
POROSITIES IN MANDELBROT PERCOLATION

ARTEMI BERLINKOV1 AND ESA JÄRVENPÄÄ2

Abstract. We study porosities in Mandelbrot percolation. We
prove that almost surely the lower porosity of the set and the
natural measure are equal to zero, the upper porosity of the set is
equal to one half, and the upper porosity of the natural measure
is equal to one. We also show that almost surely the lower and
upper mean porosities of the set and the lower mean porosity of
the measure are positive and less than one for all parameter values.

1. Introduction

The porosity of a set describes the size of holes in the set. It dates
back to 1920’s when Denjoy introduced a notion which he called index
(see [De]). In today’s terminology his index is called the upper porosity
(see Definition 3.1). The name porosity was introduced by Dolženko
in [Do]. If the upper porosity of a set is α, then one can find holes of
relative size α at arbitrarily small distances. The upper porosity has
been used for describing properties of exceptional sets, for example, for
measuring sizes of sets where certain functions are non-differentiable.
For more details about the upper porosity, the reader is referred to an
article of Zaj́ıček ([Z]).

As the upper porosity says that one can find holes of certain size
at arbitrarily small distances, the lower porosity (see Definition 3.1)
guarantees the existence of holes of certain size at all small enough
distances. Mattila [M] used it to find upper bounds for the Hausdorff
dimension of a set, and Salli [S] extended the result to packing and box
counting dimensions.

It turns out that the upper porosity cannot be used to estimate
the dimension of a set. However, there are sets which are not lower
porous but which nevertheless contain so many holes that their dimen-
sion is smaller than the dimension of the ambient space. In order to
study boundary behaviour of conformal and quasiconformal mappings,
Koskela and Rohde [KR] introduced the notion of mean porosity of a
set which guarantees that certain percentage of scales, that is, distances
which are integer powers of some fixed number, contain holes of fixed
relative size. They showed that if a set in m-dimensional Euclidean
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space is mean porous, then its Hausdorff and packing dimensions are
smaller than m. For a modification of their definition see Definition
3.4.

Whilst the notion of the porosity of a set is already quite old, the
porosity of a measure is relatively new. The lower porosity was intro-
duced by Eckmann and E. and M. Järvenpää in [EJJ], and the upper
one by Mera and Morán in [MM] (see Definition 3.2). In [EJJ] it
was shown that the packing dimension of any doubling measure can
be estimated above by a function depending on the lower porosity of
the measure. In [JJ] Järvenpääs extended this result to the Hausdorff
dimension of all measures. Just like in the case of sets the upper poros-
ity is too weak for this purpose. In [MM] it was shown that the upper
porosity may attain only the values 0, 1/2, and 1. In [BS] Beliaev and
Smirnov found a unifying approach for dimension estimates mentioned
above by introducing the mean porosity of a measure (see Definition
3.4). They proved that the packing dimension of a measure can be
estimated above by a function depending on the mean porosity of the
measure. Their upper bound is the best possible one as far as the
asymptotic behaviours near m and m− 1 are concerned.

Porosity is also an interesting concept on its own right and not just
as a tool for other purposes. For example sets with same dimension
may have different porosities. In [JJM] Järvenpääs and Mauldin, and
in [U] Urbański characterized deterministic iterated function systems
whose attractors have positive porosity. Porosities of random recursive
constructions were studied in [JJM]. Especially interesting random
constructions are those for which the copies of the seed set are glued
together in such a way that there are no holes left. Thus the corre-
sponding deterministic system would be non-porous. So the important
question is whether the randomness in the construction makes the set
or measure porous. The most natural model of these kind of random
constructions is the Mandelbrot percolation (see section 2). In [JJM] it
was shown that almost surely both the zero and one half porous points
are dense in the limit set. However, the question about the porosity of
typical points and the porosity of the natural measure remained open.

In this paper we prove the conjecture made in [JJM] by proving a
stronger result according to which almost surely the lower porosity of
the limit set and the measure are equal to zero, the upper porosity of
the set is equal to one half, and the upper porosity of the measure is
equal to one (see Theorem 4.8). We also show that almost surely the
lower and upper mean porosities of the set and the lower mean porosity
of the measure are positive and less than one for all parameter values
(see Propositions 4.1, 4.3 and 4.6).

The article is organized as follows. In section 2 we explain the basic
facts about Mandelbrot percolation. In section 3 we define several
notions of porosities and compare them to those already existing in the
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literature. Finally, in section 4 we prove our results about the porosities
and mean porosities in Mandelbrot percolation.

2. Mandelbrot percolation

In this section we give the basic facts about Mandelbrot percolation
in m-dimensional Euclidean space Rm. Let k ≥ 2 be an integer, I =
{0, 1, . . . , km}, and I∗ = ∪∞i=0I

i. Here I0 = ∅. The length of an element
σ ∈ I i is |σ| = i, and for σ ∈ I i and σ′ ∈ Ij we denote by σ ∗ σ′ the
element of I i+j whose first i coordinates are those of σ and the last j
coordinates are those of σ′. For k ∈ N and σ ∈ I∗ ∪ IN, denote by
σ|k a sequence in I∗ formed by first k elements of σ. We shall write
σ ≺ τ if the sequence τ starts with σ. Denote by Ω the set of functions
ω : I∗ → {c, n}. Each ω ∈ Ω can be thought of as a code that tells us
which cubes we choose (c) and which we neglect (n). More precisely,
let ω ∈ Ω. We take a cube of diameter 1, denote it by J∅, and divide it
into km closed cubes with diameter k−1, enumerate them with letters
from alphabet I, and repeat this procedure inside each subcube. For
all σ ∈ I i we use the notation Jσ for the unique closed subcube of J∅
with diameter k−i coded by σ. The image of η ∈ IN under the natural
projection from IN to [0, 1]m is denoted by x(η), that is,

x(η) =
∞⋂
i=0

Jη|i

where η|0 = ∅. Here N = {1, 2, . . . }. If ω(σ) = n for σ ∈ I i, then
Jσ(ω) = ∅, and if ω(σ) = c, then Jσ(ω) = Jσ. Define

Kω =
∞⋂
i=0

⋃
σ∈Ii

Jσ(ω).

Fix 0 ≤ p ≤ 1. We make the above construction random by demand-
ing that if Jσ is chosen then Jσ∗j, j = 1, . . . , km, are chosen indepen-
dently with probability p. Let P be the natural probability measure
on Ω, that is, for all σ ∈ I∗ and j = 1, . . . , km

P (ω(∅) = c) = 1,

P (ω(σ ∗ j) = c | ω(σ) = c) = p,

P (ω(σ ∗ j) = n | ω(σ) = n) = 1.

(We will use abbreviations like P (ω(∅) = c) = P ({ω ∈ Ω | ω(∅) = c}).)
It is a well-known result in the theory of branching processes that if

the expectation of the number of chosen cubes of diameter k−1 does not
exceed one, then the limit set Kω is P -almost surely an empty set or a
point (see [AN, Theorem 1, p.7, and Lemma 1, p.4]). In our case this
expectation equals kmp. Thus we assume that k−m < p < 1. According
to [MW, Theorem 1.1], the Hausdorff dimension of Kω is P -almost
surely equal to d = m + log p/ log k provided Kω 6= ∅. Moreover, for
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P -almost all ω ∈ Ω there exists a natural Radon measure νω on Kω

(see [MW, Theorem 3.2]). There is also a natural Radon probability
measure Q on IN×Ω such that for every Borel set B ⊂ IN×Ω we have

Q(B) =

∫
µω(Bω)dP (ω)

where Bω = {η ∈ IN | (η, ω) ∈ B}, and νω is the image of µω under the
natural projection (see [GMW, (1.13)]).

For a finite sequence σ ∈ I∗ consider the martingale {Nj,σk
−jd}j∈N,

where Nj,σ = card{τ ∈ I∗ | σ ≺ τ, |τ | = |σ|+ j, and ω(τ) = c} and de-
note its almost sure limit by Xσ(ω). For l ∈ N, define random variable
Xl on IN×Ω by Xl(η, ω) = Xη|l(ω). For l = 0, we set Xl(η, ω) = X∅(ω).
It is easy to see that for P -almost all ω ∈ Ω

Xσ(ω) =
∑
|τ |=j

k−jdXσ∗τ (ω)1{ω(σ∗τ)=c}.

Further, for σ, τ ∈ I∗, Xσ and Xτ are identically distributed, and if
σ 6≺ τ and τ 6≺ σ, they are also independent. Thus Xl, l ∈ N ∪ {0},
have the same distribution.

Expectations with respect to measures P and Q are connected in the
following way (see [GMW, (1.16)]): if j ∈ N and Y : IN × Ω → R is a
random variable such that Y (η, w) = Y (η′, w) provided η|j = η′|j, then

EQ[Y ] = EP

[ ∑
|σ|=j, ω(σ)=c

k−jdXσY (σ, ·)
]
.

Hence we have Q(Xl = 0) = 0 and EQ[Xl] = EP [X2
0 ] < ∞ for all

l ∈ N ∪ {0} (see [MW, Theorem 2.1]).

Lemma 2.1. Let H be a translate of a coordinate hyperplane. Then

P (Kω ∩H 6= ∅) = 0.

Proof. We proceed with induction on the dimension m. Let m =
1 and x(η) ∈ [0, 1]. The probability that Kω intersects the k−l/2-
neighbourhood of x(η) is smaller than 2pl since either Jη|l or its neigh-
bour must have been chosen. As l tends to infinity, this probability
tends to zero for any p < 1.

Observe that projecting Kω onto a coordinate hyperplane, one ob-
tains a random set which is a Mandelbrot percolation in Rm−1 where
one neglects a cube with probability (1 − p)k and thus choose a cube
with probability p′ = 1− (1− p)k < 1. Let π be the projection onto a
coordinate hyperplane perpendicular to H. Then

P ({ω ∈ Ω | Kω ∩H 6= ∅}) = P ′({ω′ ∈ Ω′ | Kω′ ∩ π(H) 6= ∅}) = 0

where the objects with prime refer to the Mandelbrot percolation in
Rm−1 with choosing probability p′. This concludes the induction step.

�
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3. Porosities

In this section we define several notions of porosities and compare
them with other definitions appearing in the literature.

Definition 3.1. Let A ⊂ Rm and x ∈ Rm. The local porosity of A at
x at distance r is

por(A, x, r) = sup{α ≥ 0 | there is z ∈ Rn such that

B(z, αr) ⊂ B(x, r) \ A}.
The upper and lower porosities of A at x are defined as

por(A, x) = lim sup
r→0

por(A, x, r) and por(A, x) = lim inf
r→0

por(A, x, r),

respectively.

Definition 3.2. The lower and upper porosities of a Radon measure
µ on Rm at a point x ∈ Rm are defined by

por(µ, x) = lim
ε→0

lim inf
r→0

por(µ, x, r, ε) and

por(µ, x) = lim
ε→0

lim sup
r→0

por(µ, x, r, ε),

respectively, where for all r, ε > 0

por(µ, x, r, ε) = sup{α ≥ 0 | there is z ∈ Rm such that

B(z, αr) ⊂ B(x, r) and µ(B(z, αr)) ≤ εµ(B(x, r))}.

Remark 3.3. Instead of demanding that the whole empty ball is inside
the reference ball B(x, r) one may assume that only the centre of the
empty ball is inside the reference ball B(x, r), that is, define

p̃or(A, x, r) = sup{α ≥ 0 | there is z ∈ B(x, r) such that

B(z, αr) ∩ A = ∅}.
This will only rescale the upper and lower porosities by the transfor-
mation α 7→ α/(1− α).

Unlike the dimension, the porosity is sensitive to the metric used. For
example, if one wants to use cubes instead of balls in the definition,
there is no formula to convert ball-porosity to cube-porosity or vice
versa. It is true that if the lower porosity is positive by one of these
definitions, then it is positive for the other one also. But it is easy to
construct a set such that the cube-porosity attains its maximum value
(at some point) but the ball-porosity will not. Take for example the
union of the x- and y-axes in the plane.

In general metric spaces it is sometimes useful to demand that the
empty ball is inside the reference ball also algebraically, that is, d(x, z)+
αr ≤ r. For further discussion about this matter see [MMPZ].

The upper and lower porosities tell the sizes of largest and smallest
holes, respectively. Sometimes it is useful to know how often there
exists a hole of certain size as the distance tends to zero. This leads to
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the notion of mean porosity. Mean porosity was used in [KR] and [BS]
to find upper bounds for dimensions of sets and measures. The concepts
of mean porosity used in [KR] and [BS] are slightly different from each
other. Since there seems to be no commonly accepted definition for the
mean porosity we try to clarify this situation by suggesting a definition
which does not contain any hidden or dependent parameters like those
in [KR] and [BS]. Below we give definitions which contain the phrase
“there exists an α-hole at scale j near x”. There are several ways the
make this phrase rigorous and all of them will give a possibly different
notion of mean porosity. We give first a definition of mean porosity
without defining exactly the sentence “there exists an α-hole at scale
j near x”, and then we discuss different alternatives. After that we
fix the interpretation used in the rest of this paper (see Definition
3.8). However, we now restrict the meaning of “at scale j near x” by
demanding that one considers distances from x which are comparable
to k−j where k > 1 is some fixed number.

Definition 3.4. Let k > 1 and 0 ≤ α, ρ ≤ 1. A set A ⊂ Rm is said to
be lower or upper (k, α, ρ)-mean porous at x if

lim inf
i→∞

Ni(k, α, x)

i
≥ ρ or lim sup

i→∞

Ni(k, α, x)

i
≥ ρ,

respectively, where

Ni(k, α, x) = card{j ∈ N | j ≤ i and there exists an α-hole

at scale j near x}.
A Radon measure µ on Rm is said to be lower or upper (k, α, ρ)-mean
porous at x if

lim
ε→0

lim inf
i→∞

Ñi(k, α, x, ε)

i
≥ ρ or lim

ε→0
lim sup

i→∞

Ñi(k, α, x, ε)

i
≥ ρ,

respectively, where

Ñi(k, α, x, ε) = card{j ∈ N | j ≤ i and there exists an (α, ε)-hole

at scale j near x}.
The lower (k, α)-mean porosity of A at x is

κ(A, x, k, α) = sup{ρ ∈ [0, 1] | A is lower (k, α, ρ)-mean porous at x}
and the upper (k, α)-mean porosity of A at x is

κ(A, x, k, α) = sup{ρ ∈ [0, 1] | A is upper (k, α, ρ)-mean porous at x}.
The lower and upper (k, α)-mean porosities of µ are defined analo-
gously.

Remark 3.5. Definitions 3.1-3.4 can be used in any metric space but
since we will study Mandelbrot percolation only in Rm we stated them
only in the Euclidean setting.
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Remark 3.6. The definition of the mean porosity in [BS] is slightly
different from ours. According to [BS] a set A is mean (α, ρ)-porous at
x if there exist N and n0 such that for all n > n0 there is an α-hole
for at least ρN scales among scales n + 1, . . . , n + N . Note that this
notation of mean porosity is stronger than the one in Definition 3.4.
Indeed, we will prove that Mandelbrot percolation is not mean porous
in the sense of [BS] although it is mean porous in the sense of our
definition (see Remark 4.4).

Now we have to define what is the existence of an α-hole at scale j. It
is natural to demand that there exists z ∈ Rn such that B(z, αk−jr0) ⊂
B(x, k−jr0) \ A for some (or for all) k−1 < r0 ≤ 1. The following ex-
ample shows that the choice of r0 matters. It also shows that with this
definition there is no simple relation between mean porosities defined
using steps of size k, and, for example, steps of size k3.

Example 3.7. Consider annuli centred at x ∈ Rm with outer ra-
dius k−i and inner radius k−(i+1). Fill in two annuli out of every
three successive annuli. If one does this in a regular fashion then
κ(A, x, k, (1 − k−1)/2) = 1

3
and κ(A, x, k3, (1 − k−1)/2) = 1. (Note

that the lower and upper porosities are equal.) Here one has to choose
r0 such that the empty annulus is the first one among the three k-annuli
inside a k3-annulus. But one can also fill in the annuli in such a way
that κ(A, x, k, (1 − k−1)/2) = 1

3
and κ(A, x, k3, (1 − k−1)/2) = 0. In

fact, first fill in the first and the second annulus inside N1 successive k3-
annuli, then the first and the third one inside N2 successive k3-annuli,
then the second and third one inside N3 successive k3-annuli, and so
on. Now let Ni tend to infinity fast enough (Ni is much larger than the
sum N1 + · · ·+ Ni−1).

The problem illustrated in Example 3.7 can be circumvented by de-
manding that there exists an α-hole at scale j near x if there exists a
point z in the annulus centred at x with inner radius k−(j+1) and outer
radius k−j such that B(z, α|z − x|) does not intersect the set. In this
definition the size of the hole is determined using the distance between
the point and the centre of the hole. A disadvantage of this definition
is that if k is large, then for example a 1

2
-hole at scale i may be quite

small compared to k−i. Thus it does not correspond to the intuition of
a large hole at scale i.

From the point of Mandelbrot percolation the cubes are more natural
objects than balls. Particularly natural are the construction cubes.
Also the role of the starting distance r0 in the above definition is a
bit annoying. So we use the following definition where the role of the
starting distance r0 has disappeared.

Definition 3.8. Let A ⊂ Rm and x ∈ Rm. Let k ≥ 2 be an integer
and 0 ≤ α ≤ 1. There is an α-hole at scale j near x if there is a point



8 A. BERLINKOV AND E. JÄRVENPÄÄ

z ∈ Qk
j (x) \Qk

j+1(x) such that

B%(z, αk−j/2) ⊂ Qk
j (x) \ A.

Here Qk
j (x) is the (half open) k-adic cube of side-length k−j containing

x, % is the maximum metric, that is, %(x, y) = maxi{|xi − yi|}, and
B%(y, r) is the open ball in the metric % centred at y and with radius
r. Recall that the balls in the maximum metric are cubes whose faces
are parallel to the coordinate planes.

Let µ be a Radon measure on Rm and ε > 0. There is an (α, ε)-hole
at scale j near x if there is a point z ∈ Qk

j (x) \Qk
j+1(x) such that

B%(z, αk−j/2) ⊂ Qk
j (x) and µ(B%(z, αk−j/2)) ≤ εµ(Qk

j (x)).

Remark 3.9. Note that unlike in Definition 3.1 we have divided the
radius of the empty ball by 2 so α may attain values between 0 and 1.
The reason for this is that the point x may be arbitrarily close to the
boundary of Qk

j (x) and if the whole cube Qk
j (x) is empty it is natural

to say that there is a hole of relative size 1.

4. Results

In this section we study Mandelbrot percolation in Rm and k will be
a fixed integer as in section 2. The almost sure Hausdorff dimension
of the limit set Kω is denoted by d. The porosities (see Definition 3.8)
are defined using k-adic cubes subordinate to the seed set J∅. We start
with a proposition which states that the infima and the suprema of the
mean porosities are almost surely constant.

Proposition 4.1. For every l ∈ N there exist 0 ≤ c(kl, α) ≤ C(kl, α) ≤
1 such that for P -almost all ω ∈ Ω with Kω 6= ∅

νω- ess inf
x∈Kω

κ(Kω, x, kl, α) = c(kl, α) and

νω- ess sup
x∈Kω

κ(Kω, x, kl, α) = C(kl, α).

Same statement holds for the upper mean porosity, κ(Kω, x, kl, α). Cor-
responding constants are denoted by c(kl, α) and C(kl, α).

Proof. For a code τ ∈ I l, let yτ (ω) = νω- ess inf
x∈Kω∩Jτ

κ(Kω ∩ Jτ , x, kl, α).

By Lemma 2.1, νω- ess inf
x∈Kω

κ(Kω, x, kl, α) ≥ c if and only if yτ (w) ≥ c

for all |τ | = l, and the events {yτ ≥ c} are independent. By a zero-one
law [BM, Theorem 2],

c(kl, α) = sup{c ∈ R |P
(
Kω 6= ∅ and

νω- ess inf
x∈Kω

κ(Kω, x, kl, α) ≥ c
)

> 0}.

The other cases are treated analogously. �

Next we prove a little lemma.
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Lemma 4.2. For every l ∈ N we have:

(i) If c(kl, α) > 0 then c(k, α) > 0.
(ii) If C(kl, α) < 1 then C(k, α) < 1.

Proof. Let x ∈ Kω. Suppose that there exists z ∈ Qkl

j (x)\Qkl

j+1(x) such

that B%(z, αk−jl/2) ⊂ Qkl

j (x) \Kω. Let jl ≤ i < (j + 1)l be the unique

integer satisfying z ∈ Qk
i (x) \ Qk

i+1(x). Since k ≥ 2, there exists z′ ∈
B%(z, αk−jl/2) ∩ (Qk

i (x) \ Qk
i+1(x)) with B%(z

′, αk−i/2) ⊂ Qk
i (x) \Kω.

This proves case (i). Claim (ii) follows similarly. �

Now we are ready to prove that the limit set of the Mandelbrot
percolation is mean porous.

Proposition 4.3. Let 0 < α < 1. Then for all l ∈ N

0 < c(kl, α) ≤ C(kl, α) < 1, and lim
l→∞

[C(kl, α)− c(kl, α)] = 0.

Further, we have κ(Kω, x, kl, 0) = 1 and κ(Kω, x, kl, 1) = 0 for P -
almost all ω ∈ Ω and for νω-almost all x ∈ Kω.

Proof. By Lemma 4.2 it is enough to prove the claim for all large l.

Suppose l ∈ N so that k−l < min{1 − α, α/4}. Let Y kl,α
i (η, ω) = 1, if

Jη|il is chosen and there exists an α-hole at scale il near x(η) which is

completely inside Jη|il \Jη|(i+1)l
, and 0 otherwise. Then Y kl,α

i , i ∈ N, are
independent identically distributed random variables with expectation

c̃(kl, α) :=
∫

Y kl,α
i (η, ω)dQ(η, ω) > 0, guaranteed by the choice of l.

According to the strong law of large numbers,

lim
j→∞

1

j

j∑
i=1

Y kl,α
i (η, ω) = c̃(kl, α)

for Q-almost all (η, ω) ∈ IN × Ω. This proves the lower bound since
c(kl, α) ≥ c̃(kl, α).

Note that if there is an α-hole at scale il near x(η), then at least half
of this hole is in Jη|il \ Jη|(i+1)l

. Thus there is no α-hole at scale il if

Y
kl,α/2
i (η, ω) = 0. Since

∫
Y

kl,α/2
i (η, ω)dQ(η, ω) < 1 by the choice of l,

we have (by the strong law of large numbers) that

C(kl, α) ≤ 1− (1−
∫

Y
kl,α/2
i (η, ω)dQ(η, ω)) < 1.

Consider δ > 0, α′ < α, and l ∈ N such that k−l < δ. There is an
α-hole at scale il near x(η) if the entire α-hole is in Jη|il \ Jη|(i+1)l

(i.e.

Y kl,α
i (η, ω) = 1), or if Y kl,α

i (η, ω) = 0, Y kl,α′

i (η, ω) = 1, and a part of
the α-hole is in Jη|(i+1)l

adjacent to the α′-hole in Jη|il \ Jη|(i+1)l
. By the

choice of l, the latter is possible only if α′ ≥ α− δ and
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(i) the limit set intersects the (α − α′)k−il-neighbourhood of one
of the faces of the α′-hole in Jη|il \ Jη|(i+1)l

(since one cannot

increase the α′-hole up to an α-hole inside Jη|il \ Jη|(i+1)l
), or

(ii) the distance to Jη|(i+1)l
from a face of Jη|il is more than k−ilα′ but

less than k−ilα (in this case any α-hole containing the α′-hole
would intersect either Jη|(i+1)l

or the complement of Jη|il).

Both cases yield a series of events whose indicator functions are inde-
pendent identically distributed random variables, and whose expecta-
tions tend to zero as l tends to infinity (in the first case by Lemma
2.1). Hence liml→∞[C(kl, α)− c(kl, α)] = 0.

The claim κ(Kω, x, kl, 0) = 1 is obvious. Finally, if the upper mean
porosity κ(Kω, x, kl, 1) > 0, then there exists a scale j such that there
is a 1-hole near x at scale j. But this signifies that x is in the boundary
of the hole and Jη|j , and so there is a 1-hole near x at all scales larger

than j. Thus κ(Kω, x, kl, α) = 1 for all α ≤ 1. Since κ(Kω, x, kl, α) < 1
for νω-almost all x, the last claim follows. �

Remark 4.4. Mandelbrot percolation is not mean porous in the sense of
[BS]. Indeed, assume that it is. Then one can find α, ρ, N , n0, and A ⊂
IN×Ω such that Q(A) > 0 and N and n0 are like in Remark 3.6 for all
(η, ω) ∈ A. Taking l > N , one finds α′ > 0 such that κ(Kω, x, kl, α′) =
1 for all (η, ω) ∈ A. Since Q(A) > 0 this is a contradiction with
Proposition 4.3.

To compare the mean porosities of the limit set and the construction
measure, we need the following lemma concerning the random variables
Xj (see section 2).

Lemma 4.5. For all s > 0, the sequence 1{Xj≤s} satisfies the (weak)
law of large numbers.

Proof. Since the joint distribution of (Xi, Xj) depends on j − i only,
it is enough to prove that limj→∞ Cov(1{X0≤s},1{Xj≤s}) = 0 for the
Bernstein’s theorem to ensure the law of large numbers. Let Yj =
X0 − k−jdXj, q = Q(X0 ≤ s), and ε > 0. It is easy to notice that Yj

and Xj are Q-independent. From [AN] we know that the distribution
of Xj is continuous on (0,∞), therefore there exists δ > 0 such that
Q(X0 ≤ s + δ) ≤ (1 + ε)q. For all j such that EQ[Xj]k

−jd/δ < ε (note
that EQ[Xj] = EQ[X0] for all j ∈ N), we have

Cov(1{X0≤s},1{Xj≤s}) = Q(X0 ≤ s and Xj ≤ s})− q2

≤ q
(
Q(Yj ≤ s)− q

)
= q

(
Q(Yj ≤ s and k−jdXj ≤ δ})

+ Q(Yj ≤ s and k−jdXj > δ)− q
)

≤ q((1 + ε)q − q + EQ[Xj]k
−jd/δ)

= εq(q + 1).
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The result follows. �

Proposition 4.6. Let 0 < α < 1. For all δ > 0 there exists l0 ∈ N
such that for all l ≥ l0 corresponds ξ(l) ≥ 0 such that

κ(νω, x(η), kl, α + δ) ≤ κ(Kω, x(η), kl, α)

for all (η, ω) ∈ (IN ×Ω) \E with Q(E) ≤ ξ(l). Here ξ(l) tends to zero
as l tends to infinity.

Proof. Let δ, ζ > 0 and take l0 such that k−l0 < δ/2 and C(kl, α) −
c(kl, α) < ζ/8 for all l ≥ l0 (see Proposition 4.3). Suppose that q =
Q(Λ) > 0 for some ζ > 0 and l ≥ l0 where

Λ = {(η, ω) ∈ IN × Ω | κ(νω, x(η), kl, α + δ)− κ(Kω, x(η), kl, α) ≥ ζ}.

Let

N̂i(k
l, α, x, ε) = card{j ∈ N | j ≤ i and there exists an (α + δ, ε)-hole

at scale jl near x but there is no α-hole at scale jl near x}.

Then for all ε > 0 there exists n0 ∈ N and Λ′ ⊂ Λ such that Q(Λ′) > q/2

and N̂i(k
l, α, x(η), ε)/i > ζ/2 for all i ≥ n0 and for all (η, ω) ∈ Λ′.

Considering the relative positions of an (α + δ, ε) hole H at scale jl
near x(η) and Jη|(j+1)l

, when there is no α-hole at the same scale near
the same point, we arrive at three possibilities:

(i) Jη|(j+1)l
⊂ H, thus νω(Jη|(j+1)l

) ≤ ενω(Jη|jl
),

(ii) Jη|(j+1)l
∩ H = ∅, thus there exists a code τj of length (j + 1)l

such that Jτj
∩ Jη|(j+1)l

= ∅, Jτj
⊂ H and Kω ∩ Jτj

6= ∅, and

(iii) Jη|(j+1)l
and H intersect only partially, then one can still find a

code τj like in the case (ii) because otherwise there would exist
an α-hole.

According to [MW, Theorems 3.2 and 3.3], νω(Jσ) = diam(Jσ)dXσ

where the diameter of a set A is denoted by diam(A). Denote by Aj

the event that νω(Jη|(j+1)l
) ≤ ενω(Jη|jl

), i.e.

Aj =
{

Xη|(j+1)l
≤ ε

1− ε

∑
η|jl≺τ, |τ |=(j+1)l
τ 6=η|(j+1)l, ω(τ)=c

Xτ

}
.

Let for all s > 0

As
j,1 =

{
Xη|(j+1)l

≤ sε

1− ε

}
and As

j,2 =

{ ∑
η|jl≺τ, |τ |=(j+1)l
τ 6=η|(j+1)l, ω(τ)=c

Xτ > s

}
.

Then 1Aj
≤ 1As

j,1
+ 1As

j,2
. Since the indicator functions of events As

j,2,
j ∈ N, are independent identically distributed random variables and
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lims→∞ Q(As
j,2) = 0, the strong law of large numbers implies that

lim
j→∞

1

j

j∑
i=1

1As
i,2

<
ζ

8

Q-almost surely for all s large enough. By Lemma 4.5 we can choose ε
small enough so that for all large enough n

1

n

n∑
i=1

1As
i,1

<
ζ

8

with probability at least 1− q/8.
In cases (ii) and (iii) let

Aj = {∃ τ � η|jl, τ 6= η|(j+1)l, |τ | = (j + 1)l and

Xη|jl
≥ ε−1kldXτ > 0}.

Defining

As
j,1 = {Xη|jl

> s} and

As
j,2 = {∃ τ � η|jl, τ 6= η|(j+1)l, |τ | = (j + 1)l and s ≥ ε−1kldXτ > 0},

we have 1Aj
≤ 1As

j,1
+ 1As

j,2
. Recall that for any τ ∈ I∗, P (Xτ > 0 |

Kω ∩ Jτ 6= ∅) = 1 by [MW, Theorem 3.4]. Again by Lemma 4.5, we
can choose s so large that for all large enough n

1

n

n∑
i=1

1As
i,1

<
ζ

8

with probability at least 1 − q/8. Then by the strong law of large
numbers we can choose ε small enough so that

lim
j→∞

1

j

j∑
i=1

1As
i,2

<
ζ

8

Q-almost surely. This yields a contradiction. �

Remark 4.7. By Propositions 4.3 and 4.6 0 < κ(νω, x, kl, α) < 1 al-
most surely for all l ∈ N and 0 < α < 1 (see also Lemma 4.2).
Whether κ(νω, x, kl, α) < 1, c(kl, α) = C(kl, α), and κ(Kω, x, kl, α) =
κ(νω, x, kl, α) almost surely remains an open problem.

Although our methods are not strong enough to give the complete
understanding of the mean porosities in the Mandelbrot percolation,
they are powerful enough from the point of lower and upper porosities.
Indeed, the following theorem solves the Conjecture 3.2 stated in [JJM].

Theorem 4.8. For P -almost all ω ∈ Ω and for νω-almost all x ∈ Kω

we have

por(Kω, x) = por(νω, x) = 0, por(Kω, x) =
1

2
, and por(νω, x) = 1.
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Proof. If the mean porosities were defined using balls instead of con-
struction cubes, the first claim would follow directly from Propositions
4.3 and 4.6. However, it is possible that there is an α-hole at scale
il outside the construction cube Qk

il(x). Consider l > 8 large enough
so that k−l < α/2, and the event that x(η) is within the %-distance
k−l(i+1)/4 from the centre of the cube Jη|il and there does not exist an
α-hole in Jη|il \Jη|(i+1)l

. Proceeding like in the proof of Proposition 4.3,
we get that for any α, ε > 0 there are infinitely many scales i such that

por(Kω, x, k−il) < α and por(νω, x, k−il, ε) < α.

Thus we have

por(Kω, x) = 0 = por(νω, x)

for P -almost all ω ∈ Ω and for νω-almost all x ∈ Kω. The inequality
c(kl, α) > 0 for any α < 1 implies

por(Kω, x) =
1

2

for P -almost all ω ∈ Ω and for νω-almost all x ∈ Kω. It is easy to see
that the measure νω is non-doubling Q-almost surely. Thus the last
claim follows from [MM, Proposition 4]. �
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[JJM] E. Järvenpää, M. Järvenpää, and R. D. Mauldin, Deterministic and ran-
dom aspects of porosities, Discrete Contin. Dyn. Syst., 8 (2002), 121–136.

[KR] P. Koskela and S. Rohde, Hausdorff dimension and mean porosity, Math.
Ann., 309 (1997), 593–609.

[M] P. Mattila, Distribution of sets and measures along planes, J. London
Math. Soc. (2), 38 (1988), 125–132.

[MW] R. D. Mauldin and S. C. Williams, Random recursive constructions: as-
ymptotic geometric and topological properties, Trans. Amer. Math. Soc.,
295 (1986), 325–345.



14 A. BERLINKOV AND E. JÄRVENPÄÄ
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