) for some (suÆciently regular �) with

Z
1

1

dt

�(t)
= 1

is in fact both open and discrete; in fact their conjecture is slightly

stronger because it involves a di�erent distortion function. However,

this far there have been no results under assumptions weaker than

K 2 L
n�1(
); even for quasi-light mappings. We give the �rst step

towards to this conjecture by establishing the following sharp result.

Suppose that we are given a function � : [1;1)! (0;1) such that

(1.2)

(i) � is continuous and non-decreasing;

(ii)

Z
1

1

dt

�(t)
=1;

(iii) the function t!
t
n�1

�(log(e+ t))
is increasing ;

(iv) for every c1 > 0 there is c2 > 0 such that �(c1t) � c2�(t):

Notice that these conditions are satis�ed for example for �1(t) = 1,

�2(t) = t, �3(t) = t log(e+ t) and so on.

Theorem 1.1. Let 
 � R
n be a connected open set. Suppose that

f 2 W
1;n
loc

(
;Rn) is a quasi-light mapping of �nite distortion K that

satis�es (1.1) with a function � that satis�es (1.2). Then f is open

and discrete.

Before discussing the proof of Theorem 1.1, let us briey comment on

the regularity assumptions on f: First of all, there exists a quasi-light

mapping f of �nite distortion K that fails to be discrete and open,

satis�es f 2 W
1;p(
;Rn) for all p < n and satis�es K 2 L

p(
) for all

p < 1: Thus the regularity assumption f 2 W
1;n
loc

(
;Rn) cannot be
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substantially relaxed. Such mappings have been constructed in [12],

[14]. We prove a stronger version of Theorem 1.1 in Section 5 that

comes with an optimal regularity assumption. Secondly, we have taken

continuity as a standing assumption for mappings of �nite distortion.

Under the regularity assumptions referred to above, continuity follows

from the other assumptions, as was shown in [4], [8], [14].

All the proofs of discreteness and openness for n � 3 that we are

aware of rely on the following idea. One �rst proves that the mapping in

question is sense-preserving. After that one veri�es that the preimage

of each y 2 R
n is totally disconnected. The claim then follows by

invoking the Titus-Young theorem [24]. We follow this procedure. The

fact that f be sense-preserving in the setting of Theorem 1.1 is already

due to Reshetnyak and the more general case can be essentially found

in [12], [14]. Thus we are reduced to showing that the preimage of

each y 2 R
n is totally disconnected. This will be guaranteed by our

following theorem.

Theorem 1.2. Let 
 � R
n be a connected open set and suppose that

f 2 W
1;s
loc
(
;Rn); n � 1 < s � n; is a mapping of �nite distortion

K. Furthermore, assume that K satis�es (1.1) with a function � that

satis�es (1.2) and that the multiplicity of f is essentially bounded on a

neigborhood of 0. Then either f � 0 or H1(f�1(0)) = 0:

The essential boundedness of the multiplicity means that there is

an integer k so that the cardinality of f�1(y) is at most k for almost

all y in the given neigborhood of 0: The fact that we can bound the

multiplicity under our assumptions is based on certain results in [12],

[13] and [7].

We prove Theorem 1.2 by �rst establishing a sharp generalization

of an oscillation estimate given in [7]. We believe that this oscillation

estimate, given in Section 3, is of its own interest. Indeed, the original

version has already found applications [18]. Our estimate is, in a sense,

a substitute for the usual bounds on capacity in terms of Hausdor�

measures. The usual bounds are not subtle enough for our purposes.

Theorem 1.2 is then obtained by combining the oscillation estimate

with a delicate integrability result on jf j�1:

Theorem 1.2 is very sharp. The integrability assumption on K can-

not be relaxed because of the example due to Ball, mentioned above.

Moreover, we cannot take s = n � 1 at least when n = 2; as is seen

by considering the mapping de�ned by f(x) =
x

log(e=(jxj � 1))
for

x 2 B(0; 2) n B(0; 1) and by f(x) = 0 for x 2 B(0; 1): Indeed, f is of

�nite distortion K with
K

�(log(e+K))
2 L1(B(0; 2)) for, say, �(t) = t;

and the multiplicity of f is essentially bounded by one in any neigh-

borhood of 0.
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The paper is organized as follows. In Section 2 we recall some def-

initions and preliminary results. Section 3 is devoted to the proofs of

oscillation estimates. In Section 4, we prove Theorem 1.2. Finally, in

Section 5, we discuss discreteness and openness and give the proof of

Theorem 1.1.

2. Preliminaries

2.1. Quasicontinuous representatives. In anticipation of future ap-

plications of our oscillation estimates, we will formulate them without

the continuity assumption. This will be done in terms of quasicontin-

uous representatives. Let us point out that each continuous Sobolev

mapping is quasicontinuous. In this paper, the precise de�nition of

such a representive of a Sobolev mapping is not needed, because we

will only employ the following fact [7, Proposition 1]. See [19] for more

on quasicontinuity.

Proposition 2.1. Let 1 � p < ~p � n. Let u 2 W
1;~p(
) be 1; ~p-

quasicontinuous. Then for Hn�p-a.e. point z 2 
 we have

lim sup
r!0

r
�� �

Z
B(z;r)

ju� u(z)j dx <1;

where � = 1� p

~p
.

2.2. Topological properties. A mapping f : 
 ! R
n is said to be

discrete if the preimage of each point of Rn is locally �nite in 
, and

light if the preimage of each point of Rn is totally disconnected. We

say that f : 
! R
n is quasi-light if for each y 2 Rn the components of

the set f�1(y) are compact. We call a continuous mapping f : 
! R
n

sense-preserving if deg(f;
0; y0) > 0 for all domains 
0 �� 
 and all

y0 2 f(

0) n f(@
0), where deg(f;
0; y0) is the topological degree of f

at y0 with respect to 
0. For the de�nition of the topological degree

see e.g. [3].

2.3. Area formula. We denote by jEj the Lebesgue measure of a

set E � R
n . We will use the well-known area formula. Let f 2

W
1;1
loc (
;R

n). The multiplicity function N(f;
; y) of f is de�ned as the

number of preimages of y under f in 
. Let � be a nonnegative Borel

measurable function on R
n . Without any additional assumption we

have

(2.1)

Z



�(f(x)) jJf(x)j dx �

Z
Rn

�(y)N(f;
; y) dy:

This follows from the area formula for Lipschitz mappings, from the

a.e. approximate di�erentiability of f [2, Theorem 3.1.4], and a gen-

eral property of a.e. approximately di�erentiable functions [2, Theorem

3.1.8], namely that that 
 can be exhausted up to a set of measure zero

by sets the restriction to which of f is Lipschitz continuous.
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2.4. Fine properties of Hausdor� measure. In the proof of the

oscillation estimate we need the following set functions:

�
d

Æ
: E 7! inf

nX
�

a�(diamE�)
d : a� � 0; diamE� � Æ;

�
E
�
X
�

a��
E�

o
; Æ > 0:

By [2, 2.10.24],

(2.2) lim
Æ!0

�
d

Æ
(E) = H

d(E)

for any set E � R
n , where Hd is the usual Hausdor� measure.

3. Divergence criterium

If we assume, for p < n; that a non-negative function u 2 W
1;p(
)

vanishes suÆciently fast on a set of positive (n� p)-dimensional Haus-

dor� measure (it suÆces to assume a certain power-like decay of in-

tegral means of u over B(x; r) as r ! 0), then we can �nd pairwise

disjoint sets Ei such that jEij > 0 and

(3.1) sup
Ei

u
p � C

Z
Ei

jrujp dx

(see [7, Theorem 3 and Theorem 4] for the exact statement, and also

[17]). By a small modi�cation of the proofs of those results one can

obtain infEi
u > C supEi

u; and, therefore

Z



jrujp

up
dx =1:

We generalize this fact in the next lemma by obtaining a sharp diver-

gence statement (3.4).

Lemma 3.1. Let 1 � p < n, � > 0, � 2 (0; 1) and  > 0. Let 
 � R
n

be an connected open set and u 2 W
1;p(
). Suppose that u > 0 a.e.

and let

(3.2) Z =
n
z 2 
 : lim sup

r!0

r
�� �

Z
B(z;r)

u dx < 

o
:

Suppose that Hn�p(Z) > �. Suppose further that a function � :

[1;1)! (0;1) satis�es

(3.3)

(i) for every c1 > 0 there is c2 > 0 such that for every l 2 N

�(c1(l + 1)) � c2�(c1l);

(ii)

Z
1

1

dt

�(t)
=1:
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Then, for each 0 < Æ < e
�e
;

(3.4)

Z
0<u<Æ

jrujp

up log 1=u �(log log 1=u)
dx =1:

Proof. Our argument is an improvement on [7, Theorem 3]. We will

omit the parts of the reasoning there that need not be altered. Set

(3.5) � := 2�=4:

For j;m 2 Z we denote

Zm =
n
z 2 Z : B(z; 2�m) � 
; 2m

0� �

Z
B(z;2�m

0

)

u dx � 2

for all m0 = m;m+1; : : :
o
;

W
j

m
=
n
z 2 
 :

��fu > �
�jg \ B(z; 2�m)

�� > 1

2
jB(z; 2�m)j

o
;

Z
j

m
= Zm \W

j

m
:

As in [7] we can �nd k 2 N and a compact set Z� � Zk such that

(3.6)
log(4)

log �
< k and H

n�p(Z�) > �:

In view of (2.2) we can also suppose that

(3.7) �
n�p

2�k+1(Z
�) > � and

log(1=Æ)

log �
< k

(this can only increase the value of k and therefore (3.6) remains valid).

From now on this k 2 N is �xed. Since Z� is compact and Z� �
S

j
W

j

k
;

where W 1
k
� W

2
k
� : : : are open sets, we infer that there is i � 2k such

that

(3.8) Z
� � W

i

k
:

We denote

P
j

k
=
[
m�k

Z
j�1
m

n Z
j

m+1:

With each z 2 P
j

k
we associate a ball Bz = B(z; 2m) where m is such

that z 2 A
j

m
, m � k. By the Besicovitch covering theorem we �nd a

countable system B
j

k
� fBz : z 2 Z

j�1
m

n Z
j

m+1; m � kg such that

(3.9) �
P
j

k

�
X
B2B

j

k

�
B
� N:

Using the de�nition of the sets Zj

m
we can deduce with some work that

�
n�p

2�k+1(Z
�) �

1

a

X
a<j�3a

X
B2B

j

k

(diamB)n�p
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for any a 2 N , a � i. In fact this was proved in [7] (two lines down from

formula (18) there) only for a = i but it is easy to see that everything

works well also for a � i. From (3.7) we obtain

(3.10) � �
1

a

X
a<j�3a

X
B2B

j

k

(diamB)n�p:

Fix j 2 fa+ 1; : : : ; 3ag and set

` := �
�j+1

;

Ej :=
[
B2B

j

k

B \ fu � `g \ fu > �
�1
`g:

Note that the sets Ej are clearly pairwise disjoint. Let B = B(z; r) 2

B
j

k
and v = max

�
�
�1
`;minfu; `g

	
. Since z 2 P

j

k
, there exists m � k

such that z 2 Zj�1
m
nZ

j

m+1. Therefore we can use the Poincar�e inequality

in a standard way (see [7] for details) to deduce that

`
p � Cr

p�n

Z
B

jrvjp dx = Cr
p�n

Z
B\Ej

jrujp dx

where C = C(n; p; �). Since, for every x 2 Ej; we have u(x) � ` � �
�j

and a < j � 3a this implies

(3.11)
C

a
� r

p�n

Z
B\Ej

jrujp

up log 1=u
dx:

We multiply both sides of (3.11) by rn�p=� � (diamB)n�p=� and

sum over B 2 B
j

k
and then sum over j 2 fa+1 : : : 3ag. Then, with the

aid of (3.10), we arrive at

(3.12)

C � C�
�1 1

a

3aX
j=a+1

X
B2B

j

k

(diamB)n�p � C
0
�
�1

3aX
j=a+1

Z
Ej

jrujp

up log 1=u
dx

with C 0 = C
0(n; p; �; �) (the constant C 0 involves also the constant N

from the Besicovitch covering theorem). It follows from the estimate

u � �
�j+1 on Ej, i � k and (3.7) that

f0 < u < Æg �

1[
m=i+1

Em:
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Therefore, the estimate ��j � juj � �
�j+1 on Ej, (3.3) (i), (3.12) and

(3.3) (ii) implyZ
0<u<Æ

jrujp

up log 1=u �(log log 1=u)
dx �

�

1X
m=i+1

Z
Em

jrujp

up log 1=u �(log log 1=u)
dx

�

1X
l=0

3l+1iX
j=3li+1

Z
Ej

jrujp

up log 1=u �(log log 1=u)
dx

�

1X
l=0

C

�
�
log(3l+1i log(�))

�
3l+1iX

j=3li+1

Z
Ej

jrujp

up log 1=u
dx

�

1X
l=0

C

�(C(l + 1))
=1 :

�

Theorem 3.2. Assume that 1 � p < ~p � n. Let 
 � R
n be a

connected open set and let u 2 W 1;~p(
) be ~p-quasicontinuous. Suppose

that u > 0 a.e. and H
n�p(fu = 0g) > 0. Suppose further that a

function ~� satis�es (1.2) (i) and (ii). Then, for each 0 < Æ < e
�e
;

(3.13)

Z
0<u<Æ

jrujp

up ~�(log 1=u)
dx =1:

Proof. By Proposition 2.1 there exists  2 (0;1) such thatHn�p(Z) >

0, where

Z =
n
z 2 
 : lim sup

r!0

r
�� �

Z
B(z;r)

jf j dx < 

o
:

Recall that � = 1� p

~p
.

De�ne

�(t) =
~�(exp t)

exp t
:

From (1.2) (i) for ~� we obtain (3.3) (i); and clearlyZ
1

1

dt

�(t)
=

Z
1

1

exp t dt

~�(exp t)
=

Z
1

e

ds

~�(s)
=1:

Now Lemma 3.1 yields

1 =

Z
0<u<Æ

jrujp

up log 1=u �(log log 1=u)
dx =

Z
0<u<Æ

jrujp

up ~�(log 1=u)
dx:

�

The following elementary example shows that our assumption (1.2)

(ii) is essential in Theorem 3.2.
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Example 3.3. Let n; p 2 N , 
 =
��1
ep
;
1

ep

�n
and suppose that 1 �

p < n. Set u(x) =
q
x21 + : : :+ x2

p
. Clearly

H
n�p(fu = 0g) = H

n�p

�
f0gp �

��1
ep
;
1

ep

�n�p�
> 0:

Suppose that Z
1

1

ds

~�(s)
<1:

Then Z



jrujp

up ~�(log 1=u)
= 2n�p

Z
(�1=ep;1=ep)p

dx

jxjp ~�(log 1=jxj)
�

� C

Z 1=e

0

dt

t ~�(log 1=t)
= C

Z
1

1

ds

~�(s)
<1:

4. Hausdorff measure of f
�1(0)

We need the following elementary inequalities that can be viewed as

variants of Young's inequality.

Lemma 4.1. Let 	 : [1;1)! [1;1) be a di�erentiable concave func-

tion and set  (t) := 	0(t). Suppose that the function

t! t
n�1

 
�
log(e+ t)

�
is increasing. Then

(4.1)

c
n�1

 
�
log(e+ 1=a)

�
an�1	

�
log(e+ 1=a)

� � c
n
 
�
log(e+ 1=a)

�
ban	

n

n�1

�
log(e+ 1=a)

� + b
n�1

 
�
log(e+ b=c)

�
:

for every a > 0, b > 0 and c > 0.

Proof. If the �rst term on the right-hand side of (4.1) is greater or

equal to the left-hand side then the inequality is obvious. Otherwise

b �
c

a	
1

n�1

�
log(e+ 1=a)

� :
Since the function tn�1 

�
log(e + t)

�
is increasing,  is non-increasing

and 	 � 1; this implies

b
n�1

 
�
log(e + b=c)

�
�

�
c
n�1

an�1	
�
log(e + 1=a)

� 
�
log
�
e+

1

a	
1

n�1 (log(e+ 1=a))

��

�
c
n�1

an�1	
�
log(e + 1=a)

� �log(e+ 1=a)
�
:

�
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Lemma 4.2. Suppose that � : [1;1) ! (0;1) satis�es (1.2) for

n = 2. Then

(4.2) a �
a
2�
�
log(e+ a=c)

�
b

+ C
b

�
�
log(e+ b=c)

� :
for every a � 0, b > 0 and c > 0.

Proof. If the �rst term on the right-hand side of (4.2) is greater or

equal to the left-hand side then the inequality is obvious. Otherwise

(4.3) b � a �
�
log(e+ a=c)

�
:

From (1.2) (i) and (iv) it is easy to see that � increases at most like

a power function. Therefore �
�
log(e + t)

�
� C + Ct for every t > 0.

With the help of (1.2) (iv) this implies

(4.4) �
�
log
�
e+ t�

�
log(e+ t)

���
� C�

�
log(e+ t)

�
:

From (1.2) (iii), (4.3) and (4.4) we have

b

�
�
log(e+ b=c)

� � a �
�
log(e + a=c)

�
�
�
log
�
e + a=c�

�
log(e+ a=c)

��� � Ca:

�

Proof of Theorem 1.2. Suppose that f is not identically 0 and that

H
1(f�1(0)) > 0. We know that there is 0 < Æ < e

�e such that the

multiplicity of f is bounded almost everywhere on B(0; Æ) by constant

M > 0.

Set

(4.5) 	(t) = 1 +

Z
t

1

ds

�(s)
and  (t) = 	0(t) =

1

�(t)
for t � 1:

From (1.2) (ii) we know that limt!1	(t) =1 and therefore also

1 = lim
t!1

log	(t) = lim
t!1

Z
t

1

 (s) ds

	(s)
=

Z
1

1

ds

�(s)	(s)
:

Hence the function ~�(t) = �(t)	(t) satis�es assumptions (1.2) (i) and

(ii): We wish to apply Theorem 3.2 to jf j for p = n � 1: In order

to do this we still need to check that jf�1(0)j = 0: When n = 2 this

follows from Lemma 4.3 below and for n � 3 from formula (2.3) in [15];

notice that this result can be applied because (1.1) and (1.2) imply that

K
1=(n�1) 2 L

1
loc(
): We thus obtain from Theorem 3.2, for p = n � 1

and u = jf j, that

(4.6)

Z
0<jf j<Æ

jDf jn�1 
�
log(e + 1=jf j)

�
jf jn�1	

�
log(e+ 1=jf j)

� =1 :

Denote 
0 = 
 \ fjDf(x)j 6= 0g \ f0 < jf j < Æg. It is not diÆcult

to verify from (4.5) and (1.2) that 	 satis�es all the assumptions of
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Lemma 4.1. We use inequality (4.1) for a(x) = jf(x)j, b(x) = K(x)

and c(x) = jDf(x)j to obtain the estimate

(4.7)

Z

0

jDf jn�1 
�
log(e+ 1=jf j)

�
jf jn�1	

�
log(e+ 1=jf j)

� �

�

Z

0

jDf jn 
�
log(e + 1=jf j)

�
Kjf jn	

n

n�1

�
log(e + 1=jf j)

� +
Z

0

K
n�1

 
�
log(e+K=jDf j)

�
:

Since  is non-increasing, part (iv) of (1.2) and our integrability as-

sumptions give us

(4.8)

Z

0

K
n�1

 
�
log(e +K=jDf j)

�
�

�

Z
K�jDf js=(n�1)

+

Z
K>jDf js=(n�1)

�  (1)

Z



jDf js +

Z



K
n�1

 
�
log(e+K

s�n+1
s )

�

� C

Z



jDf js + C

Z



K
n�1

 
�
log(e +K)

�
� C:

Using the distortion inequality, (2.1) and lims!1	(s) = 1 we con-

clude that

(4.9)

Z

0

jDf jn 
�
log(e + 1=jf j)

�
Kjf jn	

n

n�1

�
log(e + 1=jf j)

� �

�

Z

0

Jf (x) 
�
log(e+ 1=jf j)

�
jf jn	

n

n�1

�
log(e+ 1=jf j)

�

� CM

Z
B(0;Æ)

 
�
log(e + 1=jyj)

�
jyjn	

n

n�1

�
log(e+ 1=jyj)

�dy

= C

Z
Æ

0

 
�
log(e+ 1=t)

�
t	

n

n�1

�
log(e + 1=t)

�dt
� C

�
	�

1
n�1

�
log(e + 1=Æ)

�
� lim

t!0+
	�

1
n�1

�
log(e+ 1=t)

��

� C:

Combining (4.7), (4.8) and (4.9) we arrive atZ
0<jf j<Æ

jDf jn�1 
�
log(e+ 1=jf j)

�
jf jn�1	

�
log(e + 1=jf j)

� =

=

Z

0

jDf jn�1 
�
log(e+ 1=jf j)

�
jf jn�1	

�
log(e + 1=jf j)

� � C:

This clearly contradicts (4.6). �

We close this section by verifying the following result that was em-

ployed in the proof above.
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Lemma 4.3. Suppose that n = 2 and that f is as in Theorem 1.2.

Then jf�1(0)j = 0:

Proof. By Lemma 5.1 in [11] we may �nd a (radial) function u 2

W
1;n
0 (B(0; 1)) so that limy!0 u(y) =1 andZ

B(0;1)

jruj2�
�
log(e+ jruj)

�
<1:

Therefore we can �nd a decreasing sequence of numbers Rk & 0 and

sequence of functions uk 2 W
1;n
0 (B(0; Rk)) so that uk � 1 onB(0; Rk+1)

and

(4.10) lim
k!1

Z
B(0;Rk)

jrukj
2�
�
log(e+ jrukj)

�
= 0:

Since f is quasi-light, we may assume that 
 is bounded, f�1(0) is

compact and there exists Æ > 0 such that f�1(B(0; Æ)) �� 
 (cf. [25,

Theorem 3.1]).

For k 2 N we write

Bk = B(0; Rk); Ak = f
�1
�
Bk nBk+1

�
and ~Ak = Ak \ fjDf j 6= 0g:

Fix k 2 N large and denote v = uk Æ f . If Rk < Æ; then the function v

has zero boundary values and thus we may use the Sobolev inequality

for v. Since uk(0) � 1 on Bk+1 we obtain from the Sobolev inequality

and (4.2) for a = jrvj, b = K and c = jDf j that

(4.11) jf�1(0)j �

Z



juk Æ f j � C

Z



jrvj =

Z
~Ak

jrvj �

�

Z
~Ak

jrvj2

K
�
�
log(e + jrvj=jDf j)

�
+ C

Z
~Ak

K

�
�
log(e+K=jDf j)

�:
Analogously to (4.8) we obtain

(4.12)

Z
~Ak

K

�
�
log(e+K=jDf j)

� �

� C

Z
~Ak

jDf js + C

Z
~Ak

K

�
�
log(e+K)

� :
The right-hand side of (4.12) tends to zero when k ! 1 because the

sets Ak are clearly pairwise disjoint. For k large enough, the multiplic-

ity of f is essentially bounded by M on Bk. Therefore we can use the

distortion inequality, (2.1) and (4.10) to obtain

(4.13)

Z
~Ak

jrvj2

K
�
�
log(e+ jrvj=jDf j)

�
�

�

Z
~Ak

j(ruk) Æ f j
2
Jf�

�
log(e+ j(ruk) Æ f j)

�

�M

Z
Bk

jrukj
2�
�
log(e+ jrukj)

�
!

k!1

0:
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From (4.11), (4.12) and (4.13) we obtain jf�1(0)j = 0. �

5. Openness and discreteness

In this section we prove discreteness and openness of a mapping

under a weaker integrability condition on Df than Df 2 L
n. We use

an Orlicz-type condition that was introduced to this setting in [16], [8],

and [14].

Theorem 5.1. Let 
 � R
n be a connected open set and suppose that

n� 1 < p � n. Let f 2 W
1;p
loc (
;R

n) be a continuous, sense-preserving

mapping that has essentially bounded multiplicity. Suppose that f is a

mapping of �nite distortion K so that K satis�es (1.1) with a function

� that satis�es (1.2). Then f is either constant or both discrete and

open.

Proof. Any sense-preserving, light and continuous mapping is both dis-

crete and open, see [24] or [23, Lemma 5.6]. Hence it remains to show

that f is light. However, by Theorem 1.2, H1(f�1(y)) = 0 for each

y 2 Rn , which easily implies lightness. �

Now let us state the main result of our paper. Theorem 1.1 follows

from Theorem 5.2 by choosing 	(t) = t
n.

Theorem 5.2. Let 
 � R
n be a connected open set. Let 	 be a non-

negative, strictly increasing and continuously di�erentiable function on

[0;1) satisfying the conditionsZ
1

1

	(t)

t1+n
dt =1; lim inf

t!1

t	0(t)

	(t)
> s

with s > n � 1. Suppose that f is a quasi-light mapping of �nite

distortion K that satis�es (1.1) with a function � that satis�es (1.2),

and suppose further that 	(Df) 2 L1
loc(
): Then f is discrete and open.

Proof. Using results from [9] (or [5],[16]) and [12] we may obtain analo-

gously to [7, Theorem 5 and 7] that f is sense-preserving, and that each

point x0 2 
 is contained in a subdomain 
00 � 
 such that N(f;
00; �)

is essentially bounded. Thus we may use Theorem 5.1 to show that f

is open and discrete on 
00. Since these properties are local, the proof

is complete. �

Let us close the paper by commenting on the sharpness of our as-

sumptions. As discussed in the introduction, our assumption on K is

optimal. Moreover, an example constructed in [14] gives us, given 	

with Z
1

1

	(t)

t1+n
dt <1;

a non-discrete, non-open, quasi-light mapping of �nite distortion K so

that K 2 L
p(
) for all p; in particular for p = n � 1; and so that
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	(Df) is in L1
loc(
): Thus the integrability assumption on jDf j is also

optimal.
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