ON THE CONICAL DENSITY PROPERTIES OF BOREL
MEASURES

VILLE SUOMALA

ABSTRACT. We compare conical density properties and spherical density
properties for general Borel measures on R™. As consequence, we obtain
results for packing and Hausdorff measures Py, and Hp, provided that the
gauge function A satisfies certain conditions.

One consequence of our general results is the following: Let m,n € N,
0<s<m<n,0<n<1,andsupposethat V is an m-dimensional linear
subspace of R”. Let u be either the s-dimensional Hausdorff measure or
the s-dimensional packing measure restricted to a set A with p (A) < co.
Then for p-almost every z € R”, there is § € V N .S™ ! such that

limui)nf'r*sp. (B(z,7)N H (z,6,n)) =0,
T

where H (z,0,n) ={y e R* : (y —z) -0 > nly — z|}.

1. INTRODUCTION

In this note we study the following question: Suppose that u is a measure
on R* and h: |0, 79[ — ]0, 00[ is a function such that for a typical point z
the measures u (B (z,7;)) of some small balls B (z,r;) behave roughly like
h(r;). What can be said about measures in cones?

Let us begin with some notation. Let u be a measure on R*, A C R”,
and h: ]0,7o[ — ]0, 00[. The upper and lower p-densities of the set A at z
with respect to h are defined by

Dy (u, A,z) = liminfp (B (z,r) N A) /R (r),

Dy (k, A,T) = lim sup (B(z,r)NA)/h(r),
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where B (z,r) is the closed ball B(z,r) = {y € R* : [y — z| < r}. Open
balls will be denoted by U (z, r) and spheres by S (z,7) = B(z,7)\U (z, r).
When A = R", we abbreviate D, (u, R*,z) = D, (i, z) and similarly with
upper densities. Often h(r) = r° for some 0 < s < n. In this case we use
the notation D, (u, A, z) for D), (1, A, z) and so on. For example

D, (u,z) = liminfu (B (z,r)) /r°.

Suppose that m,n € N are such that m < m. The collection of m-
dimensional linear subspaces of R is denoted by G (n, m). A natural metric
on G(n,m) is given by

a(V,\W)=I[PF —-Fyl V,WeG(n,m),

where Py is the orthogonal projection onto the subspace V' and [|-|| is the
usual operator norm for linear mappings. We also use the notation proj, for
the projections onto the coordinate axis. We will make use of the following
equality, see [16, pp. 17-20]:

(1.1) d(V,W) =sup{d(z,W):z € VNnS* '},

where S™! = 5(0,1) and on the right hand side d(y, A) stands for the
distance between the vector y and the set A. Let <,.,, be the unique
Radon probability measure on G (n,m) which is invariant with respect to
the orthogonal group O (n), see [14, Chapter 3]. Recall that Borel regular
and locally finite measures are called Radon measures.

Letz e R, VeG(nm),0ecS ' Lg={th:t>0},and 0<n <1
We define

X(z,Vin)={yeR*:d(y—z,V) <nly —zl[},
X*(z,6,m) ={y €R” :d(y — z, Ly) < nly —z|},
H(z,0,n)={y€R":(y—2z) -0 >nly—z[},
H(z,0)=H(z,0,0)={yeR": (y—=z)-6 > 0}.

One easily verifies the following equality

H(z,0,n) = X+ <:z:,9, (1- n2)1/2) .

The H notation is often used for cones that are almost half-spaces, whereas
X* stands usually for a very narrow cone.
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Let h: ]0,7[ — ]0,00[ with lim, A (r) = 0. Let #H;, be the generalized
Hausdorff measure which is constructed using the gauge function A, see [14,
4.9]. If A C R” has finite H; measure, then for H-almost every z € A

(1.2) Dy, (Hp, A,z) <limsuph (2r) /h(r).
710

The corresponding result for the spherical density of the generalized pack-
ing measure Py, is

(1.3) D, (Pr, A, z) < lim;uph(?r) /h(r),

which is true for P,-almost every z € A provided that P, (A) < co. In-
equalities (1.2) and (1.3) can be proved with a similar argument as in the
familiar case h (r) = r°, see [14, theorems 6.2, 6.10]. The definition of P,
can be found for example in [3, definition 2.2].

We will now explain some conical density results that are known for
Hausdorff measures. We begin with the following theorem on lower densi-
ties. If u is a measure, the notation ul A stands for the restriction measure,
that is ulL A(B) = u (AN B).

Theorem 1.1. Assume that 0 < s < n and let ‘H® denote the s-
dimenstonal Hausdorff measure. Let A C R* and H*(A) < oo.

(1) If n > 0, then for H*-almost all z € A, there exists § = 0 (z) € S™*
such that D, (H°L A, H(z,6,n),z) = 0.

(2) If0< s <1and @ € S, then D,(H°L A, H(z,0),z) = 0 for
H?-almost all z € A.

(3) If n — 1< s <n, then (1) holds also with the value n = 0.

Marstrand [9, pp. 293-297] proved Theorem 1.1 in R? and his method
can be generalized to higher dimensions, see also [4, pp. 56-61]. Besicov-
itch [1, Theorem 2] had earlier proved (2) in R. He has also shown [2,
Theorem 13] that if A C R? is purely l-unrectifiable and 6 € S', then
D, (H'L A H(z,0),z) = 0 for H'-almost all z € A. Gillis [6] had earlier
proved this for cones H (z,0,n), when n > 0. Mattila [11] has studied
h-densities of singular measures in R and obtained as a corollary a result
somewhat similar to (2) [11, Corollary 9].

Theorem 1.1 (1) does not hold for all # € S™ !, see for example 2.5.
Recently Lorent [8] showed that one can choose directions 8 in (1) to lie
on a fixed (n — 1)-dimensional linear subspace of R* provided that 0 <
s < m —1 or that A is purely (n — 1)-unrectifiable. In Section 2 we shall



4 VILLE SUOMALA

proceed in this direction by showing that for all m € N, m < n, the
following is true: If A is H° measurable with H®(A) < oo and either A is
purely m-unrectifiable or 0 < s < m, then the directions 6 in (1) can be
chosen to lie on a fixed m-dimensional linear subspace. We will also prove
the corresponding result for the s-dimensional packing measure P° when
0 < s < m. Moreover, our results can be applied to many other measures
with the property D, (u,z) < oo for u-almost all z € R™, see Theorems
2.1 and 2.2. One could also modify Marstrands methods from [9] to prove
claims (1) and (2) of Theorem 1.1 for packing measures P°.

Concerning upper conical densities for Hausdorff measures the funda-
mental theorem is as follows:

Theorem 1.2. Suppose that meN, m<s<n,0<n<1, and ACR"
with H* (A) < oo.
(1) If V€ G(n,n —m), then

D,(H'LA X(z,V,n),z) >c=c(n,m,n) >0

for He-almost all ¢ € A.
(2) If above m =n—1 and § € S™ !, then

D, (’HSI_A,X+ (:B,G,n),:r:) >c=c(n,sn) >0
for H*-almost all z € A.

The preceding theorem is also due to Marstrand [9, Theorem IX] in R?.
Salli [16] generalized Marstrands result to R® and proved also a correspond-
ing result for cones generated by open sets G C G(n,m) or S C S™ L.
Mattila [12, Theorem 3.3] went even further by proving a very general up-
per density theorem for Hausdorff measures. Besicovitch [1, Theorem 2]
has shown that if 0 < s < 1 and A C R is H° measurable with H* (4) < oo,
then D, (H°L A,]z,00[,z) = D, (H°L A,]—00,z[,z) = 1 for H*-almost all
z € A

There are also upper conical density results for purely m-unrectifiable
sets. Besicovitch showed in [2] that if A C R? is purely 1-unrectifiable,
then the upper 1-density of the set in opposite angles is strictly positive
H'-almost everywhere in the set A. Federer [5, Theorem 3.3.17] gave a
generalization of this result. See also [14, Corollary 15.16].

In Section 3 we shall discuss how Theorem 1.2 can be generalized for
packing measures, or more generally, for measures y such that D, (u,z) is
finite u-almost everywhere, with a suitable function A.
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The above mentioned conical density theorems have been used in various
different ways. Let us briefly explain some of them. Marstrand ([9] and [10])
used Theorem 1.1 to prove the fairly deep fact that for non-integral values
of s there are no Radon measures u so that the positive and finite density,
lim, o (B (z,7)) /r°, would exist in a set of positive 4 measure. Mattila
[12] used his upper density result to find an upper bound for the dimension
of strongly porous sets. Theorem 1.1 (1) and Lorent’s [8] generalization
of it can also be used to give some light on the problem of characterizing
removable sets for harmonic functions, see [15] and [8]. Note also that
Theorem 1.1 (1) is equivalent to the following statement: Denote p =
H* L A, where H*(A) < co. Then for p-almost every z, there is a tangent
measure of x4 at z which is supported on one side of some (n — 1)-plane
V € G(n,n —1). This property is sometimes very useful, see for example
[14].

2. LOWER DENSITIES
The main results of this section are stated in the following two theorems.

Theorem 2.1. Let m,n € N withm < n. Assume that h: 0,79 — |0, 00|
fulfills the following three conditions:

(h1) IEJI}th (r)=0,
(h2) lriﬂ‘;lh’ (r)/r™ = oo,

(h3)  h(ri)+h(r2) > h ((r{” + r;”)l/"‘) , when rT* + 13" < g

Suppose that V € G(n,m), n >0 and u is a Borel measure on R* with
D, (u,z) < oo for p-almost all z € R*. Then for u-almost all z € R*,
there 1s 6 = 6 (z) € VN S™! such that Dy, (u, H (z,6,m),z) = 0.

Theorem 2.2. Assume that h: |0,7] — ]0, 00[ fulfills the assumptions
(h1)—~(h3) of Theorem 2.1 with m = 1. If0 € S™ ! and u is a Borel
measure on R* with D, (u,z) < oo for u-almost all x € R*, then
D, (u,H(z,0),z) =0 for u-almost all z € R".

Before the proofs, let us make some remarks concerning Theorems 2.1
and 2.2

If0<s<m,h(r)=r" and u = H°L A, where A is a subset of R” with
H*(A) < oo, then the assumptions of Theorem 2.1 are clearly satisfied,
recall (1.2). If in addition s < 1, then the assumptions of Theorem 2.2 are
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valid. Above one can also replace Hausdorff measures by packing measures.
So we have:

Corollary 2.3. Let u be either the s-dimensional Hausdorff measure
or the s-dimensional packing measure and let A C R* with u(A) < .

(1) Ifn>0,0<s<m, and V € G(n,m), then for u-almost all z € A,
there is 6 = 6 (z) € VN S™ ! such that D, (ul A, H(z,0,7n),z) =0.

(2) If0<s<1and@c S, then D,(ul_ A, H(z,0),z) = 0 for u-
almost all z € A.

There are also many other functions than »° to which Theorems 2.1
and 2.2 can be applied. For example h (r) = ¢ log (r~!) fulfills (h1)-(h3)
when 0 < s < m. Using density bounds (1.2) and (1.3), we see that the
statements of Corollary 2.3 remain true if we let u to be H; or P, provided
that A fulfills (h1)—(h3) (with m =1 in (2)).

If in Theorem 2.1 or 2.2 also D;, (u, z) > 0 for u-almost every z, then the
densities Dy (u, H (z,6,7), ) can be replaced by D, (H (z,6,7),z), where

D, (H(z,6,n),z) = liminf u (H (z,6,n) " B (z,7)) /u(B (z,7))

is the conical density with respect to u.

It remains open, if assertion (3) of Theorem 1.1 is valid for packing
measures. However, if we know that the assumptions of Theorem 2.1 hold,
Dy, (p,z) < oo for p-almost every z € R*, and

(2.1) liﬂf)l limsupa' "h(ar)/h(r) =0,
@ 710

then one can prove, with the help of Theorem 2.1 and a generalization
of [9, Lemma 29], that for u-almost every z € R™, there is § € S™! so
that D;, (u, H (z,0),z) = 0. The condition (2.1) is valid for example if
n—1<s<mnandh(r)=rslog(r?).

Suppose that h is differentiable and satisfies (h1). If the derivative A’
is non-increasing and lim, o A’ (7) = 00, then (h2) and (h3) are valid with
m = 1.

Condition (h3) may be weakened a little bit. It suffices to assume that
there is a constant ¢ > 0 such that

1/m
(2.2) Zh(ri) >ch ((Zr?) ) , when Zr:" <rf.

This is immediate due to the following lemma.
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Lemma 2.4. If h: 10, 7] — ]0, 00| fulfills inequality (2.2), then there is
a function h that satisfies (h3) and inequalities ch < h < h.

Proof. Define h(r) = inf{>3;h(r;) : ;™ = r™}. Now the desired
properties clearly hold for A. O

Assumptions (h1) and (h2) for the function A in Theorems 2.1 and 2.2
are well justified but it is natural to ask whether assumption (h3), or (2.2),
is really needed. In example 2.13 we shall construct a Radon measure u
and a function A which show that assumptions (h1) and (h2) alone are not
enough to guarantee the assertions of Theorems 2.1 and 2.2. Of course, this
does not exclude the possibility that assumption (h3) could be weakened
and as P. Mattila pointed out to me, it is an interesting question whether
it can be replaced by a doubling condition on h, see Theorem 3.1.

Theorem 2.1 is in a sense sharp for Hausdorff measures. This is shown
by the following simple example.

Ezample 2.5. The assertion of Theorem 2.1 is not valid for measures H°L A,
H* (A) < 0o, when s > m: Consider a standard Cantor set C C R*™™ such
that 0 < H* ™ (C) < 0. Let A=U(0,1)NR™ xC CR*, p = H'L A,
and 0 <7 < 1. Then D, (u, H (z,0,n),z) >0forallz € A, 0 c VNS,
where V = {z € R* : proj,, ., £ = ... = proj, ¢ = 0} € G (n, m).

We shall next present some basic lemmas. The following Vitali type
covering theorem will be used a few times. It follows from [5, Corollary
2.8.15].

Lemma 2.6. Suppose that u is a locally finite Borel measure on R*,
A CR"*, and B s a collection of closed balls such that for all T € A we
have

inf{r : B(z,r) € B} =0.
Then there are disjoint balls B; € B so that u(A\ U; B;) =0.
Lemma 2.7. Assume that u is a Borel measure on R*, A C R" 15 a

Borel set, and h: 10,7 — |0, 00[. If for pu-almost every z € A, there is
r > 0 such that u (B (z,r)) < 00, then for u-almost all z € A

(1) gh (,LL, A1 $) = gh (:ui $),
(2) Dy, (,LL, A, $) =Dy, (/J’: $)
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Proof. We prove (1). Claim (2) can be established similarly. Because
u-almost all of A is contained in a countable union of open balls, each of
finite 4 measure, we can assume that u is finite.

Clearly D;, (u, A,z) < D;, (1, z) for all z € A. Lemma 2.6 yields that

lim p (B (z,m) N A) /(B (z,7)) =1
for u-almost every z € A. Take such a point z and fix radii 7; | 0 such that
w(B(z,r;)NA)/h(r;) — D; (i, A,z) as 1 — oo. Now

p(B(z,r:)) _ p(Bz,r)NA) w(B(z 7))
h(r;) h(r;) u(B(z,r;)NA)

as © — oo and thus D, (u, A,z) > D, (i, z). O

Proof of Theorem 2.2. We may assume that § = e;. Let o, 8 € |0, 00]
and define

(23) A={zeR':u(B(z,r)NH(z,0)) > ah(r) for 0 < r < B}.

B Qh (,U., A: $)

We will begin by showing that A is a Borel set. Let us state this as a lemma
for later use.

Lemma 2.8. A 1s a Borel set.

Proof of Lemma 2.8. Using assumptions (h1l) and (h3), it is easily seen
that if 0 <7 <7y and ¢; T r as 1 — oo, then

liminfh (g;) > h(r).
11— 00
Using this one obtains

A= () {zeR" :pu(U(z,9)NH(z,0)) > ah(g)}.
0<g<B
q€Q

Fix ¢ > 0. It remains to show that the mapping
frz=pU(z,9)NH (z,0))
is lower semicontinuous. Given z € R* and € > 0, we can choose § > 0
such that
p{y €U (z,q) N H (2,6):d(y,0(U (z,q) N H (z,6))) > 6}) > f (z) —&.
If [y —z| <4, then clearly f(y) > f(z) — ¢ and the lemma follows. O

We continue to prove Theorem 2.2. Suppose that F' C A is closed. It
suffices to show that u (F) = 0. Assume on the contrary that x (F') > 0. By
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Lemma 2.7 (1), we find z € F such that D, (u, F,z) = D}, (4,z) = ¢ < 0.
Let e < a4 ' (2c+1)"". Fix 0 < r < 7o such that u (B (z,2r)) < co and

(1—¢)ch(r) < u(B(a,r) N F) < (B (z,1) < (1+¢)ch(r),
whence
(2.4) w(B(z,7)\ F)<2ceh(r).

Let v > 0. According to assumption (h2), there is n > 0 such that
r < vh(r), whenever 0 < r < 7. We can now apply Lemma 2.6 to the
collection

{B(y,p):y € FNB(z,r), p < min{r, §,n}}
to find disjoint balls Bj, ..., By from this collection such that

(2.5) u(B(m,r)ﬂF\GBi><eh(r).

i=1
We may assume that z € J; B;. Reducing v enough, we are led to the
estimate

iri < ’yih(n) < 'ya_liu(Bi NH(z;,0)) <vyo'wu(B(z,2r))

=1 =1 =1

(2.6) < r/8.
We now choose points z; € B; N F for 1 = 1,..., N such that

proj, (z;) = sup{proj, (y) : y € B; N F}.

Next we select recursively points yi, s, ..., ¥ € {z;} and corresponding
radii 41, 0, - . ., 0;. Let U; denote the open ball that has double radius but
same centre as B;. We take y; € {z;}", which maximizes proj, (z;), and
define §; = max{0,r — |z — y;|}. If points yi,...,yr and radii 6y,..., 0k
have been selected, then we let 0 < a; < |z — yx| — dx to be the greatest
radius such that S (z,ax) NUY, U; = 0 (If such an a, does not exist, then
we finish our selection). We now choose .1 € {z;} N B(z,a;) which
maximizes proj, (z;) and define 01 = ax — | — Yr+1|- When this selection
terminates, we have defined points yi,...,y; and radii é;,...,9d; for some
I < N. As a result of the above construction, and with the help of (2.6),
we get

N l 1
r<> 4ri+) 20, <r/24+2) 0.
=1

i=1 =1
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For technical reasons, we make numbers J; small enough to satisfy

l

(2.7) Y 6i=r/4
=1
It also follows from the construction that forallz=1,...,1
N
(2.8) B (yi, 51) N H(yi, 9) NFN U B; = 0.

=
We are now ready to estimate the measure of B (z,r)\ F. Using the fact
that the half balls B (y;,d;) N H (y;,0) C B(z,r) are disjoint, (2.8), (2.3),
(2.5), (2.7), (h3), and the definition of €, we deduce

u(B(z,r)\ F)

> iu(B(yi,ai)mH(yi,e))—u(B(m,r)mF\GBi)

> a3 h(E) - eh(r) > ah(r/4) ~eh(r)

> (af4—¢€) h(r)>2ceh(r).

This contradicts with (2.4). O

Several lemmas are needed for the proof of Theorem 2.1. Before them,
let us define one more conical object. If V € G(n,m), z € R*, a > 0, and
r > 0, then

Yy(z,a,r) ={y €R" : [Pys (y—z)| < a(r— |Py (y — 2)[)}
It follows readily from the above definition that if y € Yy (z, @, 7), then
(2.9) Yv(z+ Py (y—2),0,|Py(y —2)|) C Yo (z,0,7),
and if y € {z} + V with |y — z| < r, then
(2.10) Yv (y,a,r—ly—z|) CYv (z,0,7).

Lemma 2.9. Let n €]0,1[, V€ G(n,m), z e R*, y e {z} + S(0,7) NV,
and 8 = (z —y) /|lz — y|, then

B (y,nz'r) NH(y,6,n) CYy <a:,n1 (1 — 772)1/2 ,r) )

Proof. In this proof we denote proj, (z) by z,. We may assume without
loss of generality that r =1, y = 0, z = e; = (1,0,...,0), and also that
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V={z:zmy1=...=z, =0} Let 2 € H(y,0,n), then z -0 = z; > n|z|,
and it follows that z2n=2 (1 — n?) > > 22. Using this, we deduce
1=2

n

1/2 o 12
(2.11)  |Pyi(z—1x)| = ( > zf) < (zfn_z (1 —772) —sz) :

1=m-+1 =2

We also have

m 1/2
(2.12) r—|Py(z—z)=1- ((1—z1)2+2z§) :

=2
If |z| < n?, then a straightforward calculation shows that
(2.13)

1— 2 m 1/2 1 — 2\1/2 m 1/2
(20 -5) <@ (1 (a-ap+52) ).
1=2

1=2

The lemma follows from (2.11)—(2.13). O

Lemma 2.10. Suppose that V € G (n,m), F C R" is a closed set with
z € F, and H™(Py (FNYy(z,,7))) = 0. Then there is a disjoint
collection {Y; = Yy (z;, o, ;) }i such that Y-, r™ > 10~™r™, and for all 1
we have Y; C Yy (z,a,r), and further

(2.14) Fn{zeY,:|z—z;| <r} =0,
(2.15) Fn{zeY;:|z—z;| =7} #0.

Proof. We assume that z € V. We will prove that ify € VN B(z,7/2)\
P, (FNYy(z,a,1)), then there is a cone Yy (2,¢,6) C Yy (z,, ) which
satisfies conditions (2.14) and (2.15) such that y € Py (Yy (z,,d)). The
assertion follows then from this by applying the 57r-covering theorem [14,
Theorem 2.1] to the projections P (Yy (z, o, §)).

Fixye VNB(z,7/2)\ Py (FNYy(z,a,7)). Then there exists a radius
0 <4 < |y — z| such that FNintY (y,,6) = 0 but F N oYy (y,a,8) # 0.
Take z € F N 8Yy (y, @, d) such that

|Py (2 —y)| =min{|Py (2 —y)|: 2 € FNOYy (y,a,0)}.

Let
Y:Yv(y+PvL(Z—y),a,‘Pv(Z—y)D-
Now y € Py (Y) and by (2.9), (2.10), we get

Y CY(y,0,6) CYy(z,a,7).
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Because z € FN{w € Y : lw— (y+ Py (z—y))| = r}, and intY C
int Yy (y, @, §), we conclude that (2.14) and (2.15) are valid for Y. This
completes the proof. O

The next lemma follows directly from Lemmas 2.9 and 2.10.

Lemma 2.11. Let V € G (n,m), n € ]0,1], and suppose that F C R* is
a closed set such that ¢ € F' and

™ (PV (FﬂYV (:L',n_l (1-m)" r))) —0.
Then there are disjoint cones
B (z;,7;) N H (z;,6;,m) CYy <a:, ! (1 — 172)1/2 , r) \F
such that z; € F, 6; € VN S™! for all 1 and ;™ > 10~ n*mr™.
Proof of Theorem 2.1. We can assume, as in Lemma 2.7, that u is finite.

We shall first prove that for all numbers o, 7 € |0,1[, and 0 < 8 < 7o, the
set

A={z :p(B(z,7)NH(z,0,n)) > ah(r)
when 0 <r <BanddecVnS" '}

is of u measure zero and then show how this implies our theorem.

By modifying the proof of Lemma 2.8, it is rather easy to see that A is
a Borel set. Hence it is sufficient to show that if FF C A is closed, then
u(F) = 0. Assume on the contrary that u (F) > 0. Using Lemma 2.7 (1),
we find z € F such that D, (4, F,z) = D, (4,z) = ¢ < oo. For technical
reasons, we assume that 10 ™n3" = 2~ */™ for some k € N. By iteration of
assumption (h3), we obtain a constant ¢’ > 0 that depends only on 7 and
m (one can take ¢’ = 27%) such that

(2.16) h (10_'”773'"7“) > h(r)
whenever 7 < 7. Let 0 < ¢ < ac’/(2¢). Fix 0 < r < @ such that
c(l—e)h(r)<u(B(z,r)NF)<u(B(z,r)) <c(l+e)h(r)
then also
(2.17) w(B(z,r)\ F)<2ech(r).
Our next step is to prove that

(2.18) H™(B(z,r)NF)=0.
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Let v > 0. Using (h2), and the 5r-covering theorem [14, Theorem 2.1], it
is possible to select a collection of disjoint balls,
{Bi=B(z;,7:)};, zi€ B(z,r)NF, r* <5 ™min{l,vyh(r;)},
such that F C U; B (z;, 57;). We obtain

Do (Br)" <y h(r) <oy p(Bi) <alyu(B(z,r+1).

Since the right hand side of the above inequality tends to zero as v | 0,
this yields (2.18).
Since a projection can not increase Hausdorff measure, we observe that

(2.19) H™ (Py (B (z,7) N F)) = 0.

Using the inclusion
Yy <w nt(1-n?)" ,m"> C B(z,r)

combined with Lemma 2.11, we find disjoint cones B (z;, ;)N H (z;,6;,1) C
B(z,r)\ F such that z; € F, 6§, € V for all ¢, and

Z,’.;(n — 107m,’73m,rm.

Using the above fact, the definition of A, (h3), (2.16), and our choice of
€, we get

w(B (&, r)\F)> > u(B (e, ) 0 H (22,0, 7))

=1

> a i h(r)) > ah (1O_mn3mr)
im1

>ach(r)>2ech(r).

This contradicts with (2.17) and thus u (A) = 0.

Fix n > 0 and o; > 0 such that a; | 0 as © — oco. We can now find, for
u-almost every z € R, directions 6; € V N S™!, and numbers 7; > 0 such
that ; | 0 as 2 — 00, and

(2.20) w(B(z,m;)NH (z,0;,n/2)) < a;h(r;)

for all 2.
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Suppose that (2.20) holds for z. By going to a subsequence, we may as-
sume that §; — 6 € VNS™ ! as i — oo and that H (z,0,7n) C H (z,6;,1/2)
for all 1. Inequality (2.20) yields

w(B(z,r;)NH(z,6,n))/h(r;)) <o, — 0,

as ¢+ — o0o. This completes the proof. O

The last theorem of this section deals with purely m-unrectifiable sets.
As mentioned before, it has been proved by Gillis [6] when n = 2 and
by Lorent [8] when m = n — 1. We recall that a set A C R" is purely
m-unrectifiable if H™ (AN E) = 0 whenever F is a Lipschitz image of R™.

Theorem 2.12. Let m,n € N such that m < n and suppose that A C
R™ is purely m-unrectifiable with H™ (A) < oco. Ifn > 0 and V €
G (n,m), then for H™-almost allz € F, there is § € VN S™ ! such that
D, (H"L_A,H(z,0,7n),z)=0.

Ifm =1 and § € S™*, then D, (H'L A ,H(z,0,n),z) = 0 for u-
almost all z € R".

Proof. The proof is based on our proof of Theorem 2.1 together with
the Besicovitch-Federer projection theorem, see for example [14, Theorem
18.1], which says that

(2.21) H™ (Py (A)) = 0

for v, m-almost all V' € G (n, m).

By the Borel regularity of H™, we can assume that A is a Borel set.
Then the assumptions of Theorem 2.1 are valid for H™L A and h (r) = r™,
except for (h2). But assumption (h2) in Theorem 2.1 was only used to
obtain (2.19) and if V' € G (n,m) is such that (2.21) holds, then also (2.19)
holds and the proof of Theorem 2.1 gives the assertion for V.

Now fix arbitrary V € G (n,m). According to the above facts, we can
find, for p-almost every z € R*, m-planes V; € G (n,m), directions 6; €
V; N S™ !, and radii r; > 0 such that

H™ (B (ar:,ri) n H(-'L',ez,"?/2) OA) /Tf —0,

r; 1 0,and V; - V in G(n,m) as 1 — oo. Using (1.1), we can find
a subsequence of (6;);, which we denote by the same symbols, such that
6, - 6 € VN S*! and H(z,0,n) C H(z,0;,n/2) for all <. The first
assertion of the theorem follows.
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The second statement can be verified by slightly modifying the argument.
We omit the details, see also the discussion below. O

As noted in the introduction, Besicovitch [2, Theorem 13| proved that
when m = 1 and n = 2, then one can take 7 = 0 in Theorem 2.12. His
method can be modified to prove that this is true for all n € N. It remains
unsolved, if this is true for m > 1.

We shall finish this section by the example that was mentioned earlier in
this section. We perform a modification of a construction that has turned
out to be useful in many connections related to fractal sets and measures,
see for example [13, Example 4.4] or [7, Example 3.1].

Ezample 2.13. There exists a nondecreasing function A: |0,1] — ]0, 00|
which fulfills conditions (h1) and (h2) of Theorem 2.1 and a Radon measure
w on R™ such that for all # € S™!, 0 < n < 1, and for u-almost every
z € R?,

(2.22) Dy, (p,z) < 00,
(223) Qh (,U., H (LB, 61 77) ) LB) > c,
where ¢ > 0 is a constant depending on 7.
Construction. We assume that n = 1. A similar construction works
also in higher dimensions.

Define numbers g; and [;, for k = 2, 3,4, ... by setting g = 1 — 1/k? and
I, = k8. It is a simple matter to check that

(2.24) [Ta >0,
k=2
(2.25) 1— g, = ki >

We also define numbers 7, and Ry for £k € N by setting Ry = 1, r, =
Ry /lk+1, and Ryiq1 = 7%/lks1 = Ry /1. By these definitions

(2.26) ly--- LR =1.

Let I;; = [0,1] and Q11 = [1/2 —71/2,1/2 + 71 /2]. Divide Q1 into I,
closed subintervals of equal length and denote them by I,,...,I5;,. For
every k = 1,...,1s, let Q2 be the closed interval with same centre as I
and with length r,. Proceed the construction by dividing each Q.. into I3
closed subintervals with equal length and so on. For every k = 2, 3,4,..., we
get Iy - - -1, closed intervals I ; and Qi ; with lengths Ry, and 7, respectively.
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We now define h and . For k € N let

(r) r,i/2 if r, <7 < Ry,
h(r) =
7'1/2 if Rk—|—1 <r< Tk.

The measure y is defined on the set

oo la-li
A=) U Qs
k=2 1=1

by repeated subdivision, that is u (AN Qi) = (I2-- -lk)_l. This measure
clearly extends to a Radon probability measure on R.
Clearly lim, o A (r) = 0 and further

limui)nfh (r) /r = lim re? /Ry = Jim (k1 BRe)
= lim by /15 = lim (k) / (k + 1)° = oo.
k—o0 k—oo

Thus h satisfies (h1) and (h2). By (2.26) and the definition of u, we deduce
that if z € A, then

p(B(z,r)) _ . £(B(z,Re)) _3(l---l) "
TRy SRRy S R

lim inf =3< 00
710
and so also (2.22) is valid.

It remains to verify (2.23). For every [ € N we define a set B, C A as
follows: When selecting subintervals I, ; inside interval Q;, for k > [,
we leave "(1 — ggt1) lk+1/27 intervals Iy, ; outside B; from the left-hand
side and also from the right-hand side. Here "a ' denotes the integer part

of a. Formally (with a suitable enumeration of the intervals Q ),

oo ik

B = () UQki
k=l+11i=1
where 1 = lo---lp—1 (lg — 270 (1 — qx) /27) > ly---lx i It follows from
(2.24), that u(B;)) = 1 = u(R) as ! — oo.

Fix ¢ € B; and assume that 8 = 1. The case 8§ = —1 can be handled
similarly. Let Ry, 1 <7 < Ry for some k > [. Now z belongs to one of the
intervals Qi which we denote by [a,(]. Let d = 8 — z. Recall that then
d<ri. Ifd<r < Ry, then [(a+ B) /2,B8]\ B, C [z, + r] and we compute
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using (2.25), (2.26), and definitions

u(lz,z+71]) /h(r) > p((a+B) /2,8 \ B)r, "
= 1 (Qr;: \ B) 2717'1:1/2
= (o 1) vt (1= @rs) /27 0 by 2
> (lpe 1) (271 (k+1) b} — 1) L 2
> 27k (I 1) PR, P
= k/2.

If Rpy1 <1 < d, we observe using (2.26), that

plez+r)) 1 1 g 172 1

h(r) 2Ry h(r) 2RYZ T2
We conclude that D;, (u, H (z,1),z) > 1/2 > 0 for all z € B,. O

3. UPPER DENSITIES

Theorem 1.2, and also the upper density results of Salli [16, Theorems
3.1, 3.7 and 3.8] and Mattila [12, Theorem 3.3|, are readily generalized
for Radon measures u that satisfy 0 < D, (u,z) < oo for u-almost every
z € R™. This arises from the fact that these measures behave in small scales
very much like Hausdorff measures, see [14, Theorem 6.9]. Of course, one
has to replace the constants c(n,m,n) and c(n,s,n) in Theorem 1.2 by
D, (u,z)c(n,m,n) and D, (i, z) c(n, s,n), respectively.

Our goal in this section is to give a generalization of Theorem 1.2 that ap-
plies for Borel measures which satisfy u-almost everywhere the condition
D, (u,z) < oo, provided that the function A fulfills some natural condi-
tions. Our proof is a modification of a proof that was given by Salli [16,
Theorem 3.1]. Notice that we may well have Dy, (4, z) = oo for u-almost
every =z € R".

Theorem 3.1. Let h: |0, 79[ — |0, 00 be a nondecreasing function which
satisfies, for some 0 < ¢; < 00, the doubling condition

(d) h(2r) < cih(r).
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Assume also that for some m € N and for allr <19, 0 <t < 1,
(h4) h(tr) <t™h(r),
(hb) ltlﬁlt_ h(tr) = 0.

If u is a Borel measure on R™ such that D, (u,z) < oo for u-almost all
zeR*, VeG(n,n—m), and 0<n <1, then

Eh (,LL, X ((L‘, V) 77) ) ZC) Z Cﬁh (/J" ZB)

for u-almost all € R*. Above the constant ¢ > 0 depends only on
m,n,n, and c;.

If m < s < n, then h(r) = r° clearly satisfies conditions (d), (h4),
and (h5). So the statement of Theorem 3.1 holds for u = P°L A, when
m < s <mn, h(r) = r%, and A C R* has finite P° measure. Theorem
3.1 can also be applied for measures H, and P, provided that A fulfills
the required assumptions, recall (1.2) and (1.3). One can take for example
h(r) = r*log(r~'), where m < s < n, or h(r) = r™ (log (r~1)) "

Proof of Theorem 3.1. It follows from doubling condition (d) that there
is a constant ¢y < oo such that

(3.1) h(2 (n—m+772/16)1/27") < ek (r),

when 7 > 0 is small enough. We can assume that this is true for all
0 < r < 1ry. Define ¢ by

(3.2) c=2"¢" (ampt+1) ",

Recall that then ¢ > ¢/ (n, m, c;) n™.
We may assume that V = {z : proj;z = ... = proj,,z = 0}. Fix
M €]0,00[ and define

B={zeR":Dy(u,z) > M and D, (u,z) < 00}.

It is sufficient to show that Dy (u, X (z,V,n),z) > c¢M for u-almost all
x € B. We will show that for any a > 0, the set

F={zeB:u(B(z,)NX(z,V,n))<cMh(r) whenO<r<a}

is of u measure zero. Assume on the contrary that u (F) > 0. One can use
quite standard methods, see Lemma 2.8, to show that F' is a Borel set, and
hence we can assume it to be closed.
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Fix k € N such that
(3.3) am?/k <n<am'?/(k—1).

According to Lemma 2.7 (2), there is 2y € F such that Dy (u, F, z,) > M.
We may assume that o = 0. We can now fix r; > 0 such that

w([=ry,ri]"NE)> Mh(r).

We will next select recursively cubes R; C R*™™ and Q; C R™. Let
Ry = [-71,m|" ™ and Qg C [—71,71]™ such that £(Qo) = 2r1k~! ({=side
length) and u (Ro X Qo N F) > k™M h(ry). Suppose that cubes R; and
Q; have been selected. Denote by S one of the minimal cubes S C R; such
that .Pv(Rj X QjﬂF) CcS.If

(3.4) L(S) > L(Rj) /2,
then we finish our selection. Otherwise we select R; 1 C R; such that
S C Rj;1 and £(R;+1) = £(R;) /2. We also choose Q;11 C Q; such that
£(Qj+1) =£(Q;) /2 and p(Rj1 X Qju N F) > 27™u(R; x QN F).
If j is an index such that R; and Q; are selected, then
(3.5) p(R; xQ;NF)>27" Mk ™h(r,)
and
d(R; x Q;) =27d(Box Qo) =2""'ry (n+m (k2 - 1))1/2
(3.6) < (n -m+ 772/16)1/2 277y,

The next step is to show that for some index j, our selection comes to
an end. If this is not the case, then we let {z,} = N2, R; x @; N F and
denote d; = d (R, x Q;). Let d;11 <7 < d;. Using (3.5) and (3.6), we get

u(B(z1,7)) /h(r) 2 u(Rjs1 X Qi1 N F) /h(dy)
> Mk~™27™h (r,) /h <<n —m+ 772/16)1/2 2‘j+1r1>

It follows from (h5), that the right hand side of the above inequality tends
to infinity as j — oo. This yields D;, (4, ;) = 0o, which is impossible since
z € B.

Let 7o be an index such that (3.4) holds. We abbreviate R = Rj;, Q = Qj,
and d = dj,. Pick y,z € R x QN F such that proj;, (y —z) > £(R) /2 for
some ¢ € {1,...,n —m}. We will show that

(3.7) RxQCX(y,V,n)UX(z,V,n).
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Let £ € R x Q. If proj; (z) > proj, (y + z) /2, then
|z — 2| > proj; (z — 2) > proj; (y — 2) /2 > £(R) /4 = 27"""ry.
Using this and (3.3), we deduce
d(z—2,V)=Py(z—2)<d(Q)=2r k~im'/2277 < |z — 2|.

Hence z € X (2,V,n). If proj;(z) < proj; (y + z) /2, then by symmetry
z € X (y,V,n). Now (3.7) holds and we know that with z = y or z = z we
have

(3-8) p(X (z,V,n) > u(RxQ)/2
Finally we compute, using (3.2)—(3.8), and (h4),
u(X (2,V,n) N B (z,d)) /A (d)
> 2_1#’ (Rjo X Qjo n F) /h’ (d)
> M Ek™™27%m (7)) /R <(n —m+17/16) e 2‘j°+1r1>
>k ™2 e,' M
>cM.

This contradicts with the definition of F'. O

When m = n — 1 it is natural to ask whether one can replace the cones
X (z,V,n) in the above theorem by their one half. The next theorem shows
that the answer is positive, at least with a little bit stronger assumptions
on h. For example the functions h(r) = r*log(r~'), where n — 1 < s < n,
satisfy assumption (h6) of the following theorem.

Theorem 3.2. Assume that h: |0, 7] — ]0, ][ is a nondecreasing func-
tion satisfying doubling condition (d). Suppose also that for some
s>n—1and forallr <7y, 0<t<1,

(h6) h(tr) < t°h(r).

If u is a Borel measure on R* such that D, (u,z) < 0o for u-almost all
zeR",0<n<1, and 6 € S™1, then

Dy, (,u,, X (z,6,7), :z:) > ¢Dy, (1, z)

for u-almost all z € R*, where the constant c > 0 depends only on n, s,
and c;.
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Proof. Define ¢, as in the previous proof and set
c=ct (1—2762) (4(n—1)n '+ 1)

Then ¢ > ¢ (n,¢1) (s —n+1)n™"'. We may assume that § = e;. Fix
M € )0, 00[ and define sets B and F', numbers k and 7;, and point z, € R*
in a corresponding manner as in the previous proof. Assume again, to
simplify notation, that =, = 0.

We begin to choose intervals I; C R and cubes Q; C R* ! by setting
Iy = [—71,71] and selecting Qo C [—71,m]" ' such that £(Qp) = 2rik !
and u((Ip x Qo) N F) > k' "M h(r1). Assume that I; and Q, have been
selected. Let a; = infproj, (I; x @; N F') and b; = sup proj, (I; x Q; N F).
If the conditions

(3.9) b — a; > 5(211'),

(310) w(l(a; +)/2,b] x QN F) > (1 - 2736=%) (L x Q; N F)
hold, then we finish our selection. If (3.9) is not valid, then we choose
I;11 C I such that [aj,b;] C I;41 and £(I;41) = £(I;) /2. We also take
Qj+1 C Q; such that £(Q,+1) = £(Q,) /2 and

p(Lipn xQiuNF)>2""u(l; x Q;NF).

If (3.9) holds but (3.10) does not, then we select I;;; C I; such that
¢(Ij11) = £(1;) /2, and

u(Ls % QN F) > 273y (1, x @, N F),
and further Q; 1 C Q; such that £(Q,+1) =£(Q;) /2 and
(L1 X Qiua N F) > 213ty (1 x QN F) .

1-n

For every I; and Q);
1% (IJ X Qj N F) > 2j(—n—s—|—1)/2M kl_n h (?"1) )

a(I; x @5) = 27d(Io x Qo) < (1+7°/16)" 27%1r,.

Similar reasoning as in the proof of Theorem 3.1 combined with assump-
tion (h6) yields that our process of selecting intervals I; and cubes Q; must
terminate. Thus, for some index 7o, sets I, and Q;, satisfy (3.9) and (3.10).
Abbreviate a = aj,, b = bj, and so on. Let y € I x Q N F be such that
proj; y = a, then

[(a+0)/2,] xQ C X" (y,6,m)N B(y,d) .
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We obtain, as in the proof of Theorem 3.1, that

u (X" (y,6,) N B(y,d)) /h(d) > c M.

This leads to a contradiction. O

Let o, 8 > 0. It is clear from the proofs that assumption (h6) in Theorem
3.2 can be weakened to h(tr) < at’h(r). Also, in Theorems 3.1-3.2 it
suffices to assume that (h4) and (h6) hold for 0 < ¢ < §. However, under
these slightly weaker assumptions, constant ¢ will depend also on o and 8.

On the real line the question of upper densities is easier. We state the
following theorem without a proof. A somewhat similar calculation as that
of [11, Theorem 7] applies.

Theorem 3.3. If u 1s a locally finite Borel measure on R, then for any
h: 10, 00[ — 0, 00|,

5h (,U,, [$7 OO[ ) .’B) = Eh (,Ll,, ]_OO: .’B] 1$) Z 5h (,Ll,, $) /2
for u-almost every = € R.

The local finiteness of x4 in the above result can be replaced for example
by assuming that p({z}) = 0 for every z € R, and D,, (u,z) < oo for
p-almost all z € R.

If 4 is a measure on R*, A C R*, and z € R”, we define

D,(A,z)= lim sup (B(z,r)NA)/u(B(z,1)).

If 0 < Dp(u,z) < oo for y-almost every z € R* in Theorems 3.1-3.3,
then they can be used to obtain positive lower bounds for the densities
D,(X (z,V,n),z) and D, (X" (z,6,n), z).
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