THE POINCARE INEQUALITY IS AN OPEN ENDED
CONDITION

STEPHEN KEITH AND XTAO ZHONG

ABSTRACT. Let p > 1, and let (X,d, u) be a complete metric measure space that
admits a (1, p)-Poincaré inequality, with x4 a doubling Borel regular measure. Then
there exists € > 0 such that (X, d, ) admits a (1, g)-Poincaré inequality for every
q > p — €, quantitatively.

1. INTRODUCTION

Possibly the most famous example of a self-improving inequality is the reverse
Hélder inequality, and was discovered by Gehring ([8]). This example of self-
improvement can be vaguely summarized by saying that if a function is good on
all balls, as expressed by an integrability condition, then the function is actually
a little bit better on all balls than we first thought. In this paper we present an
analogous, albeit vastly different, result for metric measure spaces. We show that if
the geometry of a metric measure space is well behaved at all locations and scales,
as expressed by a Poincaré inequality, then it too is better at all locations and
scales than we first thought. We now state this result precisely using terminology
explained in Section 2; we then provide several applications, and give an example
that demonstrates certain sharpness of the result.

Theorem 1.0.1. Let p > 1, and let (X,d, u) be a complete metric measure space
that admits a (1, p)-Poincaré inequality, with p a doubling Borel regular measure.
Then there exists € > 0 such that (X, d,p) admits a (1,q)-Poincaré inequality for
every q > p — €, quantitatively.

There are many natural and exotic examples of metric measure spaces that sup-
port a Poincaré inequality; an extensive list can be found in [21, 24]. We emphasize,
however, that the results of this paper are not only new in the case of abstract met-
ric measure spaces. Rather, they are also new in the case of Riemannian manifolds,
graphs, and measures on Euclidean space that are doubling and admit a Poincaré
inequality. Poincaré inequalities have been widely studied in all such settings.

For example, weights on Euclidean space that, when integrated against, give rise
to doubling measures that support a (1, p)-Poincaré inequality, p > 1, are known
as p-admissible weights, and are particularly pertinent in the study of the nonlinear
potential theory of degenerate elliptic equations; see [16, 6] (the fact that above
definition for p-admissible weights coincides with the one given in [16] is proven
in [13]). It is known that the A, weights of Muckenhoupt, are p-admissible for
each p > 1 (see [16, Chapter 15]). However, the converse is not generally true for
any p > 1 (see [16, p. 10], and also the discussion following [23, Theorem 1.3.10]).
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Nonetheless, we see from the following corollary to Theorem 1.0.1, that p-admissible
weights display the same open ended property of Muckenhoupt’s A, weights.

Corollary 1.0.2. Let p > 1 and let w be a p-admissible weight in R", n > 1. Then
there exists € > 0 such that w is q-admissible for every q > p — €, quantitatively.

For complete Riemannian manifolds, Saloff-Coste ([34, 35]) established that sup-
porting a doubling measure and a (1, 2)-Poincaré inequality is equivalent to admit-
ting the parabolic Harnack inequality, quantitatively (Grigor'yan ([10]) also inde-
pendently established that the former implies the latter). The latter condition was
further known to be equivalent to Gaussian-like estimates for the heat kernel, quanti-
tatively (see for example [35]). Thus by Theorem 1.0.1 we see that each of these con-
ditions is also equivalent to supporting a doubling measure and a (1,2 — €)-Poincaré
inequality for some € > 0, quantitatively. We remark that relations between (1, 2)-
Poincaré inequalities, heat kernel estimates, and parabolic Harnack inequalities have
been established in the setting of Alexandrov spaces by Kuwae, Machigashira, and
Shioya ([32]), and in the setting of complete metric measure spaces that support a
doubling Radon measure, by Sturm ([40]).

Heinonen and Koskela ([17, 18, 19], see also [15]) developed the notion of a
Poincaré inequality and the Loewner condition for general metric measure spaces; the
latter being a generalization of a condition, proved by Loewner ([33]) for Euclidean
space, that quantitatively describes metric measure spaces that possess a plenti-
tude of rectifiable curves. Heinonen and Koskela demonstrated that quasiconformal
homeomorphisms (the definition of which is given through an infinitesimal metric
inequality) display certain global rigidity (that is, are quasisymmetric), when map-
ping between Loewner metric measure spaces with certain upper and lower measure
growth restrictions on balls. They further showed that metric measure spaces with
certain upper and lower measure growth restrictions on balls, specifically, Ahlfors
a-regular metric measure spaces, o > 1, are Loewner if and only if they admit a
(1, &)-Poincaré inequality, quantitatively. By Theorem 1.0.1 we see then that the
following holds:

Theorem 1.0.3. A complete Ahlfors a-reqular metric measure space, o > 1, 1is
Loewner if and only if it supports a (1, — €)-Poincaré inequality for some € > 0,
quantitatively.

We now briefly consider a consequence of the above theorem in Gromov hyperbolic
geometry. Laakso and the first author ([25]) demonstrated that complete Ahlfors a-
regular metric measure spaces, a > 1, can not have their Assouad dimension lowered
through quasisymmetric mappings if and only if they possess at least one weak-
tangent that contains a collection of non-constant rectifiable curves with positive
p-modulus, for some or any p > 1. There is no need here to pass to weak tangents
for complete metric measure spaces that are sufficiently rich in symmetry. Indeed,
Bonk and Kleiner ([3]) have shown that such metric measure spaces, as described
above, that can be identified as the boundary of a Gromov hyperbolic group, are
then Loewner. By Theorem 1.0.3 we see that such metric measure spaces further
admit a (1, a — €)-Poincaré inequality for some € > 0, quantitatively.

We now apply Theorem 1.0.3 to obtain a new result for quasiconformal and qua-
sisymmetric homeomorphisms between general metric measure spaces. Heinonen
and Koskela [19, Theorem 7.11] have shown that pullback measure of a quasisym-
metric homeomorphism, from a complete Ahlfors a-regular metric measure space
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that supports a p-Poincaré inequality, to a complete Ahlfors a-regular metric space,
is an A, weight in the sense of Muckenhoupt if 1 < p < «, quantitatively. This
extended classical results of Bojarski ([2]) in R? and Gehring ([9]) in R™, n > 3.
For the critical case, that is, when p = o, Heinonen, Koskela, Shanmugalingam, and
Tyson ([20, Corollary 8.15]) showed that a quasisymmetric homeomorphism, from a
complete Ahlfors a-regular Loewner metric measure space to a complete Ahlfors a-
regular metric space, is absolutely continuous with respect to a-Hausdorff measure.
This left open the question of whether the given quasisymmetric homeomorphism
actually induces an A, weight. By applying Theorem 1.0.3 in conjunction with [19,
Theorem 7.11] we see that it does. We now state this formally.

Theorem 1.0.4. Let (X,d,pn) and (Y,l,v) be complete Ahlfors a-regular metric
measure spaces, o > 1, with (X,d, u) Loewner, and let f : X — Y be a quasisym-
metric homeomorphism. Then the the pullback f*v of v by f is A related to u,
quantitatively. Consequently there ezists a measurable function w : X — [0, 00)
such that df*v = wdu, and such that

1/(1+€)
<][ w'Te d,u) < C’][ wdp,
B B

for every ball B in X, quantitatively.

We now consider further applications of Theorem 1.0.1 to nonlinear potential
theory, but this time with an emphasis on general metric measure spaces. There are
several papers on nonlinear potential theory where the authors make the standing
hypotheses that a given measure on R" is g-admissible, or that a given metric
measure space is complete and supports a doubling Borel regular measure and a
g-Poincaré inequality, for some 1 < ¢ < p, where p is the “critical dimension” of
analysis. This includes papers by Bjorn, MacManus, and Shanmugalingam ([1]),
and Martio and Kinnunen ([27, 28]). It follows by Theorem 1.0.1 that in each
of these cases, the standing assumption can be replaced by the a priori weaker
assumption that the given complete metric measure space supports a doubling Borel
regular measure and a p-Poincaré inequality. Also, Kinnunen and Shanmugalingam
([29]) have shown in the setting of metric measure spaces that support a doubling
Borel regular measure and a (1, ¢)-Poincaré inequality (in the sense of Heinonen
and Koskela in [19]; see Section 1.2), that quasiminimizers of p-Dirichlet integrals
satisfy Harnack’s inequality, the strong maximum principle, and are locally Holder
continuous, if 1 < ¢ < p. Here, unlike the cases mentioned above, in order to apply
Theorem 1.0.1 and weaken the hypotheses concerning the Poincaré inequality, we
need to impose the additional hypothesis that the given metric measure space is
complete. We then obtain the following:

Theorem 1.0.5. Quasiminimizers of p-Dirichlet integrals, on complete metric mea-
sure spaces that support a Borel doubling Borel reqular measure and a (1, p)-Poincaré
inequality, p > 1, satisfy Harnack’s inequality, the strong mazimum principle, and
are locally Holder continuous, quantitatively.

We now consider applications of Theorem 1.0.1 to the theory of Sobolev spaces
on general metric measure spaces. Alternate definitions for Sobolev-type spaces
on metric measure spaces have been introduced by a variety of authors. Here we
consider the Sobolev space Hy,(X), p > 1, introduced by Cheeger in [4], the New-
tonian space N (X) introduced by Shanmugalingam in [39], and the Sobolev space
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M*?(X) introduced by Hajlasz in [11] (we have used the same notation as the re-
spective authors, and do not intend to recall the definitions of these Sobolev-type
spaces). It is known that in general this last Sobolev-type space does not always
coincide with the former two; see [39, Examples 6.9 and 6.10]. Nonetheless, Shanmu-
galingam has shown that H; ,(X) is isometrically equivalent in the sense of Banach
spaces to N'?(X), for p > 1, whenever the underlying measure is Borel regular;
and furthermore, that all of the above three spaces are isomorphic as Banach spaces
whenever the given metric measure space X supports a doubling Borel regular mea-
sure and a (1, ¢)-Poincaré inequality for some 1 < ¢ < p (in the sense of Heinonen
and Koskela in [19]), quantitatively; see [39, Theorem 4.9 and 4.10]. By Theorem
1.0.1 we see then that the following holds:

Theorem 1.0.6. Let X be a complete metric measure space that supports a dou-
bling Borel regular measure and a (1, p)-Poincaré inequality, p > 1. Then Hy ,(X),
MY (X), and N'?(X) are isomorphic, quantitatively.

1.1. Self-improvement for pairs of functions. One might be tempted to hope
that results analogous to Theorem 1.0.1 hold for pairs of functions that are linked
by Poincaré type inequalities, regardless of whether the given metric measure space
supports a Poincaré inequality. Indeed, Hajlasz and Koskela [14, p. 19] have asked if
given u, g € LP(X) that satisfy a (1, p)-Poincaré inequality, where p > 1 and (X, d, u)
is a metric measure space with p a doubling Borel regular measure, whether the pair
u, g also satisfy a (1, ¢)-Poincaré inequality for some 1 < ¢ < p. Here, a pair u, g is
said to satisfy a (1, q)-Poincaré inequality, ¢ > 1, if there exist C, A > 1 such that

1/q
(1) ]/ U — up|dp < Cr (/ g? d,u) ,
B(z,r) B(x,\r)

for every z € X and r > 0. The next proposition demonstrates that the answer to
this question is no.

Proposition 1.1.1. There exists an Ahlfors 1-reqular metric measure space such
that for every p > 1, there exists a pair of functions u,g € LP(X) and constants
C,\ > 1 such that (1) holds with ¢ = p for every x € X and r > 0, and such that
there does not exist C,A > 1 such that (1) holds with ¢ < p for every x € X and
r > 0.

1.2. A note on the various definitions of a Poincaré inequality. There are
several different definitions for a Poincaré inequality on a metric measure space,
that is, definitions that might not necessarily hold for every metric measure space,
but that still make sense for every metric measure space. This partly arises in this
general setting because the notion of a gradient of a function is not always easily
defined, and because it is not clear which class of functions the inequality should
be required to hold for. Nonetheless, most reasonable definitions coincide when the
metric measure space is complete and supports a doubling Borel regular measure. In
particular, the definitions of Heinonen and Koskela in [19], Semmes in [38, Section
2.3], and several other definitions of the first author, including the definition adopted
here (Definition 2.2.1), all coincide in this case; some of this is shown by the first
author in [22; 23|, the rest is shown by Rajala and the first author in [26].
Theorem 1.0.1 would not generally be true if we removed the hypothesis that the
given metric measure space is complete, although, this depends on which definition
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is used for the Poincaré inequality. In particular, it would not generally be true
if one used the definition of Heinonen and Koskela in [19]. For each p > 1, an
example demonstrating this is given by Koskela in [30], consisting of an open set
Q in Euclidean space endowed with the standard Euclidean metric and Lebesgue
measure. The main reason that our proof fails in that setting (as it should) is that
Lipschitz functions, and indeed any subspace of the Sobolev space W'?(Q) contained
in Wh4(Q), is not dense in W4(Q2) for any 1 < ¢ < p. (Here WH(Q), r > 1, is
the completion of the real-valued smooth functions defined on €2, under the norm
| - [l1,r given by ||ull1, = ||ullr + || |Vul]|s.) Indeed, our proof works at the level of
Lipschitz functions, and establishes the self-improvability of the Poincaré inequality
only for Lipschitz functions. In the case when the metric measure space is complete
and supports a doubling Borel regular measure, we can then appeal to results of the
first author and Rajala ([26]), and the first author ([22, 23]), to recover the improved
Poincaré inequality for all functions.

The definition adopted in this paper for the Poincaré inequality (Definition 2.2.1)
is preserved under taking the completion of the metric measure space, and still holds
if one removes any null set with dense complement. Consequently, the assumption in
Theorem 1.0.1 that the given metric measure space is complete, is superfluous. We
merely included it so as not to cause the reader confusion when comparing against
other papers that use a different definition for the Poincaré inequality. Also, the
reader may be concerned that we only consider (1,p)-Poincaré inequalities in this
paper, and not (g, p)-Poincaré inequalities for ¢ > 1, that is, where the L' average
on the left is replaced by an L? average (see Definition 2.2.1). Our justification for
doing this comes from the fact, as proven by Hajlasz and Koskela [14], that a metric
measure space that supports a doubling Borel regular measure and a (1, p)-Poincaré
inequality, p > 1, then also supports the a priori stronger (g, p)-Poincaré inequality,
for some ¢ > p, quantitatively.

1.3. Outline. In Section 2 we recall terminology and known results. The proof
of Theorem 1.0.1 is contained in Section 3. Any further discussion required for
Theorems 1.0.3, 1.0.4, 1.0.5 and 1.0.6 can be found in Section 4. The proof of
Proposition 1.1.1 is also contained in Section 4.

1.4. Acknowledgements. Some of this research took place during a two week stay
in Autumn 2002, by the first author at the University of Jyvaskyld. During this time
the first author was employed by the University of Helsinki, and supported by both
institutions. The first author would like to thank both institutions for their support
and gracious hospitality during this time. The authors would also like to thank Juha
Heinonen and Pekka Koskela for proof reading the paper.

2. TERMINOLOGY AND STANDARD LEMMAS

In this section we recall standard definitions and results needed for the proof of
Theorem 1.0.1. With regard to language, when we say that a claim holds quantita-
tively, as in Theorem 1.0.1, we mean that the new parameters of the claim depend
only on the previous parameters implicit in the hypotheses. For example, in The-
orem 1.0.1 we mean that € and the constants associated with the (1,q)-Poincaré
inequality depend only on the constant p, the doubling constant of y, and the con-
stants associated with the assumed (1, p)-Poincaré inequality. When we say that two
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positive reals x, y are comparable with constant C' > 0, we mean that z/C < y < Cx.
We use x|w to denote the characteristic function on any set W.

2.1. Metric measure spaces, doubling measures, and Lip. In this paper
(X,d, ) denotes a metric measure space and p is always Borel regular. We will
use the notation |E| to denote the y-measure of any measurable set £ C X. The
ball with center z € X and radius » > 0 is denoted by
B(z,r) ={y € X : d(z,y) <r},
and we use the notation
AB(z,7) ={y € X : d(z,y) < Ar},

whenever A > 0. We write

i)
Ug = — ud,uz][ ud,
Al Ja A

for every A C X and measurable function u : X — [—00,00]. The measure p is
said to be doubling if there is a constant C' > 0 such that
|B(z,2r)| < C|B(z,r)],
for every x € X and r > 0.
Lemma 2.1.1. [15, pp. 103-104] Let (X, d, ) be a metric measure space with p

doubling. Then there exists constants C,a > 0 that depend only on the doubling
constant of u, such that
Bl (1)“
|B(z, R)| — R’
whenever 0 <r < R <diam X, z € X, and y € B(z, R).
A function u : X — R is said to be L-Lipschitz, L > 0, if

u(z) —u(y)| < Ld(z,y),
for every x,y € X. We often omit mention of the constant L and just describe such
functions as being Lipschitz. Given a Lipschitz function v : X — R and =z € X,

e (o) - u(y)
) u(z) — u(y
Lipu(z) = sup —————.
The following lemma can be easily deduced from Lemma 2.1.1; compare with the
proof of [22, Proposition 3.2.3].

Lemma 2.1.2. Let (X,d, 1) be a metric measure space with p doubling, and let f
and g be real-valued Lipschitz functions defined on X. Then Lip f = Lipg almost
everywhere on the set where f = g.

2.2. The Poincaré inequality and geodesic metric spaces. We can now state
the definition for the Poincaré inequality on metric measure spaces to be used in
this paper; see also Section 1.2.

Definition 2.2.1. A metric measure space (X, d, 1) is said to admit a (1, p)-Poincaré
inequality, p > 1, with constants C;, A > 1, if the following holds: Every ball con-
tained in X has measure in (0, 00), and we have

1/p
(2) ][ U — up(g | dp < Cr (f (Lipu)? d,u) ,
B(z,r) B(z,Ar)
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for every z € X and 0 < r < diam X, and for every Lipschitz function v : X — R.

If (X,d,p) is complete and supports a (1, p)-Poincaré inequality and a doubling
measure, then (X, d, i) is bi-Lipschitz to a geodesic metric space, quantitatively; see
[23, Proposition 6.0.7]. We briefly recall what these words mean and refer to [15]
for a more thorough discussion. A metric space is geodesic if every pair of distinct
points can be connected by a path with length equal to the distance between the
two points. A map f : Y3 — Y5 between metric spaces (Y7, p1) and (Y3, po) is
L-bi-Lipschitz, L > 0, if for every z,y € Y; we have

%Pl(x,y) < p2(f(2), f(y)) < Lpi(, y).

Two metric spaces are said to be L-bi-Lipschitz, or just bi-Lipschitz, if there exists
a surjective L-bi-Lipschitz map between them.

One advantage of working with geodesic metric spaces is that if (X,d,p) is a
geodesic metric space that supports a doubling measure and a (1, p)-Poincaré in-
equality, then (X,d,u) admits a Poincaré inequality with A = 1 in (2.2.1), but
possibly a different constant C' > 0, quantitatively; see [15, Theorem 9.5]. The next
lemma extends this result.

Lemma 2.2.2. Let (X, d, i) be a geodesic metric space, with p doubling, that admits

a (1,p)-Poincaré inequality. Then every ball in X, viewed as a metric subspace,
admits a (1, p)-Poincaré inequality, quantitatively.

Proof. This is quite standard and so we only give an outline. Let B be a ball in X.
Since (X, d) is geodesic, the following holds whenever z € B is contained in some
ball By of the metric subspace B (that is, B; is the restriction to B of a ball in X
centered in B) : There exists a chain of balls {B; : i =2,3,...} in X with B; C B
for 7+ > 2, such that for every 7 € N, we have

27" 2djam B < diam B; < 2“2 diam B,

and the intersection B; N B;;; contains a ball F' in X such that B; U B;;; C 10F.
One can now proceed as in the proof of [15, Theorem 9.5]. O

Another convenient property of geodesic metric spaces is that the measure of
points sufficiently near the boundary of any ball is small. This claim is made precise
by the following result that appears as Proposition 6.12 in [4], where it is accredited
to Colding and Minicozzi II [5].

Proposition 2.2.3. Let (X,d, u) be a geodesic metric measure space with p dou-
bling. Then there exists C > 0 that depends only on the doubling constant of p such
that

|B(x,)\ B(x, (1 - &)r)| < 6B(,r)],

for every x € X and 6,7 > 0.

2.3. Maximal type operators. Given a Lipschitz function v : X — R and
r € X, we set

1
M#u(z) = sup —]/ lu — ug|du,
B TJ B

for every x € X, where the supremum is taken over all y € X and r > 0 such
that B = B(y, ) contains x. This sharp fractional maximal operator should not be
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confused with the uncentered Hardy-Littlewood maximal operator which we denote
by

Mu(z) = supf fu di,
B B

for every x € X, where the supremum is taken over all balls B that contain x. The
following lemma, is folk-lore; a similar proof to a similar fact can be found in [15, p.
73].

Lemma 2.3.1. Let (X,d,pn) be a metric measure space with p doubling, and let
u : X — R be Lipschitz. Then there exists C' > 0 that depends only on the
doubling constant of i such that

u(z) — upg,n| < CrM*u(z),
whenever r >0, y € X, and x € B(y,r). Consequently, the restriction of u to
{z € X: MPu(z) < A}
18 20 \-Lipschitz.

3. PROOF OF THEOREM 1.0.1

3.1. The first reduction. We begin the proof of Theorem 1.0.1 with several re-
ductions. Let (X,d, ;) be a metric measure space, with p doubling, that admits a
(1, p)-Poincaré inequality, p > 1. In what follows we let C' > 0 denote a varying
constant that depends only on the data associated with the assumed (1, p)-Poincaré
inequality, the doubling constant of i, and p. This means that C denotes a positive
variable, whose value may vary between each usage, but is then fixed, and depends
only on the data outlined above.

Observe that our given definition for the (1, p)-Poincaré is invariant under taking
the completion of the metric measure space, and under removing null sets with dense
complement. Thus our assumption in Theorem 1.0.1, that the given metric space is
complete, is not necessarily; see Section 1.2. Nonetheless, by taking the completion,
we assume from now on that (X, d) is complete. As explained in Section 2.2, under
our given hypotheses, we then have (X, d) is bi-Lipschitz to a geodesic metric space.
Now, the property of admitting a (1, ¢)-Poincaré inequality, ¢ > 1, is quantitatively
preserved under bi-Lipschitz maps; here we take the measure on the image of the
map to be the push forward measure. Thus, without loss of generality, assume that
(X, d) is geodesic.

Fix a ball B in X and a Lipschitz function u : X — R. To prove Theorem 1.0.1
it suffices to show that there exists € > 0 such that

(3) f Ju=ug|dp < C(diam B (f (Lipuy™ d,u) =

The claim of Theorem 1.0.1 then follows by Holder’s inequality. Without loss of
generality, due to the scale invariance of the Poincaré inequality, assume that B
has unit diameter and measure. By Lemma 2.2.2 we have that B admits a (1, p)-
Poincaré inequality, quantitatively. Therefore, without loss of generality, by another
bi-Lipschitz change of metric, and by passing to the completion of B, we can further
assume that B = X. (The bi-Lipschitz change of metric is needed to ensure that we
maintain the property that (X, d) is geodesic.)
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The next proposition contains the main part of the proof of Theorem 1.0.1. In
order to state the proposition we first let

Uy={z € X : M*u(z) > A},
for every A > 0. We always consider U, to depend on u, so that if we re-scale wu,
then U, will be given by the formula above with the new u.

Proposition 3.1.1. For every a € N, there exists k € N that depend only on C
and o, such that

|Unl <277\ Uyiy| + 87| Ugsy |

4
@ + 8¥P ) |[{z € X : Lipu(z) > 87%\}|

for every A > 0.

We will postpone the proof of the above proposition till later, and instead now
use it to deduce Theorem 1.0.1. Let @ = 3 and then let £ € NN be as given by
Proposition 3.1.1. Choose 0 < € < p — 1 so that 8% < 2. We now integrate (4)
against the measure dA\P~¢, and over the range (0, c0), to obtain

/ Uy | dAr—e <gke? / Ui | d(25 )7~
0

0

+ 8k / |Uger| d(8"X)P
0

-+ﬁ@“ﬂ/ {o € X : Lipu(x) > 87*A} dN~.
0

Consequently, we have

ke
/ (M*u)P~dp < % (M*u)P~¢dp+ C / (Lipu)”dpu,
X X X

and therefore, by our choice of ¢, we have

/ (M#u)P~¢du < C/ (Lipu)P~“ dpu.

X X

This then implies (3); to see this observe that left hand side of the above equation
trivially dominates the left-hand side of (3).

Thus to complete the proof of Theorem 1.0.1, it remains to prove Proposition 3.1.1
in the case when (X, d, ) is a complete, geodesic metric measure space, with unit
diameter and measure, that admits a (1, p)-Poincaré inequality. (The reader may
wonder why we stated Proposition 3.1.1 with general @ € N even though we only
use a = 3. Our justification for doing this is that it makes the proof of Proposition
3.1.1 easier; in particular, it allows us to keep track of accumulating constants in a
more relaxed manner, especially during the proof of Lemma 3.2.1 below.)

3.2. The second reduction. We proceed with another reduction.

Lemma 3.2.1. In order to prove Proposition 3.1.1, we can, without loss of gener-
ality, further assume that A =1, and that

(5) /Wu—uﬂduzL
X
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Proof. We will now assume that Proposition 3.1.1 holds for any metric measure
space under the assumptions given in and before Lemma 3.2.1, and then use this to
prove Proposition 3.1.1 in its entirety.

Fix A > 0 and suppose without loss of generality that Uy # (). Then let F be the
collection of balls B in X such that

(6) A<

— < .

We can choose the constant C' > 1 here so that F is a cover of U, (this usage of C
depends only on the doubling constant of 1). Indeed, for any point z € U,, there is
a ball B such that

A<

5 lu- usld
diamB Bu uplap:

If
1

_— — du < )\
diam?B][QB‘u uzp|dpp < A,

then we let B be in the collection. Otherwise we consider 4B and so on, and
eventually find a ball containing z, and such that the above two inequalities hold;
and therefore such that (6) holds.

We use the fact that u has bounded support to deduce that the members of F have
uniformly bounded diameter. This allows us to apply a standard covering argument
([15, Theorem 1.2]) and so obtain a countable subcollection {B;};c; of F, consisting
of mutually disjoint balls in X such that Uy, C U;c/5B;; here I = {1,2,...} is a
possibly finite index set. To prove (4) it then suffices to prove that for every a € N,
there exists £k € N that depend only on C' and «, such that

|Bz| SQkp_a|U2k,\ ﬂ Bz| + 8kp_a|U8k/\ ﬁ Bz|

7
") + 8¥e*tD | {2 € B; : Lipu(z) > 8 *\}|
for every ¢ € N.

Fix 2 € N and let

, 1
M#u(z) = sup —][ |u — upng,| du,
B TJ BnB;
for every x € B;, where the supremum is taken over all w € B; and r > 0 such
that B = B(w,r) contains z. (That is, M# is given by the usual definition of M#,
except that it is taken on B; viewed as a metric measure subspace). Then define

Ul = {z € B;: M*'u(x) > s},

for every s > 0. By Lemma 2.2.2 and because B; is a ball in a geodesic space, we
have that B;, when viewed as a metric measure subspace, admits a (1, p)-Poincaré in-
equality with constants that depend only on C'. By the remarks following Definition
2.2.1 we have the closure of B; is bi-Lipschitz to a geodesic metric space.

Thus we can apply the assumed hypotheses to B;. (Here we use the fact that the
claim of Proposition 3.1.1 is invariant under bi-Lipschitz maps.) It then follows by a
standard re-scaling argument, that for every a € N, there exist k¥ € N that depend
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only on C and «, such that
|Bi| <277%|Upsy| + 877Uy

+ 8¥e | {2 € B; : Lipu(z) > 8 *¥\}|.

To see that this implies the desired estimate (7), it suffices to prove that U’ C Ug,
for every s > 0. However, this inclusion follows from the estimate

M#y(z) < CM#u(x)

for every z € B;, which is itself an easy consequence of the fact that y is doubling,
and that B; is a ball in a geodesic metric space. This completes the proof. U

3.3. The crux of the proof. We continue the proof of Proposition 3.1.1 under the
further assumptions outlined in and before Lemma 3.2.1. Fix o € N and suppose,
in order to achieve a contradiction, that (4) does not hold with A = 1. We continue
to let C' > 0 denote a varying constant (the meaning of which was explained at the
beginning of Section 3.1), but now one that depends only on the data associated
with the assumed (1,p)-Poincaré inequality and the doubling constant of u, and
also a. During the remainder of the proof we will specify a fixed and finite number
of lower bounds for &, required for the proof to work. These lower bounds depend
only on C'. To realize the contradiction at the end of the proof, and thereby prove
Lemma 3.2.1, we then take k£ to be equal to the maximum of this finite collection of
lower bounds. Keeping all this in mind, let £ € N.

We begin by making the observation that since, as assumed above, the estimate
(4) does not hold with A = 1, and since (5) does hold, and X has unit measure, it

follows that
(8) ‘U2k| < 2—kp—|—a7 |U8k| < 8—kp—|—047 and
{z € X : Lipu(z) > 8%} < 87*@+D),

The next lemma demonstrates that u has some large scale oscillation outside Usx.
Lemma 3.3.1. We have

/ lu — UX\U,, |du > C.
X\ng

Proof. We exploit (8). Without loss of generality, by a translation in the range of
u, we can assume that ux\y,, = 0. Thus we need to show that

/ uldu > C.
X\U,p,

Let G be the collection of balls B in X such that
(9) [B\Uyn|>[B|/4 and [BNUy|> |B|/4.

For later use we observe that (8), together with Lemma 2.1.1, implies that each such
B satisfies

(10) diam B < C~Fte,
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Since (X,d) is geodesic, we can apply Proposition 2.2.3 in a straightforward
manner to conclude that G is a cover of Uyr. Indeed, fix x € Uy, and define
h:(0,1] — R by

| B(z,) N Us|

|B(z, )|
Since M# is uncentered maximal-type operator, we have U, is open, and therefore
h(§) = 1 for some § > 0. We also have h(1) = |Uy| < 27%F¢. Finally, Proposition
2.2.3 implies that h is continuous. Therefore there exists 7 > 0 such that h(r) =
1/4. This proves the claim. We now apply a standard covering argument (see [15,
Theorem 1.2]) and so obtain a countable subcollection {B;};c; of G consisting of
mutually disjoint balls in X such that Uy C U;es5B;; here J = {1,2,...} is a
possibly finite index set.

We now divide Uy amongst the members of {B;};c;. Let

E;=5B;, EP?=B;\Uy, and E/=B;NUx,
for each 7 € J. Notice that by construction and by (9) we have that
(11) |Ei| < Cmin{|E?], |E; |},

that {F;}ics is a cover of Uy, and that {E]},c; and {EP}c; are collections of
mutually disjoint measurable sets. Note that I and O stand for inside and outside,
respectively.

It follows from these just stated properties and (5) that

1§/ |u—uX\d,u§2/ \u|d,u§2/ \u|d,u+22/ lu| du,
X X X\U,k E;

h(r) =

ieJ
whereas
S [ uldu< Y B fugpl + 3 [ fu =gl du
icg ¥ Bi ied icg ¥ Bi
SC/ |u|d,u+C’Z/ lu — ugo| du,
X\U,k ics Y B ‘
and therefore
(12) 1<C \u\du—l—C’Z/ lu — ugo| dp.
X\U,k icg Vi '

Consequently, to complete the proof we need to show that for sufficiently large
k € N, that depends only on C, that the right-hand most term in (12) is less than
1/2. We use (11), and then the fact that E; intersects the complement of Us, to
obtain

][ lu — ugo|dp < C/ lu — ug,| du < C2* diam(E;),
E. .

2 E’L

for every i € J. Thus, the right-hand most term of (12) is bounded by
C2* <sup diamBi> Z | E;|.
et icJ
We now apply (10) and (11) to bound the above sum by
CkCre N "Bl < CokCTMre Uy | < C20PkCRrte,

icJ
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We conclude that for sufficiently large £ € N, that depends only on C, that the
right-hand most term in (12) is less than 1/2. This completes the proof. Note that
this part of the proof did not really require the fact that p > 1. O

We now remove the small scale oscillation from u while still preserving the large
scale oscillation.

Lemma 3.3.2. There exists a C8%-Lipschitz extension f of the restricted function
ulx\u, to X such that

(13) M#* f(z) < CM#u(z)
for every x € X \ Ugk.

Proof. By Lemma 2.3.1 we have that u| X\Ug 18 C8F-Lipschitz. We could now extend
u to X using the McShane extension (see [15, Theorem 6.2]). However, it is not clear
that this would then satisfy (13). Instead we use another standard extension tech-
nique based on a Whitney-like decomposition of Ugk; similar methods of extension
also appear in [37, 31, 12, 36]. The novelty here is not the extension, but rather that
there is a Lipschitz extension that satisfies (13).

Observe that because M# is uncentered, we have U is open. We can then apply
a standard covering argument ([15, Theorem 1.2]) to the collection

{B(z,dist(z, X \ Ugr)/4) : x € Ug },

and so obtain a countable subcollection F = {B;};cs, where I = {1,2,...} is a
possibly finite index set, such that Ugr = U;enDB;, and such that éBi N %Bj = () for
1,5 € I with ¢ # j. It then follows from the fact that p is doubling that

(14) > xles, < C,
iel
where we use x|w to denote the characteristic function on any set W.

We now construct a partition of unity subordinate to this collection of balls. For
each i € I, let ¢); : X — R be a C dist(B;, X \ Ugx ) '-Lipschitz function with ¢ = 1
on B; and ) = 0 on X \ 2B;. Then let
Zje] djj
As usual the sum in the denominator is well-defined at each point in X, as because

of (14), all but a finite number of terms in the sum are non-zero. Next define
f: X — Rby

i =

_ | Yierusi(x) if v € U,
fla) = { u(:E)I "’ ifz e Xg\ Ug.

We now show that f is C8*-Lipschitz, that is, we show that

(15) f(z) = fy)| < C8d(z,y)

for every z,y € X. By Lemma 2.3.1 we have (15) holds whenever z,y € X \ Ugs.
Next consider the case when = € Ugr and y € X \ Ugr. By the triangle inequality,
and the case considered two sentences back, we can further suppose that

d(z,y) < 2dist(z, X \ Ugk).
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Let B be a ball in F that contains z. Then B = B(w,r) for some w € X and r > 0
such that r and d(z,y) are comparable with constant C. We can then use Lemma
2.3.1 and the doubling property of u, to deduce that

lup — u(y)| < CrM*u(y) < C8*d(z,y).

The estimate (15) then follows from the definition of f.

Finally we consider the case when z,y € Ugr. Due to the last two cases considered,
we can further suppose that r = dist(x, X \ Ugr) is comparable to d(y, X \ Ugr) with
comparability constant C, and that d(z,y) < r. Let B = B(z,2r) and observe
that if B; = B(z,s) is a ball in F, for some i € I, z € X and s > 0, such that
{z,y} N B(z,2s) # 0, then r and s are comparable with comparability constant C,
the function ; is r~!-Lipschitz, and dist(B, B(z, s)) < r. Consequently, we have

lup, —up| < CrM*u(w) < C8"r,

for some w € B\ Uge. It then follows from the fact that {i;};c; is a partition of
unity on Ugk, that

F(@) = f) =) til@)us, — > vi(@)us + Y ti(y)us — Y vi(y)us,

i€l el el i€l
= (%i(z) — ¥i(y)) (up, — up) < C8d(z,y),
el

as desired. This completes the demonstration that f is C8*-Lipschitz.

It remains to establish (13). Fix z € X \ Ug and suppose that M# f(x) > § for
some § > 0. Thus there exists a ball B = B(y,r) in X containing z, for some y € X
and r > 0, such that

(16) £ 15 faldu> o
B
We would like to show that
(17) f lu —ug|dy > Cor,
AB

for some A\ > 1 that depends only on C'. Observe that the above two estimates are
invariant under a translation in the range of u and f. Furthermore, the construction
of f from u is also invariant under a translation in the range of v and f. By this we
mean that if u is replaced by u+ (3 for some 8 € R, then the construction above gives
f + B in place of f. Thus without loss of generality, by making such a translation,
we can assume that up = 0. Since u = f on X \ Ug, we can also assume that
BN Ugk # 0, otherwise (17) follows trivially from (16).
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It then follows directly from the construction of F, that if B(z,s) € F for some
z € Ugr and s > 0, then B(z,2s) N B # ) implies s < r. Therefore

[ 1f = falausz [ |7]du

sz/B\U A+ [ fpiun,

el
§2/ wldp+C Y /mdu
B\U el
2B;NB+0
SC’/ lu| dp.
5B

It follows from this last estimate, the doubling property of p, and our assumption
that up = 0, that (17) holds. This proves (13) and so completes the proof of the
lemma. [l

The function f can be viewed as a smoothed version of u, that is, with small
scale oscillations removed, and large scale oscillations preserved. The following two
lemmas conciliate the previous estimates on the oscillation of v and f. Let

F,={z € X :M*f(z) > s}

for every s > 0.
Lemma 3.3.3. We have

(18) | @ppranses™
\

and

(19) ‘Fs| < Cs™?,

for every s > 0.

Proof. We first prove (18). By Lemma 3.3.2 we have f = u on X \ Ug, and so
Lemma 2.1.2 implies that Lip f = Lip u almost everywhere on X \ Ugr. Since f is
C8F-Lipschitz, we therefore have Lipu < C8% almost everywhere on X \ Uge. It
follows that

| woprdi= [  (ipupd
X\Ugp, X\Ugk,

< C8"|{z € X : Lipu(z) > 8 F}| + 87+

The estimate (18) then follows from (8).
We now prove (19). It follows from (8) and (18), that

/ Llpfpd/,t<8kp|ng|+/ (Lip f)Pdu < C.
X x\Usk

Now, by the (1, p)-Poincaré inequality we have
(M#f)" < CM ((Lip f)),
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where M denotes the uncentered Hardy-Littlewood maximal operator. Therefore
by the weak-L! bound for the uncentered Hardy-Littlewood maximal operator (see
[15, Theorem 2.2] in this setting), we get the desired estimate:

|Fs| < [{z € X : M ((Lip f)") (z) > Cs"}|
< CS‘p/ (Lip f)? dp
< Cs™?, .
for every s > 0. This proves (19), and completes the proof of the lemma. O

Observe that by Lemma 2.3.1, for every s > 0, the restricted function f|x\g, is
C's-Lipschitz. For each j € N we let f; be the McShane extension of f| X\F,; toa
C2’-Lipschitz function f; on X; see [15, Theorem 6.2]. (We are not fussy about the
sort of Lipschitz extension used here, any decent one will do.) Next let

1 3kl
h=1 >k
=2k
Lemma 3.3.4. We have
(20) [ wionpdn>c,
X
and we have
o3l
(21) Liph(z) < X|x\vy (@) Lip f(2) + + > PXlugum, (@),
j=2k

for almost every x € X.

Proof. We first prove (20). We require £ € N is sufficiently large as determined
by C, so that (13) implies Fiyx C Uy. We then have f; = u almost everywhere on
X \ Uy for every 2k < j < 3k. It then follows from the definition of h, that h = u
on X \ Uye. Consequently, we can deduce from Lemma 3.3.1, that

/ |h—hx|>C.
X

Since h is Lipschitz we can apply the (1, p)-Poincaré inequality to conclude that (20)
holds.

We now prove (21). Fix j € N. Observe that f; = f on X \ Fy, and therefore
Lemma 2.1.2 implies that Lip f; = Lip f almost everywhere on X \ F;. This and
the fact that f; is C2/-Lipschitz, implies that

Lip f;(z) < X|X\U8k (z) Lip f(x) + CQjX|U8kuF2j (z),

for almost every x € X. The estimate (21) now follows directly from the definition
of h. This completes the proof. Il
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Observe that F; C F; whenever 0 < ¢t < s. This property with (19) and (8)
implies that

3k—1 3k—1 / j
/ ( Z2JX|UskUFzJ'> dp < ﬁ/ Z (Z 21> X|U8kUF2j dp

j=2k =2k \i=2k
C 3k—1
i (G+L)po—jp
< kp Z 2 2
j=2k
=Ck'?,

This with Lemma 3.3.4 and (18) implies that

C< / (Lip h)? dp
X

3k—1
SC/ (Lipf)”du+0/ ( ZQX|U/¢UF2J> dp
X\Usk

j=2k
< 87k 4+ CklP.

Since p > 1, we achieve a contradiction when £ € N is sufficiently large as determined
by C. This completes the proof of Proposition 3.1.1 and thereby Theorem 1.0.1.

4. PROOF OF PROPOSITION 1.1.1 AND THEOREMS 1.0.3 TO 1.0.6

Theorem 1.0.4 and 1.0.5 can be easily deduced from Theorem 1.0.1 together with
[19, Theorem 7.11], or the main results of [29], respectively. Similarly, Theorem
1.0.6 is easily deduced from [39, Theorem 4.9 and 4.10]. To see that Theorem
1.0.3 follows from Theorem 1.0.1 and [19, Theorem 5.13] (see also [15, Theorem 9.6,
and Theorem 9.8]), we need to recall that complete Ahlfors regular spaces (defined
below) are proper, and that complete metric measure spaces that support a doubling
measure and a Poincaré inequality are quasi-convex, quantitatively. These results
are stated in [23, Proposition 6.0.7] and the discussion that follows. The meaning
of these words, and the words used in the statement of Theorems 1.0.3, 1.0.4, 1.0.5,
and 1.0.6, can be found in the respective references given above.

Before proving Proposition 1.1.1, we recall that a metric measure space (X, d, )
is Ahlfors a-regular, a > 0, if y is Borel regular and there exists C' > 1 such that

1
67‘"‘ < u(B(z,r)) < Cre9,

for every x € X and 0 < r < diam X.

Proof of Proposition 1.1.1. Let X be the cantor set, which we identify with the
collection of all sequences (a,) where a, = 0 or 1 for every n € N. Define a metric
d on X by d((ay,), (b)) = 2% for any (a,), (b,) € X, where if a; # b; then we set
k = 0, and otherwise we let k be the greatest integer such that a; = b; for each
1 <1< k. Forevery x € X and r > 0, let

Qx,r) ={y € X : d(w,y) <r},
and call such sets cubes. We further let

AQ(z,r) ={y € X : d(x,y) < Ar},
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for every A > 0. Next let u be the Borel measure on X determined by the condition
that p(Q(z,27%)) = 27% for every z € X and k € N; this can be defined using
Carathéodory’s construction, see [7, Theorem 2.10.1]. Then (X,d, x1) is an Ahlfors
1-regular metric measure space.

For each n € N, let Q,, = Q(z,,2™ ™) where z,, € X is the sequence consisting
of n — 1 zeroes followed by a one, and then followed by zeroes. Notice that (Q,)
is a sequence of mutually disjoint sets, with union equal to X. It is now easy to
construct a Borel function g : X — R such that

/ gPdpu=2"" and / P dy =47,
for every n € N. Observe that g € LP(X). Moreover, we have

(22) f wan=t
Qn

for every n € N, and that

(23) lim gP ™ dp =0,
for every A > 0.

Define u : X — R by the condition u(z) = 27" whenever x € X satisfies z € Q,
for some n € N. As required we have v € LP(X). We claim that there exists
C, A > 1 such that (1) holds, with ¢ = p, for every x € X and r > 0. It suffices to
show that there exists C > 1 such that

1 1/1’3
24 — < p
(24) diamR][R\u uR\du_C(][Rg du) :

for every cube R in X. Fix a cube Rin X. If R C @, for some n € N, then u
is constant on R and (24) is trivially true. Otherwise, we have R = 20Q),, for some
n € N, and therefore

1
< —upldp < 1.
= diamR][R‘“ urdp <

It follows from this and (22), that (24) holds with A = 1 and C' = 2P. This proves
the above claim. Furthermore, since (25) holds with R = 2@Q,, for every n € N, we
deduce from (23) that there does not exist 1 < ¢ < p and C, A > 1 such that (1)
holds for all x € X and r > 0. This completes the proof. Il

(25) 274
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