ON AN APPROXIMATION PROBLEM FOR
STOCHASTIC INTEGRALS WHERE RANDOM TIME
NETS DO NOT HELP

CHRISTEL GEISS AND STEFAN GEISS

ABSTRACT. Given a geometric Brownian motion S = (S¢):e[o, 1]
and a Borel function g : (0,00) — IR such that g(Sr) € Lo, we
approximate ¢(St) — IEg(St) by Y i vi—1(Sr, — Sr,_,) where
0 =71 < -+ <71, =T is an increasing sequence of stopping
times and the v; are F,,-measurable random variables such that
Ev? (S, —S;,_,)? < co. In case that g is not almost surely linear,
we show that one gets a lower bound for the Lo-approximation rate
of 1/4/n if one optimizes over all nets consisting of n + 1 stopping
times. This lower bound coincides with the upper bound for all
reasonable functions g, in case deterministic time-nets are used.
Hence random time-nets do not improve the rate of convergence
in this case. The same result holds true for the Brownian motion
instead of the geometric Brownian motion.

1. INTRODUCTION AND RESULT

The question, we are dealing with, arises from Stochastic Finance,
where one is interested in the Lg-error which occurs while replacing a
continuously adjusted portfolio by a discretely adjusted one. Assume
a finite time horizon 7" > 0 and a standard Brownian motion B =
(Bt)tcpo,m defined on a complete probability space (€2, F,IP) with By =
0, continuous paths for all w € 2, and F being the completion of
o(B; : t € [0,T]). Let (Fi)iepo,r) be the usual augmentation of the
natural filtration generated by B and S = (St)te[O,T] be the standard
geometric Brownian motion

t
S, = ePra,

Zhang [8], Gobet and Temam [5] and others considered the approxi-
mation error
2

(1) infIE | g(5r) — Eg(57) — Z vie1 (S, — Si,_y)
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as the time knots (¢;)!, are deterministic and the v; are certain F;,-
measurable random variables. In [7] stopping times were used and
the identification of the optimal strategy was considered. Quantitative
bounds for the approximation error were not proved. In the present
paper we give a lower estimate of expression (1) for stopping times
0=1<--- <71, =T. It turns out, that for a large class of g this
lower estimate is, up to a factor, the same as the upper bound obtained
for deterministic nets, so that one cannot take advantage from random
time nets in this case. Our main result is

Theorem 1.1. Let (M;)icjo,r) be either the Brownian motion (By)iwcpo,r)
or the geometric Brownian motion (St)icpm and let g : IR — R be a
Borel-function with Il5g(Mr)? < oo. If there are no constants ¢y, c; € IR
with g(Mr) = ¢o + c1 My a.s., then there is some ¢ > 0 such that

= c
fH Myp) — Eg(Mp)] =S v (M, — M, > _C
inf \|[g(Mr) — Eg(Mr))] ;U 1 (M, 1) w7
for all n = 1,2, ..., where the infimum s taken for each n over all
sequences of stopping times 0 = 70 < 7 < --- <71, =T and F,,_,-
measurable v;_y : Q@ — R with Ev? (M, — M,, ,)? < cc.

The theorem is proved in Section 2. First we indicate to what extend
the lower bound is sharp. Let IEg(Yr)? < oo,

ow={, u_¢

for z € IR, and consider
G(t, QT) = ]EMt:xg(MT)

on [0,T)xIR for M = B and [0,T") x(0,00) for M = S, so that G € C*
on its range of definition ?,

oG  a?0°G
2) o T Y
and
oG
g(My) = Eg(M7) + %(u, M,)dM, a.s.
0

by Ito’s formula. The following upper estimate was proved for the
geometric Brownian motion.

IIn fact G € C®((—¢,T) x R) and G € C*®°((—¢,T) x (0,00)), respectively, for
some € > 0, which follows by the arguments of [3] (Lemma A.2) given for g > 0
and M = S.
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Theorem 1.2 ([3]). Let g : (0,00) — IR be a Borel function such that
Eg(S7)* < oo and G(t,z) := Eg(xSr_¢) for (t,x) € [0,T) x (0,00).
Assume that there exists some 0 € [0,1) such that

0*G

SZ——(t,S,)

® sup (T~ 1)’ | 525

te[0,T)

< 0Q.

Lo

Then there exists some ¢ > 0 such that for all n = 1,2,... there are
deterministic nets 0 =tg < t; < --- <t, =T such that

" 0G
g(ST) - ]Eg(ST) - Z %(ti—h Sti—l) (Stz - Sti—l)

i=1

<

Lo

Se

Remark 1.3. (i) Under [Eg(Sr)? < oo, we know from [3] and [2]
that ¢ — ) S20°G (¢, St)‘

t 9z2

ing, and that

[

This is close to condition (3). A detailed investigation of (3) can
be found in [4] (cf. also [1]) and shows in terms of interpolation
spaces that for all reasonable’ g there is a 6 € [0,1) such that
(3) is satisfied. Important examples are g(y) := (y — K)* and
9(y) = X0 (y) for K > 0.

(ii) Concerning Theorem 1.2 an analogous situation for M = B is
outlined in [6]. Moreover, it is shown there that [Eg(S7)? < oo
without an additional assumption (like for example (3)) does
not imply the conclusion of Theorem 1.2.

(iii) The papers [3] and [2] are formulated for non-negative g because
of their interpretation as pay-off function. The proofs are valid
for g : (0,00) — IR, as stated here, without modification.

,t €10,7), is continuous and increas-
Lo

2

dt < oo.
Lo

0%G
S?W(ta St)

2. PROOF OF THEOREM 1.1

Sometimes we shall use E,(-) = IE(:|F,) for ¢ being a stopping
time. Given a sequence of stopping times 0 < 79 < --- < 7, < T and
M € {B, S}, we consider the Kunita-Watanabe type projection

P(Jg) : Ly — Ly given by P(];{)Z = Zvi_l(T, M)(M,, — M,,_,)

=1
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with

IE (Z(Mﬁ B MT¢71)|fT¢71)
IE ((Mn - MTF1)2“’TT¢71)

and A; == {IE (M, — M,,_,)*|F,,_,) # 0}. This projection solves our
approximation problem since

Uifl(T, M) = XA;

Z — Z Ui—l(MTz' - M‘Fifl)

=1

|

Lo

1Z — P(]’T\{)ZHLQ = inf {

Ev? (M, — M,,_,)* < 00,v;_; is ffil-measurable}.

In the proof of Theorem 1.1 we want to restrict ourselves to sequences
of stopping times 0 =719 <7 <--- <7, =T with

2T
sup |7i(w) — i1 (W)] < —

For this we need the following observation.

Lemma 2.1. Assume that 0g,01,...,0n8 : & — [0,T], N > 1, are
stopping times. Then

m := max {min (05, ..., 05y, } | 0<jo<- - <jva <N}

defines a sequence of stopping times 0 < g < n < --- <ny < T such
that for all w € ) one has

{oo(w), .. on(W)} = {mo(w), ..., v (W)} -

The proof is obvious. Moreover, we need

Lemma 2.2. Let 0 <79 <--- <7, <T and0<n <--- <y T
be stopping times such that

{7—0("‘))7 s 7Tn(w)} C {UO(W)> s ,UN(W)}
for all w € Q). Then, given Z € Lo, one has that

. 2
inf IE <Z — Zulﬁl (]wn;C - MTIkl))
k=1 " 2
<infIE <Z — Z'Ui—l (Mn - MTil))

=1
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where the infima are taken over all F,, - measurable uy_, and F,_ -
measurable v;_1 such that

Eu (Mnk — M,m%l)2 <oo and IEv? (Mﬂ. — ]\471._1)2 < 00.

Proof. Assume we are given v;_1, i = 1, ...,n, as above. If we choose

n
Ug—1 = § Uiflﬂ{ﬂ'—1§nk—1<ﬁ'}

i=1
for k =1,..., N, then it follows that u;_, is F;, ,-measurable. Since
(nx) is a refinement of (7;), it holds

N n
Zukfl (Mnk: - Mnk—l) = Zvifl (Mﬂ' - an) :
k=1

=1

Moreover, one quickly checks that

Hukfl(Mnk - mel)HLz < Z Hvifl(M"i o M"ifl)”Lz < 00

i=1

Finally, the following lemma is needed for technical reason.

Lemma 2.3. For a Borel function g : IR — R such that g(My) € Lo,
k,1e€{0,1,2,...}, j € {1,2}, and b € [0,T) one has that
e ’
IE sup <a(Mt)ka(Ms)l—(s,Ms)) < 00.

0<s<t<b oz’

Proof. Letting 1 < p,q < oo with 1 = (1/p) + (1/q) we get that

i e ?
E sup a(Mt) a<Ms) _‘(SaMs)
0<5<t<b oxJ
a(M)? [P\ de 2\ @
< |E _— E M) —(s, M, .
- < ogsgt)gb a(Mg)%—2 osglilg)b a(M,) Oz’ (s, M)

By Holder’s inequality one checks that the first factor is finite for all
1 < p < 00. Hence we have to find an appropriate 1 < ¢ < oo such that
the second factor is finite as well. Here we use the principal idea of [3]
(Lemma A.3) and combine this with the hyper-contraction property of
the Ornstein-Uhlenbeck semi-group. O
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Proof of Theorem 1.1. (a) Let us first assume 6 € (0,7), n €
{1,2,...} with n > 12T, and a sequence of stopping times

2T
(4) 0=0y <--- <0, =T-6 such that sup|o;(w) — 0;_1(w)| < —.
W, n

By the Kunita-Watanabe projection we know that the optimal v; in

T-6 oG n
inf { /0 e — (u, M,)dM,, — Z Vi1 (Mo, — My, ) |

i=1
are given by

Lo

Ev? | (M, — M,, ,)* < 00,v;_1 is fgil—measurable}

0 ox
E ((Ma'i - Ma'i—l)2|f0'i—1)

with 4; := {IE ((M,, — My, ,)*Fs,_,) #0}.

(b) Now we decompose 2%(t, M;). This is done differently in the
case of the Brownian motion and the geometric Brownian motion. In
order to distinguish between the two cases we denote G in the case of
the Brownian motion by G; and in the case of the geometric Brownian
motion by G. From (2) it follows that

(’)QGl 1 83G1 82G2 ZE2 33G2 82G2

geor 20 0 ™ o T r s e 0
on [0,7) x IR and [0,T") x (0, 00), respectively. For 0 < s <t < T Ito’s
formula yields, a.s.,

IE (fTﬂS @(U, Mu)dMu(MUi - Mgi71)|fo—i71>
/Uz‘_l(o-u M) =

XA; -

0G, oG,y oalen
a (t Bt) = W(S,BS) -+ : 8 5 (U,Bu)dBu
0G4 092G,
= 81:(83) 82(sB)(Bt—Bs)
092G, 092G
+/S (W(u78u) - W(S’ Bs)> dB,
= (hy+ hy + hy)(s, 1)
and, a.s.,
0G, B 8G2 L 92a,
W(t,st) = (8 S) ; o a3 (U S )dS

2
/SaG2 -~
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0G, 0*Gy

= (5,80 + 225,50 (S S1)

+/ (a;c?(u S,) — a;G;Q(s S)) dS,

0°G

_/S aQQ(US)du
=: (h 4+ hi+h3+ h3)(s,t).

Given stopping times 0 < ¢ < 7 < T and a path-wise continuous and

adapted process Z = (Zy)ucfo,r] With IEfJT Z a(M,)*du < oo, we let

(5) P(Z,M;o,T)

2
_ ’ I, (Jf, ZodMy (M, — M,))
=, (/U Z,dM,, — G XAl = M)

with A := {IE, (M, — M,)? # 0}. We obtain
Fact 2.4. For 6 € (0,T), € € (0,1/3), and stopping times 0 < o <
T<T—06 witht—0 <e¢ one has, a.s.,
2
() Phalo,), M;o,7) = 4 (550, My)) B, (M) — (M),)’,
(ii) P(hy(o,+),Bio,7) <
2
4?18, SUPy<p<r (%(v, B,) — 8825;1 (o, Bo)> ,
(111) P<h§(07 ')7 S7 g, 7_) S

2 2 2
13—635 < (%(07&)) - aag;G?Z (o, Sa)) Sy,
2
(iv) P(h3(o,-),S;0,7) < €’E, SUpycycyer (S Svaaff (’U,SU)> ;

where ¢ > 0 is an absolute constant and hy := hi if M = B and
hy:=h?if M =S.

We can assume that the bracket processes and h¥ (o, -) are continuous
for all w, the latter on [0, 7]. The basic reason for the lower estimate
in Theorem 1.1 is the lower estimate from the above item (i). We
postpone the proof of the fact and see first how we can use it. From
sup; |o; — 0i1] < 2, P(hj(05-1,+), B;oi—1,04) = 0 as., (a+ b+ c)?
(a%/2) — 2b* — 2¢?, and Fact 2.4 we get that

/T_(s%(uB)dB —zn:v (0, B)(B,, — By, )
o (9.% y Pu u - i—1\0, o g1

2

n

Lo
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- 0G4
= nZIEP ((W(% Bu))ue[gi_l,oi} aB;Ui—l,Ji>

n 0°G, 2 )
> — 1— 7BCT',1 ]EO' . B o — B -
= 92 221(32(01 1)> 1 ((B)o <>2)]
T Xn:IE . 32G1<U B)-
n — O;—1 Ui_lgggai 8332 9 v

> %IE [Zil (8;;1 (0i 1, Ba¢_1)>2 (0 — 01—1)2]
-arteme sy (G30.50-
- 8;;1 (i1, Bai_l)) 2
> QLCIE [g %(UibBﬂiJ (Ui—O'z'l)r

2
—32T%Esup sup (8 Gl(v,Bv)—

i oi<v<o; \ 02

Assume now a sequence of stopping times o™ = (afn))?zo satisfying

condition (4). By Lemma 2.3 and Lebesgue’s dominated convergence
the last term vanishes as n — oco. Consequently, by Fatou’s Lemma,

liminf /n

n—oo

=% o4 ~ ()
/ a—x(u, Bu)dBu — E Ui_l(Bo_{n) - Bo.(“) )
0

=1

Ta

Lo

a

1
> /=
—V 2c

*°G4
Ox?

(u, By)

Lo
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with ,Uz(ﬁ)l = v;_1(c™ B). Let us turn to the geometric Brownian
motion. Using (a + b+ ¢+ d)? > (a?/2) — 4b* — 4¢* — 4d?, we get in
exactly the same way as in the previous case that

2

n

/”aG?( S,)dS,, —Z S)(Sy — Sy )
o o u, V;— 10 oi—1

=1

— nZ]EP<(8G2 Su)) ,S;Uibaz‘)
uE[O’ifl,O'i]

RZE[ h2 02 17')75;01'—1702') —4pP (hg(gz’—lf),S;Ui—l,Ui)

Lo

Vv

—4P (h3(04-1,°), Sy 0i-1,0;) — 4P (h(0i-1, ), S; 0121, 0%) ]

= %E [2 (%(ai_l,&i_l)) Eq, , ((S)o; — <S>U,-_1)2]

1=

12(2T /n)?
—n?—"' " _[Esu su
1—3(2T/n) 3P, %

9*Gy

a2(1}5)

92l 2
- Ox2 <0i1750i1)) S;l

o7\ * 902G, 2
2
ot (B) s (8.5.520)
1 n
—IE
2¢ ;

—967T°Esup  sup

i 0i—1<v<0;

0*Gy

(0-1417502'71) (<S>U'L - <S>Ui1)]

2
05 - G2 05 8t

T3 2 2
3 E sup (S Sp——- G Sv))

—— (v,
N 0<v<u<T—6 Ox?

(82G2 D*G

where we have used that n > 127. Again, assuming a sequence of stop-
ping times o™ = (az("))?:o satisfying condition (4), we get by Lemma
2.3 and Lebesgue’s dominated convergence that the second and the
third term are converging to zero as n — oo, so that

T—6 aGQ
Ox

~—2(u, S,)dS,, —Zvl 15@—5@))

=1

n—oo

Lo
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e

by Fatou’s lemma with U@@1 = v;_1(c™,9).

0?Gy
o2

1
>4/

—V 2c (US)

d<S>u}

Lo

(c) Now take sequences of stopping times 7(") = (Ti(n))?zo with

0=r"<...<W=1

Stopping additionally at points %, k=1..,n—1 we get a new

sequence (77](6271—1))%1_01 according to Lemma 2.1. Taking 6 € (0,7)
and 0,(627%1) = 77,22"71) A (T — &) we get sequences of stopping times

o=l = (01532"_1))i161 with
0=o0p" < <ol =T -6

and
sup |0} () - P (w)| <

T 2T
— <

n — 2n-—1
which is condition (4). By Lemma 2.2 we get

liminf v/n / aG(u M,)dM, —
n 0 or

— E UrL 1 , M (n) MT(n)1>

Lo
> aG(u M,)dM, —
2n—1
- Z Vi— (,’7(271 1)7M)(M (2n—1) — M (2n 1))
i=1 Lo
T—6
oG
> —(u, M,)dM, —
> o (0, MM,
2n—1
—Z’UZ, (2n—1) )(M(2n 1)_M(2n1)
Lo
\/>\/» T—6 82
> M M )
- 2c 022 (1, M)| M. Lo
(d) Assuming ﬁnally
9*G
M| d{M), =0
\/ G e M) atan). |
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IE/OT (0232_@> (u, M,)

Ox?
as well, so that the arguments of [3] (Lemma 4.8) give the existence of
constants ¢g, ¢; € IR such that g(Mr) = ¢ + c1 Mp a.s. O

implies
2

du =20

Proof of Fact 2.4. (i) First we remark that

e 2
1 — (0. M M,)?
+ (89&2 (o, J)) ] a(M,) du < oo,

IE [(Mu — M,)?

where one can use Lemma 2.3. Moreover, it is easy to see that it is
enough to prove assertion (i) with (9°G/dz?)(o, M,) replaced by 1. By
[t6’s formula we get, a.s.,

I, (M, = M,)" = 3, [ (3, — M) d(an),

and .
B, (M, — M,)* = 6]E(,/ (M, — M,)* d(M),.

Consequently, by Holder’s inequality,

(. [ -1y d<M>u)2

1
= 5 (B (M, = M,)*)”
1
< G (M, - M, E, (M, — M,)"
2 T
= B, (M - MU)QIEU/ (M, — M,)*>d(M), a.s.

so that
1 T
glEg/ (M, — M,)* d(M),

T 2
(B, [, (M — My) d{M),)
E, (M, — M,)*
On the other hand, the Burkholder-Davis-Gundy and Doob’s maximal

inequality give

Y, (M) — (M),)?

< ]EU/ (M, — M,)* d(M), — X4 a.s.

IN

IE, sup (M, — MU)4

o<u<t

< dIE (M, — M,)*
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4 2
— 6dTE, / (M, — M,)2d(M), as.
g

for absolute ¢, d > 0 so that

1 2
Toeq Be (M), — (M),)
T , (E, [T (M, — M,)d(M),)"
< IE(,/U (M, — M,)"d{M), — E, 0L _ ,)° XA a.s.

and the assertion follows.

(ii) We have, a.s.,
P(hy(o,-), B; o, 7')

< E, /
82Ch7 82Ch 2
- E/ V (aa:2 ’B”)_W(UaBg))dBv] du
aQGl aZGl 2
s [ [ (280 - 2G5 ) o]

2 2 2
< 45]E/<8G1 v, B,) — aGl@B)) dv

IN

a 2
0°Gh 0°Gi ’
(G050 = o))

where we applied Doob’s maximal inequality.

(iii) Let A(v) == £% (v, S,) — 2% (0, S,). Then, as.,

Ox2 Ox2

< 4’ E, sup
o<v<T

P(h3(0,-),S;0,7) < Ea/ [h3)% (o, u)SEdu

_ &, /(, ' [ /(, uA(v)dSv} P

/UUA(v)dSU > N} AT.

Now we estimate IE, [T [ [ A(v)dS, ] ? S2du from above. We have that

™ n 2
IEJ/ {/ A(v)dsv} S2du

For N € {1,2,...} we let

Ty = inf {t € [o,7]|
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(o4u)ATN 2
<E, / / A(v)dS, S(Qg+u)/\mdu a.s.

[to’s formula implies, a.s.,

2

(o+u)ATn
I, / A(v)dS, S(20'+u)/\TN

(o+u)ATN
= I, / A(t)%S}tdt

(o+u)ATN t 2
+IE, / ( / A(u)dSu) SZdt
0 (o+u)ATn t
+41E, / ( / A(u)d5u> A(t)S? dt

0'+u /\TN
< 3E, / t)2Sidt

(o+u)ATNn t 2
+3E, / ( / A(u)dSu) S2dt

< 3E, / t)2S, dt
™ t 2
+3 IE)U/ (/ A(u)dSu) SZdt.
As a result, a.s.,

E, / v [ / uA(v)dSvr S2du

o'+u ATN
IE / / ( )dSU S(ZO'Jru)/\TNdu

TN 2
< 3R, / t)2Sidt + 3¢IE, / { / A(u)dSu} S2dt,
which implies, a.s.,
™ u 2
]EU/ [/ A(v)dSv} S2du

3e ™ (52, 892Gy o
< .
< ok [ (GRws) - GRes)) s

IA
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3e2 092G 092G 2
]EO' sup (W(ua Su) D2 (U S, )) S’i

o 1— 35 o<u<rt

Letting N — oo implies the assertion.

[1]

2]

(iv) The last inequality follows from

P(n3(0,-),S;0,7))
< ]Eg/ [h§]2(0,u)52du

= I, / (/ 82@2(05)65 )QSidu

2 2
< ¢lE, // (8 G2 ,SU)) S2dvS2du
902G 2
< ¢’E, sup (SS - (U,Sv)> :
o<v<u<Tt @
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