
TRANSVERSAL MAPPINGS BETWEEN MANIFOLDS
AND NON-TRIVIAL MEASURES ON VISIBLE PARTS
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Abstract. Our main result explains in what sense typical visible
parts of a set with large Hausdorff dimension are smaller than the
set itself. This is achieved by generalizing the notation of sliced
measures by means of transversal mappings, and by establishing
a connection between dimensional properties of generalized slices
and those of visible parts.

1. Background and preliminary discussion

Given integers k and d such that 0 ≤ k ≤ d−1, and an affine k-plane
K in Rd (0-plane is simply a point), we use the notation ProjK for the
projection onto K. The following definition of visibility goes back to
Urysohn [U] in the 1920’s: Let E ⊂ Rd be compact. A point a ∈ E is
visible from K, if a is the only point of E in the line segment joining a
to ProjK(a). The visible part of E from K, denoted by VK(E), is the
set of all points that are visible from K.

Visibility was investigated in connection with set theoretic problems
by Nikodym in [N]. The study of dimensional properties of visible
parts, in turn, initiated in [JJMO]. Denoting by dimH the Hausdorff
dimension, we have for almost all affine k-planes K not intersecting E
that

(1.1) dimH(VK(E)) = dimHE

provided that dimHE ≤ d − 1 [JJMO, Theorem 3.2]. On the other
hand, under the assumption dimHE > d− 1, we have

(1.2) dimH(VK(E)) ≥ d− 1

for almost all k-planes K not intersecting E [JJMO, Proposition 3.3].
It is not known whether the opposite inequality holds in (1.2). Some
special examples of planar sets with Hausdorff dimension bigger than
1 are investigated in [JJMO]. In particular, it is shown that Hausdorff
dimensions of all visible parts of a quasi-circle are equal to 1. In [O]
an upper bound bigger than 1 is verified for Hausdorff dimensions of
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typical visible parts of connected and compact subsets of the plane.
For further information on related topics, see [M3].

In this paper we approach the open question concerning the validity
of the equality in (1.2) by proving the following weaker result:

Theorem 1.1. Let E ⊂ Rd be a compact set with dimHE > d − 1.
Assume that µ is a Radon measure on E such that µ(E) > 0 and
dimH µ > d− 1. Then µ(VK(E)) = 0 for Γd,k-almost all K ∈ Ad,k with
K ∩ E = ∅.

Here we use the notation dimH µ for the Hausdorff dimension of any
finite measure µ on Rd (and later in section 2 on a metric space X),
that is,

dimH µ = µ-ess inf
x

dimloc µ(x)

where

(1.3) dimloc µ(x) = lim inf
r→0

log µ(B(x, r))

log r
.

(In (1.3) B(x, r) is the closed ball with centre at x and with radius
r > 0.) Moreover, the natural Radon measure on the space of affine
k-planes of Rd is denoted by Γd,k (see section 3 for definitions). Observe
that, if (1.2) holds as an equality, Theorem 1.1 follows from it.

For the purpose of proving Theorem 1.1, we study a generalized ver-
sion of the following notation of sliced measures introduced by Mattila
in [M2]: Given an k-dimensional linear subspace V of Rd, let V ⊥ be
the orthogonal complement of V . The slices of a finite Radon measure
µ by affine planes Va = V +a, where a ∈ V ⊥, are defined as weak limits
of the normalized restriction measures

(1.4) Hd−k(B(a, δ))−1µ|Proj−1

V⊥
(B(a,δ))

as δ goes to 0. (Here Hd−k is the (d − k)-dimensional Hausdorff
measure and µ|A is the restriction of µ to a set A, in other words,
µ|A(B) = µ(A ∩ B) for all B ⊂ Rd.) The dimensional properties of
these measures, which turn out to exist forHd−k-almost all a ∈ V ⊥, are
investigated in [JM]. In this paper we extend the notation of (1.4) by
replacing the preimage of the projection by a preimage of a transversal
mapping between manifolds. Studying dimensional properties of these
generalized sliced measures in section 2 leads us to prove Theorem 1.1
in section 3. Our results in section 2 have a similar flavour to some of
the results in [PS]: [PS, Theorem 7.7] may be regarded as a general-
ization of the projection results in [M1] for a parametrized family of
transversal mappings, whilst section 2 extends the results of [JM] to a
similar setting.

Our basic setting is as follows: Let (L, ρL), (M,ρM), and (N, ρN) be
l-, m-, and n-dimensional smooth Riemannian manifolds, respectively.
Assume that l, m > n and Π : L ×M → N is a continuous function
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such that for l = 0, 1, 2 there is a constant cl > 1 such that

(1.5)
∣∣∣∣∣∣Dl

λΠ(λ, x)
∣∣∣∣∣∣≤ cl

for all λ ∈ L and x ∈ M . In (1.5) the derivative with respect to λ is
denoted by Dλ. Furthermore, suppose that there are finite collections
{φ, V } and {ϕ,U} of charts on L andN , respectively, with the following
property: there exists R > 0 such that for all λ ∈ L and y ∈ N
(1.6) B(λ,R) ⊂ V and B(y,R) ⊂ U

for some V and U . Assume also that the Lipschitz constants of the
mappings ϕ, ϕ−1, φ, and φ−1 are uniformly bounded from above by a
positive constant K.

We will restrict our consideration to the class of transversal mappings
whose rôle becomes evident in the proof of Lemma 2.1.

Transversality. For λ ∈ L, let Πλ = Π(λ, · ). Suppose that the follow-
ing form of transversality is satisfied: There is a constant Ct > 0 such
that for all λ ∈ L and x1 6= x2 ∈M for which ρN(Πλ(x1),Πλ(x2)) ≤ R,
the following condition holds: defining

Φx1,x2(λ) =
ϕ ◦ Πλ(x1)− ϕ ◦ Πλ(x2)

ρM(x1, x2)
,

the property

(1.7) |Φx1,x2(λ)| < Ct

implies that

(1.8) det
(
DΦx1,x2(λ)DΦx1,x2(λ)T

)
> C2

t .

Here ϕ is as in (1.6), the derivative with respect to λ is denoted by
D, and AT is the transpose of a matrix A. Moreover, we assume that

there exists a constant L̃ > 0 such that

(1.9) ‖∂j∂k(Φx1,x2)i(λ)‖ ≤ L̃

for all j, k, i, and for all x1, x2, and λ.
We continue by generalizing (1.4) in a way that is useful for our

purposes.

Sliced measures determined by means of transversal map-
pings. Let µ be a Radon measure on M and let λ ∈ L. Denote
by C+

0 (M) the family of continuous non-negative functions on M with
compact support. As indicated below, it follows from the axiomatic
theory of derivation in [F, 2.9] that for all ψ ∈ C+

0 (M) the limit

(1.10) lim
δ→0

((Πλ)∗νψ)(B(y, δ))

Hn(B(y, δ))
= lim

δ→0

1

Hn(B(y, δ))

∫
Π−1
λ (B(y,δ))

ψ dµ

exists and is finite for Hn-almost all y ∈ N . Here νψ(A) =
∫
A
ψ dµ for

all Borel sets A ⊂ M and f∗m is the image of a measure m under a
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function f : X → Y , that is, f∗m(A) = m(f−1(A)) for all A ⊂ Y . It is
well-known that in a separable metric space (X, ρ), satisfying a certain
geometric condition described in [F, 2.8.9], the family

V = {(x,B(x, r)) | x ∈ X, r > 0}
is a µ-Vitali relation for any locally finite Borel regular measure µ on
X [F, Theorem 2.8.18] and [F, 2.8.16]. As indicated in [F, 2.8.9] this
covers as a special case Riemannian Ck-manifolds (k ≥ 2) with the
usual metrics. The existence of (1.10) follows now from [F, Theorem
2.9.5]. Using the separability of C+

0 (M) it may be shown that the
exceptional set of points y ∈ N in (1.10) is independent of the choice
of ψ, and therefore we conclude from the Riesz representation theorem
[M1, Theorem 1.16] that, given λ ∈ L, for Hn-almost all y ∈ N there
is a Radon measure µλ,y such that

(1.11)

∫
ψ dµλ,y = lim

δ→0

1

Hn(B(y, δ))

∫
Π−1
λ (B(y,δ))

ψ dµ

for all ψ ∈ C+
0 (M). Clearly

(1.12) sptµλ,y ⊂ sptµ ∩ Π−1
λ ({y}),

where sptµ is the support of µ.

Remark 1.2. (1) In (1.11) tranversality plays no rôle; only the continu-
ity of Π is needed.

(2) By [F, Lemma 2.9.6] the function y 7→
∫
ψ dµλ,y isHn-measurable

for all ψ ∈ C+
0 (M).

The following disintegration formula holds for the measures µλ,y:
Given a non-negative Borel function f on M with

∫
f dµ < ∞, it

follows from [F, Theorem 2.9.7] that for all Borel sets B ⊂ N

(1.13)

∫
B

∫
f dµλ,y dHny ≤

∫
Π−1
λ (B)

f dµ.

Moreover, the equality holds in (1.13) provided that (Πλ)∗µ is abso-
lutely continuous with respect to Hn [F, Theorem 2.9.2]. In this case
we write (Πλ)∗µ� Hn.

2. Dimensional properties of sliced measures determined

by means of transversal mappings

According to [JM, Theorem 3.8], if µ is a Radon measure on Rd with
compact support and with dimH µ > k, then for almost all (d − k)-
dimensional linear subspaces V of Rd we have

(2.1) ess inf{dimH µV,a | a ∈ V ⊥ with µV,a(R
d) > 0} = dimH µ− k.

In theorem 2.9 we prove an analogue of (2.1) for sliced measures de-
termined by means of transversal mappings. Even though, for the
purposes of this paper, Theorem 2.9 is being used in section 3 as a tool
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when investigating non-trivial measures on visible parts, we believe
that it is also interesting on its own.

Our methods in this section combine those of [JM] and [PS]. We
begin by proving the following generalization of [M1, Lemma 3.11]:

Lemma 2.1. Assume that B ⊂ L is bounded. Then there are constants
c > 0 and δ0 > 0 such that for all x1 6= x2 ∈ M and 0 < δ < δ0 we
have

Hl({λ ∈ B | ρN(Πλ(x1),Πλ(x2)) ≤ δ}) ≤ cδnρM(x1, x2)−n.

Lemma 2.1 is obtained as an outcome of a sequence of lemmas (lem-
mas 2.2–2.7) in which the rôle of the transversality condition (1.8) is
crucial. The basic idea of the proof is similar to that of [PS, Lemma
7.7]. Note that in the setting of [PS] both L and N are Euclidean
spaces whereas M is a metric space.

Let R and Ct be as in (1.6) and (1.7), respectively, and let R1 =
R/(3c1) where c1 is as in (1.5). Consider λ0 ∈ L and x1 6= x2 ∈ M
such that ρN(Πλ0(x1),Πλ0(x2)) ≤ R/3 and |Φx1,x2(λ0)| < Ct. Picking
coordinates (η1, . . . , ηl) in B(λ0, R1) and applying transversality prop-
erty (1.8) and Cauchy–Binet theorem, we find an (n× n)-minor A(λ0)
of DΦx1,x2(λ0) with

(2.2) | detA(λ0)| ≥ c̃ Ct.

Here A(λ0) is determined with respect to the coordinates (η̃1, . . . , η̃n)
induced by (η1, . . . , ηn, . . . , ηl) and c̃ is a positive constant depending
on l and n. Given λ = (λ1, . . . , λn, λn+1, . . . , λl) ∈ B(λ0, R1), set

Hλ = {λ′ ∈ B(λ0, R1) | λ′ = (λ′1, . . . , λ
′
n, λn+1, . . . , λl)}.

Defining a function ψλ : Hλ → R
n by

ψλ(λ
′) = Φx1,x2(λ′)

for all λ′ ∈ Hλ, the following lemma holds (observe that by (1.5) and
the choice of R1 the function ψλ is well defined):

Lemma 2.2. There exists 0 < R0 ≤ R1 which is independent of λ0

such that the following properties hold:

(1) For all λ ∈ B(λ0, R0) the absolute values of the singular values
of Dλψλ are bounded below and above by positive constants that
do not depend on λ0 and λ.

(2) For all λ ∈ B(λ0, R0) the function ψλ : B(λ, R̃/3) ∩ Hλ →
ψλ(B(λ, R̃/3) ∩Hλ) is a diffeomorphism, and

ψλ(B(λ, ρ) ∩Hλ) ⊃ B(ψλ(λ), dρ)

for all 0 < ρ ≤ R̃. Here R̃ and d are independent of λ0 and λ.

Proof. (1) From (1.9) we see that the absolute values of the singular

values of (Dψλ0)(λ0) are bounded above by a constant C(L̃). Fur-
thermore, since (Dψλ0)(λ0) = A(λ0), inequality (2.2) implies that the
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absolute values of the singular values of (Dψλ0)(λ0) are bounded below

by the constant c̃ Ct/C(L̃)n−1. The claim follows since the function
λ 7→ (DΦx1,x2)(λ) is uniformly continuous by (1.9).

(2) Defining a function ψ̃λ : Hλ → R
n by

ψ̃λ(λ
′) = (Dψλ)(λ)−1ψλ(λ

′)

and using the uniform continuity of the function λ 7→ (DΦx1,x2)(λ),

we see that the derivative Dψ̃λ(λ
′) = Dψλ(λ)−1Dψλ(λ

′) is close to

the identity in some ball B(λ, R̃) ∩ Hλ. (Here R̃ does not depend

on λ0 and λ.) Applying [PS, Lemma 7.6] gives that ψ̃λ : B(λ, R̃/3) ∩
Hλ → ψ̃λ

(
B(λ, R̃/3)∩Hλ

)
is a diffeomorphism, and ψ̃λ

(
B(λ, ρ)∩Hλ

)
⊃

B(ψ̃λ(λ), ρ/2) for all 0 < ρ ≤ R̃. This in turn completes the proof
of (2). Note that the constant d depends on the lower bound of the
absolute values of the eigenvalues of Dψλ(λ), and therefore, by (1), it
is independent of λ0 and λ. �

According to the next lemma, there is a zero of the function Φx1,x2

close to each parameter λ for which |Φx1,x2(λ)| is small enough.

Lemma 2.3. Suppose that x1 6= x2 ∈M and λ ∈ L such that

ρN(Πλ(x1),Πλ(x2)) ≤ R/3. Then, given any 0 < δ < min{Ct, R̃d/4},
the condition |Φx1,x2(λ)| < δ implies the existence of λ̃ ∈ L such that

Φx1,x2(λ̃) = 0 and ρL(λ, λ̃) ≤ δ/d ≤ R̃/4.

Proof. Lemma 2.2 gives the inclusion

ψλ
(
B(λ, δ/d) ∩Hλ

)
⊃ B(Φx1,x2(λ), δ)

which implies the claim. �

Given any x1 6= x2 ∈ M and λ̃ ∈ L with Φx1,x2(λ̃) = 0, define an

(l − n)-dimensional submanifold Lx1,x2(λ̃) of L as follows:

Lx1,x2(λ̃) = Φ−1
x1,x2

(0) ∩B(λ̃, R̃).

Lemma 2.4. Let x1 6= x2 ∈ M and λ̃ ∈ L such that Φx1,x2(λ̃) = 0.

Then for all 0 < δ < R̃d/4 we have

{λ ∈ B(λ̃, R̃/2) | |Φx1,x2(λ)| ≤ δ} ⊂
⋃

λ′∈Lx1,x2 (λ̃)

B(λ′, δ/d).

Proof. We may assume that R̃ ≤ 2R0. Then Φx1,x2(λ) is defined for all

λ ∈ B(λ̃, R̃/2). Letting λ ∈ B(λ̃, R̃/2) such that |Φx1,x2(λ)| < δ and
using Lemma 2.3, we find λ′ ∈ B(λ, δ/d)∩Hλ such that Φx1,x2(λ′) = 0.

Since λ′ ∈ B(λ̃, R̃), the claim follows. �

Let δ0 = min{Ct, R̃d/4, R/3}. Consider x1 6= x2 ∈ M . For the
proof of Lemma 2.1 we may assume that B ⊂ V for some V defined in
(1.6) and Kδ ≤ δ0ρM(x1, x2). Recalling that the Lipschitz constants of
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ϕ, ϕ−1, φ, and φ−1 are uniformly bounded above by K, and applying

Lemma 2.3, one finds a constant N (depending only on K, R̃, l, and

the diameter of B) and λ̃1, . . . , λ̃N ∈ L with Φx1,x2(λ̃i) = 0 such that

{λ ∈ B | ρN(Πλ(x1),Πλ(x2)) ≤ δ}

⊂
N⋃
i=1

{λ ∈ B(λ̃i, R̃/2) | |Φx1,x2(λ)| ≤ Kδ/ρM(x1, x2)}.

Defining for all λ̃ ∈ L with Φx1,x2(λ̃) = 0 and δ > 0

N
(
Lx1,x2(λ̃), δ/d

)
=

⋃
λ′∈Lx1,x2 (λ̃)

B(λ′, δ/d),

we see from Lemma 2.4 that Lemma 2.1 is an immediate consequence
of the following result.

Lemma 2.5. Given x1 6= x2 ∈ M and λ̃ ∈ L with Φx1,x2(λ̃) = 0 and
0 < δ < δ0, we have

Hl
(
N(Lx1,x2(λ̃), δ/d)

)
≤ cδn.

Here the constant c is independent of λ̃ and δ.

Lemmas 2.6 and 2.7, in turn, lead to Lemma 2.5.

Lemma 2.6. Let x1 6= x2 ∈ M and λ̃ ∈ L such that Φx1,x2(λ̃) = 0.

Then there exists α > 0 which is independent of λ̃ such that for all

λ ∈ B(λ̃, R̃), h ∈ TλHλ (TλHλ is the tangent space of Hλ at λ), and

y ∈ TλLx1,x2(λ̃) with ‖h‖ = ‖y‖ = 1, we have ^(h, y) ≥ α. (Here
^(h, y) is the angle between h and y.)

Proof. Let p = h − y ∈ TλL. Denoting by c the lower bound given in
Lemma 2.2 (a) and using (1.9), we get

c ≤ |Dλψλ(λ)h| = |(DλΦx1,x2)(λ)h| = |(DλΦx1,x2)(λ)p| ≤ c(L̃)‖p‖
since (DλΦx1,x2)(λ)y = 0. This completes the proof. �

For x1 6= x2 ∈M and λ̃ = (λ̃1, . . . , λ̃l) ∈ L with Φx1,x2(λ̃) = 0, define

Vλ̃ = {λ′ ∈ L | λ′ = (λ̃1, . . . , λ̃n, λ
′
n+1, . . . , λ

′
l)}.

From Lemma 2.6 we immediately get the following result which, in
turn, completes the proof of Lemma 2.1 by verifying Lemma 2.5.

Lemma 2.7. Given x1 6= x2 ∈ M , λ̃ ∈ L with Φx1,x2(λ̃) = 0 and

0 < δ < δ0, there is an integer I ≤ c(l, n)(R̃/δ)l−n and a covering of

Vλ̃∩B(λ̃, R̃) with balls B1, . . . , BI of radius δ which induces a covering

of N
(
Lx1,x2(λ̃), δ/d

)
with balls B̃1, . . . , B̃I of radius c(α)δ.

The rôle of Lemma 2.1 is crucial in the proof of the following result
which combines the methods from [FM, Lemma 4.1] and [M1, Theorem
9.7]. For reader’s convenience we will give a brief outline of the proof
in our setting.
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Given locally finite measures ν1 and ν2 on a metric space (X, ρ),
denote by D(ν1, ν2, x) the lower derivative of ν1 with respect to ν2 at a
point x ∈ X, that is,

D(ν1, ν2, x) = lim inf
r→0

ν1(B(x, r))

ν2(B(x, r))
.

Moreover, for s ≥ 0, the s-energy Is(ν) of a measure ν is defined as

Is(ν) =

∫∫
ρ(x, y)−s dν(x) dν(y).

Lemma 2.8. Let µ be a Radon measure on M with compact support.
Then the following properties hold:

(1) We have (Πλ)∗µ� Hn if and only if D((Πλ)∗µ,Hn, y) <∞ for
(Πλ)∗µ-almost all y ∈ N .

(2) Both dimH µ > n and In(µ) < ∞ imply that (Πλ)∗µ � Hn for
Hl-almost all λ ∈ L.

Proof. (1) Supposing that (Πλ)∗µ � Hn, the finiteness of the lower
derivative follows directly from (1.11). On the other hand, assume
that D((Πλ)∗µ,Hn, y) <∞ for (Πλ)∗µ-almost all y ∈ N . Given A ⊂ N
with Hn(A) = 0, it is sufficient to prove that

(Πλ)∗µ{y ∈ A | D((Πλ)∗µ,Hn, y) < c} = 0

for all 0 < c <∞. This follows from [F, Lemma 2.9.3] by choosing α =
φ = (Πλ)∗µ and β = Hn therein. (Recall that the family {(y,B(y, r)) |
y ∈ N, r > 0} is both a (Πλ)∗µ-Vitali relation and a Hn-Vitali relation,
and therefore this choice is possible.)

(2) Let dimH µ > s > n. Defining for all i = 1, 2, . . . a restriction
measure µi = µ|Mi

where

Mi = {x ∈M | µ(B(x, r)) ≤ irs for all r > 0},

we have In(µi) <∞. Moreover, it follows from Fatou’s lemma, Fubini’s
theorem, and Lemma 2.1 that∫

B

∫
D((Πλ)∗µi,Hn, y) d(Πλ)∗µi(y) dHl(λ) ≤ cIn(µi)

for all bounded sets B ⊂ L. From (1) we get (Πλ)∗µi � Hn for Hl-
almost all λ ∈ L. This settles the claim since x ∈ ∪iMi for µ-almost
all x ∈M . �

Now we are ready to state the main result of this section.

Theorem 2.9. Let µ be a Radon measure on M with compact support.
Assuming that dimH µ > n, we have

Hn-ess inf{dimH µλ,y | y ∈ N with µλ,y(M) > 0} = dimH µ− n

for Hl-almost all λ ∈ L.
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Proof. Having proved Lemmas 2.1 and 2.8, the methods from the proof
of [JM, Theorem 3.8] can be extended in a straightforward manner to
our setting. �

3. Non-trivial measures on visible parts

In this section we prove Theorem 1.1. We begin by introducing the
notation needed for this purpose.

Let k and d be integers such that 0 ≤ k ≤ d − 1. The Grass-
mann manifold of linear k-dimensional subspaces of Rd and the space
of affine k-dimensional subspaces of Rd are denoted by Gd,k and Ad,k,
respectively. (A 0-plane is simply a point.) Letting γd,k be the unique
orthogonally invariant Radon probability measure on Gd,k, and defining
for all Borel sets A ⊂ Ad,k

Γd,k(A) =

∫
Hd−k({a ∈ V ⊥ | V + a ∈ A}) dγd,k(V ),

gives a Radon measure Γd,k on Ad,k. Observe that both Gd,k and Ad,k
are smooth Riemannian manifolds, and Γd,k is equivalent to Hs with
s = dimAd,k.

Visible parts. The visible part of a compact set E ⊂ R
d from an

affine subspace K ∈ Ad,k with E ∩K = ∅ is

VK(E) = {x ∈ E | [ProjK(x), x] ∩ E = {x}}.
Here ProjK(x) = ProjV (x) + a is the closest point to x on the affine
plane K = V + a, where V ∈ Gd,k and a ∈ V ⊥, and [x, y] is the line
segment between x and y.

The following remark is needed when proving Theorem 1.1 as a con-
sequence of Theorem 2.9:

Remark 3.1. (a) The visible part VK(E) is a Borel set as the graph of
a lower semi-continuous function [JJMO, Remark 2.2 (a)].

(b) Let B ⊂ M be a Borel set and λ ∈ L such that (Πλ)∗µ � Hn.
Then, under the assumptions of section 1, we have

µλ,y|B = (µ|B)λ,y

for Hn-almost all y ∈ N . This can be verified using similar arguments
as in [JM, Lemma 3.2].

Proof of Theorem 1.1. Consider a compact set E ⊂ Rd with dimHE >
d − 1. Let µ be a Radon measure on E such that µ(E) > 0 and
dimH µ > d − 1. Given ε > 0, let Ad,k(E, ε) consist of those K ∈ Ad,k
for which dist(K,E) > ε. Defining for all K ∈ Ad,k(E, ε)

NK = {x ∈ Rd | dist(x,K) = ε},
the assumptions of section 1 are satisfied for the natural projection
ΠK : Rd → NK ; the transversality of ΠK follows from [JJMO, (3.4)].
Since dimH µ > d − 1, Lemma 2.8 (2) gives that (ΠK)∗µ � Hd−1 for
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Γd,k-almost all K ∈ Ad,k(E, ε). Defining D as the set of such affine
k-planes and using Remark 3.1 (b), we get for all K ∈ D and for all
Borel sets B ⊂ E

µK,y|B = (µ|B)K,y

for Hd−1-almost all y ∈ NK . Combining this with Lemma 2.9 implies

the existence of D̃ ⊂ D with Γd,k(Ad,k(E, ε) \ D̃) = 0 such that for all
Borel sets B ⊂ E we have

Hd−1-ess inf{dimH(µ|B)K,y | y ∈ NK with (µ|B)K,y(R
d) > 0}

≥ Hd−1-ess inf{dimH µK,y | y ∈ NK with µK,y(R
d) > 0}

= dimH µ− (d− 1) > 0

(3.1)

for all K ∈ D̃.
The final step is to conclude that if K ∈ Ad,k(E, ε) such that

µ(VK(E)) > 0,

then K /∈ D̃. Assume to the contrary that K ∈ D̃. Recalling remark
3.1 (a) and applying (3.1) with B = VK(E), gives

dimH(VK(E) ∩ Π−1
K ({y})) > 0

for Hd−1-almost all y ∈ NK with (µ|VK(E))K,y(R
d) > 0. Noting that the

set VK(E) ∩ Π−1
K ({y}) contains at most one point for all y ∈ NK , this

gives a contradiction, since

Hd−1({y ∈ NK | (µ|VK(E))K,y(R
d) > 0}) > 0

by (1.13). The claim follows letting ε tend to 0 along a sequence. �
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