ON NATURAL INVARIANT MEASURES ON GENERALISED
ITERATED FUNCTION SYSTEMS

ANTTI KAENMAKI

ABSTRACT. We consider the limit set of iterated function systems. Under the assump-
tion of a natural potential, the so called cylinder function, we prove the existence of
the invariant probability measure satisfying the equilibrium state. We motivate this
approach by showing that for typical self-affine sets there exists an ergodic invariant
measure having the same Hausdorff dimension as the set itself.

1. INTRODUCTION

It is well known that applying methods of thermodynamical formalism, we can find
ergodic invariant measures on self-similar and self-conformal sets satisfying the equilib-
rium state and having the same Hausdorff dimension as the set itself. See, for example,
Bowen [3], Hutchinson [10] and Mauldin and Urbanski [14]. In this work we try to
generalise this concept. Our main objective is to study iterated function systems (IFS)
even though we develop our theory in a more general setting.

We introduce the definition of a cylinder function, which is a crucial tool in developing
the corresponding concept of thermodynamical formalism for our setting. The use of the
cylinder function provides us a sufficiently general framework to study iterated function
systems. We could also use the notation of subadditive thermodynamical formalism like
in Falconer [5], [7] and Barreira [2], but we feel that in studying iterated function systems
we should use more [FS-style notation. We can think that the idea of the cylinder
function is to generalise the mass distribution, which is well explained in Falconer [6].
Falconer proved in [5] that for each approximative equilibrium state there exists an
approximative equilibrium measure, that is, there is a k—invariant measure for which
the approximative topological pressure equals to the sum of the corresponding entropy
and energy. More precisely, using the notation of this work, for each ¢ > 0 there exists
a Borel probability measure pu; such that

LP*(t) = $hk + 1 EN (1) (1.1)

Letting now & — oo, the approximative equilibrium state converges to the desired
equilibrium state, but unfortunately we will lose the invariance. However, Barreira [2]
showed that the desired equilibrium state can be attained as a supremum, that is,

P(t) = sup(h, + E,.(t)), (1.2)
where the supremum is taken over all invariant Borel regular probability measures.

Using the concept of generalised subadditivity, we show that it is possible to attain the
supremum in (1.2). We also prove that this equilibrium measure is ergodic.
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We start developing our theory in the symbol space and after proving the existence of
the equilibrium measure, we begin to consider the geometric projections of the symbol
space and the equilibrium measure. The use of the cylinder function provides us with
a significant generality in producing equilibrium measures for different kind of settings.
A natural question now is: What can we say about the Hausdorff dimension of the
projected symbol space, the so called limit set? To answer this question we have to
assume something on our geometric projection. We use the concept of an iterated
function system for getting better control of cylinder sets, the sets defining the geometric
projection. To be able to approximate the size of the limit set, we also need some kind
of separation condition for cylinder sets to avoid too much overlapping among these
sets. Several separation conditions are introduced and relationships between them are
studied in detail. We also study a couple of concrete examples, namely the similitude
IF'S, the conformal IFS and the affine IFS, and we look how our theory turns out in
these particular cases. As an easy consequence we notice that the Hausdorff dimension
of equilibrium measures of the similitude IFS and the conformal IFS equals to the
Hausdorff dimension of the corresponding limit sets, the self-similar set and the self-
conformal set. After proving the ergodicity and studying dimensions of the equilibrium
measure in our more general setting, we obtain the same information for “almost all”
affine IFS’s by applying Falconer’s result for the Hausdorff dimension of self-affine sets.
This gives a partially positive answer to the open question proposed by Kenyon and
Peres [12].

Before going into more detailed preliminaries, let us fix some notation. As usual,
let I be a finite set with at least two elements. Put I* = (J0°, I" and I® = IV =
{(i1,42,...) 1 i; € I for j € N}. Thus, if i € I*, there is k € N such that i = (i1,..., ),
where i; € [ for all j = 1,..., k. We call this k the length of i and we denote |i| = k. If
j € I" U I, then with the notation i, j we mean the element obtained by juxtaposing
the terms of i and j. If i € I, we denote |i| = oo, and for i € I* U I*® we put
il = (i1,...,19x) whenever 1 < k < |i|. We define [i; A] ={i,j:j € A} as i € [* and
A C I* and we call the set [i] = [i,°°] the cylinder set of level |i|. We say that two
elements i, j € I* are incomparable if [i] N [j] = @. Furthermore, we call a set A C I*
incomparable if all its elements are mutually incomparable. For example, the sets I and
{(i1,142), (1,71, 42)}, where i; # iy, are incomparable subsets of I*.

Define

9—min{k—1:i[p#]|k} ' ;
Ii—j|={ 7 (1.3)

0, i=j

whenever i,j € I*°. Then the couple (I*,||) is a compact metric space. Let us call
(I*°,] - ]) a symbol space and an element i € I a symbol. If there is no danger of
misunderstanding, let us call also an element i € I* a symbol. Define the left shift
o : I — I by setting

O(il,’ig,...):(ig,ig,...). (14)
Clearly o is continuous and surjective. If i € I™ for some n € N, then with the
notation o (i) we mean the symbol (iy, ..., 4,) € I""1. Sometimes, without mentioning

it explicitly, we work also with “empty symbols”, that is, symbols with zero length.
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For each cylinder we define a cylinder function ¢! : I*° — (0, 00) depending also on a

given parameter ¢ > 0. The exact definition is introduced at the beginning of the second
chapter. To follow this introduction, the reader is encouraged to keep in mind the idea
of the mass distribution. With the help of the cylinder function we define a topological
pressure P : [0,00) — R by setting

P(t) = lim % logz Yt (h (1.5)

n—00
ieln

where h € I is some fixed point. Denoting with M, (I>°) the collection of all Borel
regular probability measures on /° which are invariant, that is, p([i]) = > .., p([4, i])
for every i € I*, we define an energy E,, : [0,00) — R by setting

E,( —T}Lngo Z 1) log 9! (h) (1.6)

ieln

and an entropy h, by setting

T == lim > u([i]) log p([3]). (1.7)

ieln

For the motivation of these definitions, see, for example, Mauldin and Urbariski [14] and
Falconer [8]. For every u € M,(I*) we have P(t) > h, + E,(t), and if there exists a
measure ;1 € M, ([*) for which

P(t) = hy, + E,(t), (1.8)

we call this measure a t—equilibrium measure. Using the generalised subadditivity, we
will prove the existence of the t—equilibrium measure. We obtain the ergodicity of
that measure essentially because p — h, + E,(t) is an affine mapping from a convex
set whose extreme points are ergodic and then recalling Choquet’s theorem. Applying
now Kingman’s subadditive ergodic theorem and the theorem of Shannon-McMillan,
we notice that

P(t) = lim 1o i1, ()
ERTI(ETA)
for p—almost all i € I*° as p is the t—equilibrium measure. Following the ideas of
Falconer [5], we introduce an equilibrium dimension dim, for which dim,(/*°) = ¢
exactly when P(¢) = 0. Using the ergodicity, we will also prove that dim,(A) = ¢ if
P(t) = 0 and pu(A) = 1, where p is the t—equilibrium measure. In other words, the
equilibrium measure p is ergodic, invariant and has full equilibrium dimension.

To project this setting into R? we need some kind of geometric projection. With the
geometric projection here we mean mappings obtained by the following construction. Let
X C R?be a compact set with nonempty interior. Choose then a collection {X; : i € I*}
of nonempty closed subsets of X satisfying

(1.9)

(1) Xi; C X; foreveryie I*and i€ [,
(2) d(X;) — 0, as |i| — oc.
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Here d means the diameter of a given set. We define a projection mapping to be the
function 7 : I°° — X, for which

{r(i)} = () Xu. (1.10)

as i € I*°. The compact set £ = 7(I*) is called a limit set, and if there is no danger of
misunderstanding, we call also the sets 7([i]), where i € I'*, cylinder sets. In general, it
is really hard to study the geometric properties of the limit set, for example, to determine
the Hausdorff dimension. We might come up against the following problems: There is
too much overlapping among the cylinder sets and it is too difficult to approximate the
size of these sets. Therefore we introduce geometrically stabile IFS’s. With the iterated
function system (IFS) we mean the collection {; : i € I'} of contractive injections from
Q to Q, for which ¢;(X) C X as i € I. Here D X is an open subset of R?. We
set X; = ¢i(X), where ¢; = ¢;, 0---0¢;  as i € I*, and making now a suitable
choice for the mappings ¢;, we can have the limit set F to be a self-similar set or
a self—affine set, for example. Likewise, changing the choice of the cylinder function,
we can have the equilibrium measure i to have different kind of properties, and thus,
making a suitable choice, the measure m = p o 7~ ! might be useful in studying the
geometric properties of the limit set. If there is no danger of misunderstanding, we call
also the projected equilibrium measure m an equilibrium measure. We say that IFS is
geometrically stabile if it satisfies a bounded overlapping condition and the mappings of
IF'S satisfy the following bi-Lipschitz condition: for each i € I* there exist constants
0 <s; <53 <1 such that

sl =yl < lps(r) = @s(y)] < 5sfz -yl (1.11)
for every z,y € ). The exact definition of these constants is introduced in Chapter
3. To follow this introduction the reader can think for simplificity that for each ¢ € I
there exist such constants and s; = s, - - "8y, and 5; =5, - “Si, as i€ I*. The upper
and lower bounds of the bi-Lipschitz condition are crucial for getting upper and lower
bounds for the size of the cylinder sets. The bounded overlapping is satisfied if the
cardinality of the set {1 € I* : p;(X)N B(z,7) # O and 5; <r < s;  }is bounded as
re Xand 0 <r <rg=ry(x).

The class of geometrically stabile IFS’s includes many interesting cases of IFS’s, for
example, a conformal IFS satisfying the OSC and the so called boundary condition
and an affine IFS satisfying the SSC. The open set condition (OSC) and the strong
separation condition (SSC) are commonly used examples of separation conditions we
need to use for having not too much overlapping among the cylinder sets. We prove
that for the Hausdorff dimension of the limit set of geometrically stabile IFS’s, there
exist natural upper and lower bounds obtained from the bi—Lipschitz constants. It is
now very tempting to guess that for geometrically stabile IFS’s, making a good choice
for the cylinder function, it could be possible to have the same equilibrium dimension
and Hausdorff dimension for the limit set, and thus it would be possible to obtain the
Hausdorff dimension from the behaviour of the topological pressure. It has been already
proved that this is true for similitude and conformal IFS’s and also for “almost all” affine
IFS’s. Recalling now that the equilibrium measure has full equilibrium dimension, we

i|‘i|,
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conclude that in many cases, like in “almost all” affine IFS’s, making a good choice for
the cylinder function, we can have an ergodic invariant measure on the limit set having
full Hausdorff dimension.

Acknowledgement. The author is deeply indebted to Professor Pertti Mattila for his
valuable comments and suggestions for the manuscript.

2. CYLINDER FUNCTION AND EQUILIBRIUM MEASURE

In this chapter we introduce the definition of the cylinder function. Using the cylinder
function we are able to define tools of thermodynamical formalism. In this setting we
prove the existence of a so called equilibrium measure.

Take ¢t > 0 and i € I*. We call a function ¢! : I — (0,00) a cylinder function if it
satisfies the following three conditions:

(1) There exists K; > 1 depending only on ¢ such that

Yi(h) < K (5) (2.1)
for any h, j € I*.
(2) For every h € I*° and integer 1 < j < |i| we have

Ui (h) < g (07 (1), R) U5 5) (). (2.2)

(3) For any given 6 > 0 there exist constants 0 < s; < 1 and 0 < S5 < 1 depending
only on ¢ such that

Uy < ¥ () < Ul ()s; (23)
for every h € I*°. We assume also that s5,55 /' 1 as § \, 0 and that ¢? = 1.

Note that when we speak about one cylinder function, we always assume there is a
collection of them defined for i € I* and ¢ > 0. Let us comment on these conditions.
The first one is called the bounded variation principle (BVP) and it says that the value
of ¥ (h) cannot vary too much; roughly speaking, ! is essentially constant. The second
condition is called the submultiplicative chain rule for the cylinder function or just
subchain rule for short. If the subchain rule is satisfied with equality, we call it a chain
rule. The third condition is there just to guarantee the nice behaviour of the cylinder
function with respect to the parameter t. It also implies that

s < Uim) <5/ (2.4)
with any choice of h € I°°.
For each k € N, i € I* := (I*)* and t > 0 define a function 1" : 1 — (0, 00) by

setting
|i|/k—1

Wi m) = T vl (VT (2),h) (2.5)
=0

as h € I*°. Clearly, now ¢! (h) < wﬁ’k(h) for every k € N and i € I** using the subchain
rule. Note that if the chain rule is satisfied, then 1! (h) = ¥/*(n) for every k € N and
that we always have ¢! (h) = ¢*(n).
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It is very tempting to see these functions as cylinder functions satisfying the chain
rule on I**. Indeed, straight from the definitions we get the chain rule and condition
(3) satisfied. However, to get the BVP for ¢/* we need better information on the local
behaviour of the function 1!. More precisely, we need better control over the variation
of ¥! in small scales. We call a cylinder function from which we get the BVP for wik
with any choice of k € N smooth cylinder function. We say that a mapping f : I*° — R
is a Dini function if

/0 wa@dé < 0, (2.6)
where
@K5)=‘59E6U(ﬂ-—fﬁ)| (2.7)

is the modulus of continuity. Observe that Holder continuous functions are always Dini.

Proposition 2.1. Suppose the cylinder function is Dini. Then it is smooth and func-
tions wik are cylinder functions satisfying the chain rule on I**.

Proof. Tt suffices to verify the BVP. For each k& € N we denote wy(0) = max ¢k wyi (0).
Using now the assumption and the definitions we have for each i € I**

317k 71 t G+1k (4
log ¢ (1) — log ¥ (3) Z . < v (7 W?)

gyk( N (O(J—H)k(l)a J)

‘ Vf) | log 1 | Yo (77T B) — Uiy, (90T, )
Uiy, (CUHE(L), )

li]/k—1
O Z ’1/1011@ (0V V% (4), 1) _wijk(iﬂk(a(]Jrl)k(i)aj)’
it |
§§;k Z u)lyg(gf(ﬁlf(ﬂrl)k)) (2.8)
=0

§§Z"’/ wi, (2707 F)dn
0
1 1
— / r0) g5
siklog2 J, 0

whenever h, j € I™ by substituting n = —(log, §) + 1 and dn = —(0klog2)~*ds. This
gives

tk
27 (h
¥ ()
where the logarithm of K, equals to the finite upper bound found in (2.8). O

Of course, a cylinder function satisfying the chain rule is always smooth. In this
case the previous proposition gives us a sufficient condition for the BVP to hold. Next,
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we introduce an important property of functions of the following type. We say that a
function a : N x NU {0} — R satisfies the generalised subadditive condition if

a(ny +n2,0) < a(ny,n2) + a(ne, 0) (2.10)

and |a(ny,ng)| < nyC for some constant C. Furthermore, we say that this function is
subadditive if in addition a(ny,ne) = a(ny,0) for all n; € N and ny € NU {0}.

Lemma 2.2. Suppose that a function a : N x NU {0} — R satisfies the generalised
subadditive condition. Then

La(n,0) < X

LN a(k,j)+2C (2.11)

1
=0
for some constant C' whenever 0 < k < n. Moreover, if this function is subadditive, then
the limit lim,,_.o ~a(n, 0) exists and equals to inf, +a(n,0).

Proof. We follow the ideas found in Lemma 4.5.2 of Katok and Hasselblatt [11]. Fix
n € N and choose 0 < k < n. Now for each integer 0 < ¢ < k we define a(q) = L"_T‘HJ
f o=

to be the integer part of = Straight from this definition we shall see that « is

non-increasing,
n—k—1<a(@k+q¢<n-—1 (2.12)
and
2 <alg) < (2.13)
whenever 0 < ¢ < k. Temporarily fix ¢ and take 0 <1 < a(q) and 0 < i < k. Now
g—1<lk+qg+i<algk+q (2.14)
and therefore,
{0,....n =1} ={lk+q+i:0<l<alg), 0<i<k}US, (2.15)
where S is the union of the sets S; = {0,...,¢— 1} and S = {a(¢)k +¢q,...,n — 1}.

Using (2.12), we notice that 1 < #S57 < k. It follows from (2.13) that a(g) can attain

at maximum two values, namely | %2

Tk
which a(qo) = [2+]. Then clearly,

{lk+q:0<1<a(g), 0<qg<k}={0,...,a(q)k + qo}- (2.16)

By the choice of ¢q it holds also that a(qy) = (n—qo—1)/k and thus a(qo)k+qo = n—1.

It is clear that #S5] = ¢. It is also clear that S} = {n—k+gq,...,n—1}if o = k—1.

But if not, we notice that a(qo + 1) = a(q) — 1 = (n — q — k — 1)/k, and thus

a(qo+ 1)k +qo+ 1 = n— k. Therefore, defining a bijection 1 between sets {0, ..., k—1}
and {1,...,k} by setting

) —q+1, 0<¢q¢<qo
n(q) =

] and %] — 1. Let gy be the largest integer for

217
Qo —q+k+1, g < q <k, (2.17)

we have #S? = n(q) for all 0 < ¢ < k.
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Since n is of the form n(q) +a(q)k+q for any 0 < g < k, we get, using the assumption
several times that

a(q)

a(n,0) = a(n(q), o(q)k + q) +Za q) — Dk +q) +alq,0)
=1
a(g)-1
< > alk,lk+q) +2kC (2.18)
1=0
o(q)

<N a(k, lk + q) + 3kC.

=0

~

In fact, we have

k=1 /a(q)
La(n,0) < = ( a(k,kl+q) + 3k‘C’>

=L "a(k,j) + %£C (2.19)

using (2.16).
If our function is subadditive, we have

limsup a(n,0) < 1a(k,0) (2.20)
with any choice of k using (2.19). This also finishes the proof. OJ

Now we define the basic concepts for thermodynamical formalism with the help of
the cylinder function. Fix some h € I*°. We call the following limit

P(t) = lim +log Z Yi(h (2.21)

n—o00
ieln

the topological pressure for the cylinder function or just topological pressure for short.
For each k € N we also denote

Fk(t) = limsup = log Z Y¥(m)  and

n—0o0

ie[kn
Prt) = hTILIllOI.}f Log Z ¥ (h) (2.22)
iefkn

If they agree, we denote the common value with P¥(t). Recall that the collection of all
Borel regular probability measures on > is denoted by M (I*°). Denote

M(I®) ={p € M(I®) : u is invariant }, (2.23)

where the invariance of p means that p([i]) = p(o*([i])) for every i € I*. Now
M, (I%°) is a nonempty closed subset of the compact set M (I°°) in the weak topology.
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For given u € M,(I*°) we define an energy for the cylinder function E,(t), or just
energy for short, by setting

= lim & Z ]) log ¢t (h) (2.24)
T e
and an entropy h, by setting
= lim ;> H(u([i])), (2.25)
ieln

where H(x) = —zlogz, as ¢ > 0, and H(0) = 0. Note that H is concave. For each
k € N we also denote

E,(t) =limsup 2 >~ u((i])¢*(n) and

n—oo

ie[kn
Eb(t) =timinf L3 p([i])vi*(h). (2.26)
ierkn

If they agree, we denote the common value with Eﬁ(t} Finally, we similarly denote
W= tim 237 H (). (2.27)
ie[kn

Let us next justify the existence of these limits using the power of subadditive sequences.
We will actually prove a little more than just subadditivity as we can see from the
following lemma.

Lemma 2.3. For any given p € M(I*®) the following functions

(1) (m1,73) = Ssepms H (o 0~([1)) and

(2) (n1,n2) = 3 sepm po o " ([i]) log 9i(h) + log K
defined on N x N U {0} satisfy the generalised subadditive condition. Furthermore, if
1€ My (1), the functions are subadditive.

Proof. For every ny € N and ny € NU {0} we have

> H = > > ullg i) log (3, 1)

iermitn2 iel™ jeln2

—— 3 3 (5, i])log ([&;]1 > w3, 1) log p((3))
)

iel™ jeln2 H iel™ jel™2

B> mjDH(“ff(J[;j} )+ X (D) (2.25)

i€l jeIn2 jerm2

<y H(Z u([j,i])) + > H(u(l3])

ierm jerr2 jEI™
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using the concavity of the function H. Note that while calculating, we can sum over
only cylinders with positive measure. Using the concavity again, we get

T H(Z mxm) < H<( DD u([ﬂ))
1

- G R 22

which finishes the proof of (1).
For every n; € N and ny € NU {0} we have

Y w(i)logwim) < Y p([i]) log ¥ s)(h)

iefnitn2 ieJmitne
+ > (i) log ety (0™(1),h)
ienitn2
< 3" woo([i]) log ¢t (n) (2.30)
ielm™
+ Y ul[i]) log ¢ (n) + log K,
ielm™2

using the BVP and the subchain rule. From the condition (3) of the definition of the
cylinder function it follows that

nilogs, < Z ]) log 9! na 1) (R) < nylogsy, (2.31)

iermitne

which finishes the proof of (2).
The last statement follows directly from the definition of the invariant measure. [J

Now we can easily conclude the existence of the previously defined limits. Compare
the following proposition also with Chapter 3 of Falconer [7].

Proposition 2.4. For any given u € M, (I1°°) it holds that
(1) P(t) exists and equals to inf, * (log >, . ¥i(h) + C}) with any C; > log Ky,
(2) E,(t) emists and equals to inf, = (3, ;. p([i]) logyi(h) + C;) with any C; >
log K4,
(3) hf ex%sts and equals to inf, L > .. H(u([1])),
(4) topological pressure is continuous and strictly decreasing and there exists a unique
t >0 such that P(t) = 0.

Furthermore, if the cylinder function is smooth, all the previous conditions hold for
PE(t), EX(t) and h with any given k € N. It holds also (even without the smoothness

assumption) that
(5) P(t) = limy oo 1 P" (£) = limy oo LP¥(t) = infy, LP" () = infy LP*(2),
(6) Ep(t) = limy oo LEL(t) = limy g LES(t) = infy, LE(¢) = infy, LEX (1),
(7) hy = hk for every k € N.

Finally, none of these limits depends on the choice of h € I°°.
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Proof. Take h € I*® and p € M,(I*°). From the subchain rule we get

Z Z 1/}1|n1 )wtnl ( )

ieJnitne 1eln1+n2
<K, Y 4i(n) > i (2.32)
ielml ieln2

using the BVP for any choice of ny,ny € N. Thus, using Lemma 2.2, we get (1).
Statements (2) and (3) follow immediately from the invariance of p and Lemmas 2.3
and 2.2.

Using the assumption (3) in the definition of the cylinder function, we have for fixed
neN

logss + 2log Y 4i(h) < Llog > 9™ (n)

ieln ieln

< logs; + Llog » i (h) (2.33)
ieln

with any choice of § > 0. Letting n — oo, we get 0 < log =< P(t)—P(t+6) < log =
This gives the continuity of the topological pressure smce Ss5.55 /" 1asd N\, 0. It says
also that the topological pressure is strictly decreasing and P(t) — —oo, as t — oc.
Since P(0) = log #I, we have proved (4).

Assuming the cylinder function to be smooth, we notice that Q/Jfk are cylinder functions
on I* with any choice of k € N, and, therefore, the previous proofs apply. Using the
BVP, we get

n—1
mlog Y 0t (m) < grlog K7 Y [ whongey, ()

ierkn ierkn j=0

= +log K; + = log (Z dﬁ(h)) (2.34)

ielk

for any choice of k,n € N. Therefore, due to the subchain rule,

< Llog Z Vi (h) + = log K,
ie[kn
< L log Z YR (n) + = log K, (2.35)

icrkn

< +log > ¥i(h) + +log Ky + 7 log K,

ielk
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using (1). Now letting n — oo and then & — oo, we get (5). Similarly, using the
invariance of p and the BVP, we have

& 3 () log uth () < i 3 () o K7 T vy, ()

iefkn lelkn

= Llog K; + - Z > p([d]) log ¥y, (B) (2.36)

_] =0 lejkm

= tlog Ky + £ ) pu([i]) log v (h)

ielk

for any choice of k,n € N. Therefore

Eu(t) < & > u(li])logvi(h) + & log K

ie[kn

<& > u(li]) log i (n) + & log K, (2.37)
ieIkn

<z ZM ]) log ¥} (h) + 1 log K; + - log K
ierlk

using (2). Now letting n — oo and then & — oo, we get (6). Using the BVP, we get rid
of the dependence on the choice of h € I*° on these limits. Noting that (7) is trivial, we
have finished the proof. O

Note that if a cylinder function satisfy the chain rule, we have P(t) = 1 P*(t) and
E,(t) = $Ek(t) for every choice of k € N and u € M,(I*). With these tools of
thermodynamical formalism we are now ready to look for a special invariant measure
on [, the so called equilibrium measure. If we denote a(i) = ¥;(h)/ >,y ¥5(h), as
i € I*, we get, using Jensen’s inequality for any n € N and pu € M(I*),

() gl

ieln ieln

= 2> u(li]) (— log p([1]) + log ¢/{ () — log ) ¢(h ) (2.38)

ieln jelr

with equality if and only if u([i]) = Ca(i) for some constant C' > 0. Thus, in the view
of Proposition 2.4,

P(t) > h,+ E,(t) (2.39)
whenever p € M, (I*°). We call a measure p € M, (1) as t—equilibrium measure if it
satisfies an equilibrium state

P(t) =h,+ E,(t). (2.40)
In other words, the equilibrium measure (or state) is a solution for a variational equation
P(t) = SUD e M, (1) (h + E,(t ))
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Define now for each & € N a Perron-Frobenius operator F; , by setting
7k a2
(Fur(£)®) =D " (0)f(i,b) (2.41)
ielk

for every continuous function f : I*° — R. Using this operator, we are able to find
our equilibrium measure. Assuming (F; ) ®) = 3oy ¥ (h) f(i,h), we get
inductively, using the chain rule,
(Fre()) ) = (Fea(Fr () ()
= > @) (FL() ()

ielk
,k &
=D W) Y WS 1h) (242)
ielk jETk(n=1)
- Y vt
ie[kn

Let us then denote with F;; the dual operator of F; ;. Due to the Riesz representation
theorem it works on M (I*°). Relying now on the definitions of these operators, we may
find a special measure using a suitable fixed point theorem. See also Theorem 1.7 of
Bowen [3] and Theorem 3.5 of Mauldin and Urbanski [14].

Theorem 2.5. For eacht > 0 and k € N there exists a measure vy, € M(I*°) such that

vi([i; A]) = IT, H7* / P (h)dvy(n), (2.43)
A
where I, > 0,1 € I*™ and A C I® is a Borel set. Moreover, limy_ o H,lg/k = e® and
if the cylinder function is smooth, 11, = e ®) for every k € N.
Proof. For fixed t > 0 and k € N define A : M(I*®) — M(I*°) by setting
1 >k
A1) = o FL 10). (2.44)

(Frplw) (=)™ "

Take now an arbitrary converging sequence, say, (u,) for which u, — p in the weak
topology with some p € M(I*). Then for each continuous f we have

(Fralpn)) () = pn (Fer(f))
- 'u(ft,k<f>) = ( t*k<:u))<f) (2.45)

as n — o0o. Thus A is continuous. Now the Schauder—Tychonoff fixed—point theorem
applies and we find v, € M(1*°) such that A(v;) = v4. Denoting 11, = (ﬂ*k(yk))(loo),
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we have 7, (1) = Il Take now some Borel set A C I* and i € I**. Then
I v (35 A]) = ((F) ™)) (5. A)) = e (R (o)

/ Z 5" ()X (54 (3, ) dv ()

jerl

- /1 ) Y ()X 4(h)dvy (b) (2.46)

_ / Y2 (0)du (1)

which proves the first claim. It also follows applying the BVP that for each n € N
Iy =11 Y wi([d] / > it (h)duy(n
ielkn iefkn

< KPPy (2.47)

ie[kn
and, similarly, the other way around. Taking now logarithms, dividing by kn and taking
the limit, we have for each k € N

Lpk(t) — Llog K, < Llog Ty < 2P(t) + Llog K. (2.48)
If the cylinder function is smooth, then for each k there exists a constant K;j, > 1 for

which ¥ (h) < K, ,¥!"(j) whenever h,j € I and i € I**. Using this in (2.47), we
have finished the proof. O

Note that if a cylinder function satisfies the chain rule, then v, = v for every k € N,
where

(35 4) =47 [ gtmyave (2.49)
A
as i€ [ and A C I* is a Borel set. The measure v is called a t—conformal measure.
Theorem 2.6. There exists an equilibrium measure.

Proof. According to Theorem 2.5, we have for each n € N a measure v, € M(I*) for
which

/ Yt (h)dy,(h (2.50)
where i € I" and lim,,_, —logIl,, = P(t). Hence, using the BVP, we get

LN () ( — log va([d]) + log ¢ (n))

1 = 13" v (1)) (— log IT;* /I _Yi(b)dvy(B) + log wi(h>)

ieln
> 13" v([i)) (log IT,, — log ;) (2.51)
ieln

= %loan — %logKt
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for every n € N. Define now for each n € N a probability measure
n—1
=1 Z Voo’ (2.52)
=0

and take u to be some accumulation point of the set {1, }nen in the weak topology. Now
for any i € I* we have

|1 ([3]) = pa (07 ([2) | = 5 wnl(2]) — v 0 07" ([1])]
<10, (2.53)

as n — oo. Thus u € M,(I*®). According to Lemma 2.2 and Proposition 2.3(1), we
have, using concavity of H,

ﬁ z_: Z H(I/n o Uﬁj([i])) + %Cl

DIUCHENESD
<E > H((li]) + 30 (2:54)

for some constant C'; whenever 0 < k < n. Using then Lemma 2.2 and Proposition
2.3(2), we get

LN va([4)) log ¢ () + Llog K,

ieln
< ,}Z(Z vp 0 09 ([i]) log it (h )+logKt> + 30, (2.55)
j=0 \ieJk

:kzun )log ¥t (h) + %logKt—l—‘?—ng

icrk

for some constant Cy whenever 0 < k < n. Now putting (2.51), (2.54) and (2.55)
together, we have

Llogll, < 2> H(va([i]) + £ D wa([i]) log ¢ (b) + % log K,

ieln ieln
<12 H(([D) + £ 3 pal[i]) log wi(n) (2:56)
icrk iclk

+ 30 + 30y + flog K,
whenever 0 < k < n. Letting now n — oo, we get
P(t) <+ > H(u([d]) + 3 > w([i]) log v (h) + +log K, (2.57)
ielk ielk

since cylinder sets have empty boundary. The proof is finished by letting £k — oco.  [J

Remark 2.7. In order to prove the existence of the equilibrium measure, the use of the
Perron—Frobenius operator is not necessarily needed. Indeed, for fixed h € I*° we could
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define for each n € N a probability measure

l/:meﬂ®mm
E:iepl¢€(h) 7
where Jy is a probability measure with support {h}. Now with this measure we have

equality in (2.38), which is going to be our replacement for (2.51) in the proof of Theorem
2.6.

(2.58)

Notice that in the simplest case, where the cylinder function is constant and satisfies
the chain rule, the conformal measure equals to the equilibrium measure. This can be
easily derived from the following theorem. Compare it also with Theorem 3.8 of Mauldin
and Urbaniski [14].

Theorem 2.8. Suppose the cylinder function satisfies the chain rule. Then
K'w(A) < alA) < Kw(A) (2.50)

for every Borel set A C I*°, where v is a t—conformal measure and u is the t—equilibrium
measure found in Theorem 2.6.

Proof. Using the BVP, we derive from (2.49)

1= S (@) = O S [ pln)du(n)

icln iepn VI

< Ke "0y "l (h) (2.60)

ieln
for all n € N and, similarly, the other way around. Thus we have
Ter < Ny " yl(h) < Kiert® (2.61)
ieln

for all n € N. Note that in view of the chain rule we have

) = fim 3 oo (i) = fm S5 ulls )

J=0 jeIJ
g 13 ) / o (2.62)
n—0o0 = OJeB
S L) A o

whenever i € I* since cylinder sets have empty boundary. Now, using (2.61), we get
K 'w([i]) < p((i)) < K([4]) (2.63)

for every i € I*. Pick a closed set C' C I*® and define C,, = {i € I" : [i|NC # O}
whenever n € N. Now sets (J;. [1] D C are decreasing as n = 1,2,.. ., and, therefore,
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N, Uiee, [i] = C. Thus,
Kow(C) = K tim 37 o((a) < Tim 3 (i)

ieChp ieCy,

= u(C) < Kw(0). (2.64)

Let A C I*® be a Borel set. Then, by the Borel regularity of these measures, we may
find closed sets C1,Cy C A such that v(C1\A) < ¢ and pu(Cy\A) < e for any given
e > 0. Therefore, v(A) < v(Cy) +e < Kiyu(A) + ¢ and p(A) < u(Cy) +e < Kyu(A) +«.
Letting now € \, 0, we have finished the proof. O

3. EQUILIBRIUM DIMENSION AND ITERATED FUNCTION SYSTEM

In the previous chapter, with the help of the simple structured symbol space using the
cylinder function, we found measures with desired properties. In the following we will
project this situation into R%. The natural question now is: What can we say about the
Hausdorff dimension of the projected symbol space, the so called limit set? To answer
this question, we have to make several extra assumptions, namely, we define the concept
of the iterated function system and we introduce a couple of separation conditions. To
illustrate our theory, we give concrete examples at the end of this chapter.

For fixed t > 0 we denote with u; a corresponding equilibrium measure. We define
for each n € N

GL(A) = inf{z / @) A ) 14> n} (3.1)

whenever A C I*°. Assumptions in Carathéodory’s construction are now satisfied and
we have a Borel regular measure G* on I°° with

G'(A) = lim G'(A). (3.2)
Lemma 3.1. If G'(A) < oo, then G'(A) =0 for all t > t.

Proof. Let n € N and choose a collection of cylinder sets {[1;]}; such that |i;| > n and
Zj i wi(; (h)dpg, (h) < Glo(A) + 1. Then

) <X [ ot it < Kk, 3 [ ot 5

< K Ky 83y, (QZO(A) + 1). (3.3)
By letting n — oo we have finished the proof. 0

Using this lemma, we may now define
dimy(A) = inf{t > 0: G'(A) =0}
=sup{t > 0:G"(A) = oo} (3.4)

and we call this “critical value” the equilibrium dimension of the set A C I*°. Notice
that the equilibrium dimension does not depend on the measure p;. In fact, defining
the measure G by using a fixed h € I*° instead of the integral average in (3.1), leads us
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for the same definition of the equilibrium dimension. The most important property of
the equilibrium dimension is the following theorem.

Theorem 3.2. P(t) =0 if and only if dimy(I>°) =t.

Proof. Let us first show that P(¢) < 0 implies dim,(/>°) < ¢. Using the BVP, we derive
from Theorem 2.5

1= w(i) =1," ) [ ¢i()dv(b)

ielIn ieqn V1%
> KLY (), (3.5)
ieln
where lim,, o, TI/" = eP®_ Now
1/n
lim sup <Z wﬁ(h)> < lim (K II,)Y" =P < 1 (3.6)

and choosing ngy big enough, we have

(Z 1} (h)

ie[n

1/n
1 P(t)
) e (3.7)

2

whenever n > ngy. Hence, for any given € > 0 there exists n; € N such that

> [ vtwdum) < (3.8)
iern /I
whenever n > n;. This proves the claim.

For the convenience of the reader, to prove the other direction we repeat here the
argument of Falconer from [5]. Let us assume that ¢ > dim,(/*) and h € I*°. Then,
clearly, G'(1°°) = 0 and we may choose a finite cover for 1> of the form {[i] : i € A C
U?L I’}, where ng € N is large enough and A is some incomparable set such that

> wih) < K (3.9)
icA
Here we can choose a finite cover, since any infinite collection of disjoint cylinders will
not cover the whole I*°. Define now for each integer n > ng a set

A, ={i1,...,ie " i€ Aas j=1,...,q with some ¢,

li1,...,14] > nand |iy,...,1,-1] < n}. (3.10)
Now, using the subchain rule, we get with any choice of j € I'*
D ¥fa(b) < Kwpf(m) Y 9i(h) < ¢(n) (3.11)
icA icA

whenever h € I*°. Thus, inductively, we get for every n > ng

> i) < K7 (3.12)

i€An
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Assuming i € ["0 we have i = j,k for some j € A, and k € I* with |k| < ng.
Moreover, for each such j there are at most (#1)" such k. Since ¢} (h) < ! (k, h)ELkI <
¥}(k,h), we have

D i) S HD™E Y vih) < (#)™ (3.13)
ielmtno jEAR
for all n € N. From this we derive that P(¢) < 0. This also finishes the proof. 0

So far we have worked only in the symbol space. It has provided us with a simple
structured environment for finding measures with desired properties. It is, however,
more interesting to study geometric projections of these measures and the symbol space.
In the following we define what we mean by this geometric projection. Let X C R? be
a compact set with nonempty interior. Choose then a collection {X; : 1 € I*} of
nonempty closed subsets of X satisfying

(1) X;; C X; foreveryie I*and i€ [,

(2) d(X;) — 0, as |i| — oc.
Here d means the diameter of a given set. Define now a projection mapping w: I*° — X
such that

{r(1)} = () Xu. (3.14)

as 1 € I*°. It is clear that 7 is continuous. We call the compact set £ = w(/*°) as the
limit set of this collection, and if there is no danger of misunderstanding, we also call
the projected cylinder set a cylinder set.

We could now define a cylinder function for this collection of sets. But without any
additional information the equilibrium dimension has most likely nothing to do with the
Hausdorff dimension of the limit set. Therefore, in order to determine the Hausdorff
dimension, it is natural to require that the cylinder function somehow represents the size
of the subset X; and also that there is not too much overlapping among these sets. The
use of iterated function systems with well-chosen mappings and separation condition
will provide us with the sufficient information we need.

Take now © D X to be an open subset of R%. Let {¢; : i € I*} be a collection of
contractive injections from € to € such that the collection {p;(X) : i € I*} satisfies
both properties (1) and (2) above. By contractivity we mean that for every i € I* there
exists a constant 0 < s; < 1 such that |p;(x) — ¢i(y)| < si|x — y| whenever z,y € Q.
This kind of collection is called a general iterated function system. Furthermore, we call
the collection {p; : i € I} of the same kind of mappings an iterated function system
(IF'S). Defining p; = @;, 0---0 @iy, as 1 € I*, we clearly get the assumptions of general
IFS satisfied. In fact, we have d(p; (X)) < (maxe; s;)*d(X).

To avoid too much overlapping, we need a decent separation condition for the subsets
©:(X). We say that a strong separation condition (SSC) is satisfied if ¢; (X)Np;(X) = O
whenever i and j are incomparable. For IFS it suffices to require ¢;(X) N¢;(X) =0
for @ # j. Of course, assuming the SSC would be enough in many cases, but it is a
rather restrictive assumption, and usually we do not need that much. We say that an
open set condition (OSC) is satisfied if ¢; (int(X)) N;(int(X)) = @ whenever i and j
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are incomparable. Again, for IFS it suffices to require ; (int(X)) N ¢; (int(X)) = @ for
i # 7. With the notation int(X) we mean the interior of X. Furthermore, we say that a
general IF'S has weak bounded overlapping if the cardinality of incomparable subsets of
{iel":z € pi(X)}is bounded as z € X. Trivially, a general IFS satisfying the SSC
has weak bounded overlapping. Assume now that for each i € I'* there exists a constant
0 < s; < 1such that s; — 0 as |i|] — oco. Then we say that a general IF'S has bounded
overlapping if the cardinality of the set Z(x,r) = {1 € Z(r) : ¢:(X) N B(x,r) # O} is
bounded as z € X and 0 < r < rg = ro(z). Here Z(r) is an incomparable subset of
{iel*:s;<r< §i|\i|—1} such that {[i] : i € Z(r)} is a cover for I*°. We will choose
the constants s; rigorously in a while. Next we study how these separation conditions
are related.

Lemma 3.3. Suppose a general IFS has bounded overlapping. Then it has also weak
bounded overlapping.

Proof. 1f the weak bounded overlapping is not satisfied, then the cardinality of incom-
parable subsets of R(x) = {1 € I* : 2 € p;(X)} is not bounded as z € X. Therefore,
sup,ex #(R(z) N Z(r)) — oo, as r \, 0. On the other hand, R(z) N Z(r) C Z(x,r) for
all x € X and r > 0, which gives a contradiction. O

It seems that by assuming only the mappings of a general IFS to be Lipschitz it is
very difficult to get information about the Hausdorff dimension of the limit set. While
the Lipschitz condition provides us with an upper bound for the diameter of the cylinder
set, it does not give any kind of lower bound for the size of the cylinder set. Having
the lower bound seems to be crucial for getting this kind of information. Assuming the
mappings ¢; to be bi-Lipschitz, we denote the “maximal derivative” with

|ps(2) — $s(y)]

L;i(z) = limsup (3.15)
y—z |z —y|
and the “minimal derivative” with
ls () = lim inf £308) = @] (3.16)

y=w |z =y
We say that a general IF'S is bi—Lipschitz if the mappings ¢; are bi—Lipschitz and there
exist cylinder functions yi and Ei satisfying the chain rule such that ytl (h) <3 (ﬂ(h))t

and @i(h) > Ly (W(h))t for all h € I*°, and in both functions the parameter ¢ is an
1

exponent, that is, gj(h) = (%i (h))t and @i(h) = (¢ (h))t. We also assume that the bi-
Lipschitz constants for the mappings ¢; are s; = infyeye gi(h) and 5; = SUPyc oo @1(h)
From now on, these are the constants s; we will use in the definition of the bounded
overlapping.

Lemma 3.4. A bi—Lipschitz IFS satisfying the SSC has bounded overlapping.

Proof. We use the idea found in the proof of Proposition 9.7 of Falconer [6]. Denote
q = min;z; d(;(X),;(X)), where d means the distance between two given sets, and
take x € E and r > 0. We can take x from E since otherwise there is nothing to
prove. Choose i € I* such that x = m(i). Since now 5|, (X) N B(z,r) # O for every
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n € N, we can choose n such that i|,, € Z(x,r). Take also an arbitrary j € Z(r) such
that j # i|, and let 0 < j < n be the largest integer for which j|; = i|;. If it were
d( i), (X), p3(X)) < 55,4, there would be y € ¢, (X) and z € ¢;(X) such that

ly — 2| < sy,4- (3.17)

The bi-Lipschitz condition implies |(ps),) " (y) — (¢1),) "' (2)| < ¢, which contradicts the
strong separation assumption due to the choice of j. Hence

d( 11, (X), 03(X)) = 5,0 > 54y, 4 > 7q (3.18)

and thus i, is the only symbol in Z(r) with ¢, (X) N B(z,rq) # ©. This also means
that there exists exactly one h € Z(r/q) for which ¢,(X) N B(x,r) # . Take now
an arbitrary j € Z(x,r) and assuming ¢ < 1 we notice that j = h, k for some k € I*.
Choose the smallest integer k such that s, < ¢/K; for all k € I* for which |k| > k. Here
K, is the constant from the BVP of the cylinder function w’;. Hence if it were j = h, k
for some k € I* for which |k| > k, it would hold that

Siligr < LKaSnSu, <7 (3.19)

and therefore j could not be in Z(x,r). Thus there can be at maximum (#1)* of such

k and hence #7 (z,r) < (#1)*. O

It seems to be important that the shape of the open set of the OSC would not be too
“wild”, and, therefore, the shape of the cylinder sets, or rather the sets ¢;(X), is under
control. Motivated by this, we say that the boundary condition is satisfied if there exists
0o > 0 such that

D inf Hd(B(x,r)ﬂint(X))

> 0, 3.20
z€X 0<r<pgg Hd (B(:L‘, r)) ( )

where 0X denotes the boundary of the set X. This condition says that the boundary of
X cannot be too “thick”; for example, recalling the Lebesgue density theorem, we have
H?(O0X) = 0. The boundary condition is clearly satisfied if the set X is convex.

Proposition 3.5. A bi-Lipschitz general IFS satisfying the OSC and the boundary
condition has weak bounded overlapping if 5i/s; is bounded as i € I*.

Proof. Fix x € X and denote with R some incomparable subset of {1 € I* : € ¢;(X)}.
Put ro = min{ g, d(X,0Q)}, where gy is as in the boundary condition. Now there exists
0 > 0 such that for every y € X we have

H(B(y,r) Nint(X)) > H*(B(y, or)) (3.21)

whenever 0 < r < ry. Note that the collection {¢; (int(X )) 11 € R} is disjoint due to
the OSC. For each i € R take y; € X such that ¢;(y;) = = and choose an increasing
sequence of finite sets Ry C Ry C --- such that U;; R; = R. Now fix j and choose
r > 0 small enough such that r; :=r/s; < ro for all i € R;. Using now the boundary
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condition, bi—Lipschitzness and the OSC, we see that
#Rjrd = Z sird
ieR;
= (a(d)d*) ™ D" {1 (Blys, or4)
ieR;

< (a(d)d?) Y stHA(Blys, i) N int(X))

ieR;

6) " 3 (s (Blys, ) Nint (X)) (3.22)

ieR;

< (a<d)5d)‘1Hd< U B(:c,Ei'ri)>

ieR;
< 5_dC'drd,
where «(d) is the Hausdorff measure of the unit ball and 5;/s; < C as i € [*. Hence

#R = lim; o, #R; < §-9C?, where the upper bound does not depend on the choice of
reX. U

Now we define an important class of iterated function systems. We say that a general
IFS is (weakly) geometrically stabile if it is bi-Lipschitz and it has (weak) bounded
overlapping. Geometrically stabile systems are clearly weakly geometrically stabile by
Lemma 3.3. If we have a good control over the size of the cylinder sets, the converse is
also true.

Proposition 3.6. Suppose a general IFS is weakly geometrically stabile such that s;/s;
1s bounded as 1 € I*. Then it is also geometrically stabile.

Proof. Notice first that the weak bounded overlapping assumption implies the existence
of the constant C' for which ), , X, (x)(z) < C whenever € X and the set A C I* is
incomparable. Recall that

Z(x,r)={i€ Z(r): ¢i(X)N B(z,r) # O} (3.23)

is incomparable and notice that ¢;(X) C B(x,rd(X)s;/s; +7) asi € Z(z,r). Choosing
C' big enough such that also d(X)s;/s; +1 < C whenever i € I*, we get

#Z(x,r)ﬂg(ming[)l Z §fff

el
ieZ(x, r)

< (’Hd( min s ) Z 'Hd (¢:(X (3.24)

el
ieZ(z,r)

d(x d d
< (H( rlnel}lsZ /xcr) Z Xo, (x)(2)dH ().

i€Z(z,r)
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Since r? = (a(d)C’d)led (B(z,Cr)), we conclude

Oz(d)Cd'H
A < 3.25
where «(d) is the Hausdorff measure of the unit ball. O

Before studying the Hausdorff dimension of the limit set, we show in the following
theorem that with respect to any invariant measure we can have the same structure in
the limit set as in the symbol space. Under the weak bounded overlapping assumption,
somehow the weakest separation condition, we can project any invariant measure from
I*° to the limit set F such that the overlapping has measure zero.

Theorem 3.7. Suppose a general IFS has weak bounded overlapping. Then for m =

pom ! where p € M,(I*), we have

m(:(X) N g5(X)) = 0 (3.26)
whenever i and j are incomparable.

Proof. We use the idea found in the proof of Lemma 3.10 of Mauldin and Urbariski [14].
For fixed incomparable h and k we denote A = ¢n(X) N (X)) and A, = U;cpm 91(A)
asn € N. Let us first show that (2, U,_, A, = @. Assume contrarily that there exists
v € Ny2yUnzy An. Then z € ;2 A, for every ¢ and hence z € A, , where {n,},en is
an increasing sequence of indexes. Now for each ¢ there exists a symbol j, € I"¢ such
that x € ¢, n(X) and x € ¢, x(X). Denoting with R} the maximal incomparable subset
of R, ={1i¢€ Uszl(I”th' U It 2 € (X)), we have #R; > 2 and also #R} > 2.
Clearly, #Ry > 4, and even if it were jo|n,+n = j1,h (0r Joln 4| = 1, k), it is still
# R} > 3 since the two new symbols jo,h and jo,k with the symbol ji,k (or ji,h) are
incomparable. Observe that for each k£ the symbol j; can be comparable at maximum
with one element of R;_;. Thus continuing in this manner, we get #R; > k + 1 as
k € N. The claim is proved since this contradicts the bounded overlapping assumption.

The boundedness assumption also implies ) . ;n Xy, (4)(2) < C for every x € X and
n € N with some constant C' > 0. Thus, using the invariance of u, we have

m(A,) = m< U mm) > 7Y (e (4))

iern ielm
>0 p(lism (A)]) = C oo (T (A)) = C'm(A) (3.27)
ieln
whenever n € N. So, if m(A) > 0, we get a contradiction immediately since
A, | =1 A, | > 1i A) > Ct'm(A). 3.28
m<ﬂU ) qggom<H ) > lim m(4,) = Clm(4).  (3.28)

The proof is complete. U

If we assume that the cylinder function satisfy

v (h) < o (h) <), (3.29)



24 ANTTI KAENMAKI

where i € I*, then we clearly have dimy (1*°) < dim,,(1>°) < dimg(1*°), where dim,, (1>°)

and dimg(/>°) are the equilibrium dimensions derived from cylinder functions fl and Ei,
respectively. The following theorem guarantees that the similar behaviour occurs also
for the Hausdorff dimension with geometrically stabile systems. It is now very tempting
to guess that in some cases making a reasonable choice for the cylinder function, it is
possible to get dimy(E) = dimy(/>°). If there is no danger of misunderstanding, we
call also the projected equilibrium measure an equilibrium measure.

Theorem 3.8. Suppose a general IFS is geometrically stabile. Then it has
dimy (1) < dimy (E) < dimg(1°°), (3.30)
and, in fact, H'(A) > 0 ast < dimy(I*°) whenever A is a Borel set such that m(A) = 1

and m s the equilibrium measure constructed using the cylinder function @i

Proof. Let us first prove the right—hand side of (3.30). For each ¢t > 0 we have

HY(F) < lim inf{Zd(cpij(E))t :EC Ugoij(E), 11| > n}

< lim inf{z d(E)'s,, : EC| ey, (B), 1] > n} (3.31)
J J

< Kd(BE)'G (1),

where G' is the measure constructed in a similar way as in (3.1) and (3.2) but using the
cylinder function Ei Here K, is the constant of the BVP. Thus dimp (E) < dimy (7).
Notice that here we did not need any kind of separation condition.

For the left-hand side recall first that the set Z(r) is incomparable and the cardinality
of the set Z(x,r) is bounded as x € X and 0 < r < 1y = ro(x). Now for fixed z € X
and 0 < r < ro(x) we have, using theorems 2.5 and 2.8,

m(B(:L’,’/’))S Z M(SOi(X))

i€Z(z,r)
<K, Y [ ulwdve < K2z (3:32)
ieZ(z,r) I

where m and v are the corresponding equilibrium measure and conformal measure con-
structed using the cylinder function gtl and ¢t = dim,(/>°). Taking A C E such that

m(A) =1 and defining A, = {z € A:  <ro(z)}, we have A = |J;~; Ay. Now for each
r € A, we have

m(B(z,r)
( - ) < K292(e,7) (3.33)
as 0 < r < 1, and thus H*(4;) > Cm(Ay) for some positive constant C. Since
HY(A) = limg_o H'(Ag) > C > 0, we have finished the proof. O

Next we introduce a couple of examples of IFS’s which have aroused great interest for
some time. After each definition we also discuss a little how our theory turns out to be
in that particular case.
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Definition 3.9. Let the mappings of IFS be similitudes, that is, for each ¢ € I there
exists 0 < s; < 1 such that |p;(z) — vi(y)| = si|x — y| whenever x,y € Q. We call this
kind of setting a similitude IF'S and the corresponding limit set a self-similar set.

If for each i € I" we choose ¥} = s{, where s; = s;, -+, , then ¢ is a constant
cylinder function satisfying the chain rule. Assuming weak bounded overlapping, the
similitude IFS is geometrically stabile due to Proposition 3.6, and, thus, with this choice
of the cylinder function we get, applying Theorem 3.8, that dimy (E) = dimy(/>°) (we
clearly have s; = 35; = s;). Notice also that Theorem 3.5 provides us with concrete as-
sumptions, namely the OSC and the boundary condition, to obtain the weak bounded
overlapping. The definition of this setting goes back to the well known article of Hutchin-
son [10]. However, the open set condition was first introduced by Moran in [15]. Schief
studied in [19], extending ideas of Bandt and Graf [1], the relationship between the
OSC and the choice of the mappings of IFS. It also follows from the result of Schief that
the weak bounded overlapping implies the OSC since according to Proposition 3.6 and
Theorem 3.8 we have H'(E) > 0, where ¢t = dimy(FE). For example, using Theorems
2.5, 2.8 and 3.7, we see that the t—equilibrium measure, where t = dim g (F), gives us the
idea of “mass distribution”; we start with mass 1 and on each level of the construction
we divide the mass from cylinder sets of the previous level using the rule obtained by the
probability vector (st);c;. We could also define our cylinder function using an arbitrary
probability vector (p;);cr. In this case it is interesting to study how big is the subset of
the limit set where the so called local Hausdorff dimension of the equilibrium measure
equals to a given number at each point.

Definition 3.10. Let mappings of IFS be conformal, that is, || = |J,,| for every
1 € I, where J stands for the usual Jacobian and the norm on the left-hand side is just
a standard “sup-norm” for linear mappings. We call this kind of setting a conformal
IFS and the corresponding limit set a self-conformal set.

In the definition of the conformal mapping, the derivative ought to exist for H%-
almost all points. In our case this is true due to the Rademacher’s theorem. Observe
that the conformal mapping is complex analytic in the plane and, by Liouville’s theorem,
a Mobius transformation in higher dimensions (see Theorem 4.1 of Reshetnyak [18]). So,
in fact, conformal mappings are C*> and infinitesimally similitudes. Notice also that
it is essential to use the bounded set €2 here since conformal mappings contractive in
the whole R? are similitudes, as d exceeds 2. If for each i € I* we choose 9!(h) =
}go’i (ﬂ(h))}t, then ¢! is a cylinder function satisfying the chain rule. The BVP for
Yt is guaranteed by the smoothness of mappings ¢;, Proposition 2.1 and the chain
rule. With this choice of the cylinder function we may also call the BVP a bounded
distortion property (BDP) since it gives information about the distortion of mappings
;. Assuming weak bounded overlapping, the system is geometrically stabile and we
get dimpy(F) = dimy(/*°) like before (we can choose @Z)i = Etl = ¢!). Notice again
that, using Theorem 3.5, the OSC and the bounded overlapping provides us with a
sufficient condition for the weak bounded overlapping to hold. In the conformal case
the equilibrium measure is equivalent to the conformal measure. Peres, Rams, Simon
and Solomyak [16] generalised the result of Schief for the conformal setting. Thus, the
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weak bounded overlapping implies the OSC also in this setting. Mauldin and Urbanski
[14] have introduced the theory of conformal IFS’s for infinite collections of mappings.

Definition 3.11. Let the mappings of IFS be affine, that is, p;(x) = A;z + a; for every
i € I, where A; is a contractive non-singular linear mapping and a; € R?. We call this
kind of setting an affine IF'S and the corresponding limit set a self-affine set.

Clearly, the products A; = A;, - - - Ai\i\ are also contractive and non-singular. Singular
values of a non—singular matrix are the lengths of the principle semiaxes of the image of
the unit ball. On the other hand, the singular values 1 > a; > as > -+ > a4 > 0 of a
contractive, non—singular matrix A are the non—negative square roots of the eigenvalues
of A*A, where A* is the transpose of A. Define the singular value function o' by setting
al(A) = aqay - -ozl_lozf_”l, where [ is the smallest integer greater than or equal to t.
For all t > d we put af(A) = (ay---ay)?. It is clear that af(A) is continuous and
strictly decreasing in ¢. If for each i € I* we choose ! = a'(A;), then ¢! is a constant
cylinder function. The subchain rule for ! is satisfied by Lemma 2.1 of Falconer [5].
Since in this case we do not have the chain rule, it is still very difficult to say anything
“concrete” about the equilibrium measure or the Hausdorff dimension of the limit set.
Assuming the SSC, we have bounded overlapping satisfied by Lemma 3.4 and thus we
can at least approximate the Hausdorff dimension of the limit set by using Theorem 3.8.
We study self-affine sets and equilibrium measures of affine IFS’s in more detail in the
next chapter. The following example shows us that in the affine setting we cannot allow
overlapping even at one single point if we want to have the weak bounded overlapping.

Example 3.12. Put I = {1,2}, X = B(0,1) N {(z1,22) € R?: |z5| < 21} and define two
affine mappings (in matrix notation) as follows:

(21, 7) = cos(m/8) —sin(w/8)\ (0.9 0 )
PITLT2) = gin(n/8)  cos(m/8) 0 03/ \z2
[ cos(m/8) sin(m/8)\ (0.9 0 1
a(x1, 22) = (— sin(7/8) cos(m/8) 0 03)\z2)" (3.34)
The set X is a sector with angle 7/2, and functions ¢; and @y map this sector into
two flattened sectors inside X such that ¢1(X) N @a(X) = {0}. The OSC is therefore
satisfied. Since the origin is the only fixed point of both mappings, the limit set is

nothing but {0}. This setting does not satisfy the weak bounded overlapping, because
the amount of cylinder sets of the level n including the origin is always 2".

Notice that the similitude IFS is always both conformal and affine. Also if we consider
the cylinder functions introduced before, we notice that the cylinder function of the
similitude IFS is just a special case of both cylinder functions of conformal IFS and
affine IFS. We could also study more general limit sets in this manner. Falconer [7] has
obtained some dimension results into this direction by using the singular value function
for the derivatives of more general mappings. Using the concept of general IFS; it is
possible to use bi-Lipschitz mappings for defining geometric constructions for which it
is possible easily to determine the Hausdorff dimension of the limit set.

Example 3.13. Consider a bi-Lipschitz general IFS satisfying the OSC and the boundary
condition. Suppose that for each i € I* there exist balls B, and B; and a constant



ON NATURAL INVARIANT MEASURES ON GENERALISED IFS 27

C > 0 such that
B; C¢i(X) C B, (3.35)
l(x) > Cd(B;

Ls ) and L;(x) < Cd(B;) as * € X. Now, if the ratio between the radii of
B; and B; remains bounded, then

dimy(F) =t, (3.36)
where ¢t > 0 is the unique number satisfying
lim 2log Y r{ =0 (3.37)
ieln

and 7; is the radius of either B; or B,. This result is easily obtained by first noting
that the ratio s;/s; is bounded and then using Propositions 3.5 and 3.6, Theorem 3.8
and recalling the definition of the topological pressure.

The concept of the general IFS is also crucial in the following example, which says that
the relative positions of cylinder sets are irrelevant concerning the Hausdorff dimension
of the limit set of conformal systems provided that a sufficient separation condition is
satisfied.

Example 3.14. Consider a conformal IF'S satisfying the OSC and the boundary condition.
Choosing ¢t (h) = ’gp’l (m(h)) ! we have dimy(E) = dim, (). In this setting the place-
ment of cylinder sets is fixed and their relative positions follow from the rule obtained
by the mappings ¢;. We could now rearrange the placements and ask what happens to
the Hausdorff dimension of the limit set. We define a general IF'S by composing our
original conformal mappings with isometries such that the OSC remains satisfied. Since
this does not affect our cylinder function and composed mappings are still conformal,
we will get for the limit set E of this general TFS that dimy(E) = dim,(I*°) using
Propositions 3.5, 3.6 and Theorem 3.8.

4. DIMENSION OF THE EQUILIBRIUM MEASURE

We say that the Hausdorff dimension of a given Borel probability measure m is
dimy(m) = inf{dimpy(A) : A is a Borel set such that m(A) = 1}. To check if dimy(m)
= dimy (FE) is one way to examine how well a given measure m is spread out on a given
set F. If we consider similitude and conformal IFS’s and we choose cylinder functions
to be the ones introduced in the previous chapter, we notice using Proposition 3.6 and
Theorem 3.8 that dimy(m) = dimgy(F) =: ¢ provided that the weak bounded overlap-
ping is satisfied. Here m and E are the corresponding t—equilibrium measure and the
limit set. It is an interesting question whether we can obtain the same result for the
affine setting. In the following we will prove that at least in “almost all” affine cases this
is possible. To do that we first have to prove that the equilibrium measure y is ergodic,
that is, u(A) = 0 or u(A) = 1 for every Borel set A for which A = o~1(A). In the proof
we use some ideas found in Zinsmeister [23], Bowen [3] and Phelps [17].

Theorem 4.1. There exists an ergodic equilibrium measure.
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Proof. Let us first study mappings P, Q,, Q : M,(I*) — R, for which P(u) = hy,,
Qu(p) = 25 o u([i]) log ¥t (h) and Q(p) = lim, oo Qu(p) = E,(t). It is clear that
each Q,, is affine and continuous (basically because cylinder sets have empty boundary)
and @ is affine. We will prove that P is affine and upper semicontinuous.

Fix 0 < 21,29 < 1 and A € [0, 1] and denote x = Ax; + (1 — \)zy. Now using the
concavity of the function H(z) = —xlogz, H(0) = 0, we have

0 < —zlogx + Axqlogxy + (1 — A)xg log xo
= —Azr1(logz — logzy) — (1 — A)xs(log x — log )

Az (log z — log(Az1)) — (1 — Nz (logz — log((1 — A)»))
— Arglog A — (1 — N)zalog(l — ) (4.1)
< —zpAlog A — z2(1 — A) log(1 — A)
<l +ayl

since log x — log(Az1) and log x — log((1 — \)z) are positive. Hence we get

0< Y H(u(li)) =AD" H(m([i) — 1 =N H(pa([1)))

iel[n ieln icln
<IN () +2> 7 m(li) =2, (4.2)
iel™ ieln

where pi, pio € My(1°°) and p = Apq + (1 — A po. By the convexity of M, (1°°) we have
€ M, (I%°) and thus it follows from (4.2) that h, = Ah,, + (1 — X)h,,, and hence, P
is affine. Take next ¢ > 0 and p € M, (I°°) and choose ng big enough such that

LN H () < hu+ 3 (4.3)

ieln

whenever n > ng. Now we choose arbitrary n € M, (I°°) for which

LN H®(E)) < £ H(u(A) + 5 (4.4)

ieln ieln

for some n > ny. This choice can be made just by taking n to be close enough to u
in the weak topology and recalling that cylinder sets have empty boundary. Therefore,
using Proposition 2.4(3), we have

hy < 2T H((E)) < 5 Y H(u(3) +5 < byt e (45)

ieln ieln

for some n > ny. We have established the upper semicontinuity of the mapping P.
Denote the set of all ergodic measures of M, (I*°) with &,(I*°). Let us now assume
contrarily that P + Q cannot attain its supremum with an ergodic measure, that is,
(P+ Q)(n) < (P+ Q)(u) for all n € &,(I*°), where p is an equilibrium measure.
Recalling Theorem 6.10 of Walters [22], we know that the set M, (I>°) is compact and
convex and the set of its extreme points is exactly the set £,(/*°). An extreme point of
a convex set is a point which cannot be expressed as an average of two distinct points.
Using Choquet’s theorem (see Chapter 3 of [17]), we can get an ergodic decomposition
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for every invariant measure, namely, for each u € M, (I°°) there exists a unique Borel
regular probability measure 7, on £,(/>°) such that

R = [ Ronin () (4.6

for every continuous affine R : M, () — R.

Denoting now A, = {n € &) : (P + Q)(n) — (P + Q)(n) > 1}, where pu is
an equilibrium measure, we have | J,-, Ax = E;(I*) and thus 7,(A;) > 0 for some k.
Clearly,

P+ - [ (P+Qini) = [ P+~ (P+ Qi)

& (1) Eq (1)
Zbékéwﬁ@):%ﬂKAQ (4.7
for every k and thus
P+ > [ (P+nin (1.9

We will show that this is impossible, and, hence, the contradiction we obtain finishes
the proof.

Our goal now is to prove that we can write (4.6) also by using upper semicontinuous
affine functions, particularly with P + Q,,. Fix n € N and define R : M,(I®) — R
by setting R(u) = inf{R(u) : R > P + Q,, is continuous and affine}. Let us first prove
that for each continuous affine R, Ro > P + Q,, there exists a continuous affine R for
which P+ 9, < R < Ry, R,. Since P + Q,, is affine and upper semicontinuous, we
notice that the set D = {(u,r) : p € M,(I®), r < (P + Q,)(u)} is closed and convex.
Since both mappings R; are continuous and affine as ¢ = 1,2, we get that both sets
D; = {(u,7) : p € My(I*®), r = Ri()} are compact and convex. Observe that the
convex hull of the union D; U D5 is compact and disjoint from the set D. Now applying
the separation theorem for convex sets (Corollary 1.2 of [4]), we notice there exists a
non-zero continuous real-valued linear functional [ on M, (/) x R and a real number
« such that the affine hyperplane

A=A{(p,r): p € Mo(I%), Up,7) = a} (4.9)

strictly separates the sets D and the convex hull of D; U D,. Because of the linearity
of [ for each p € M, (I?), there exists exactly one r for which (u,r) € A. Thus there
exists a function R : M,(I*°) — R such that {(p, R(1)) = o as p € M,(I*°). The
function R is affine and continuous because the functional [ is linear and continuous.
Since now [(u,r) > « for every (u,r) € D and l(u,r) < « for every (u,r) in the
convex hull of Dy U Dy (or the other way around), we have R(u) > (P + Q,)(u) and
R(p) < Ri(p), Ra(p) for each p € M, (1°°), which is exactly what we wanted. A similar
reasoning implies that R = P + Q,. Assume contrarily that there exists v such that
(P+9Q,)(v) < R(v). Now the set D is disjoint from the compact convex set { (v, R(v))}
and the separation theorem gives us an immediate contradiction. We will next show
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that
[ i =u{ [ R R 2P0,
Eo(I®) Eo (1)

is continuous and afﬁne}. (4.10)

Let us denote with « the right-hand side of (4.10) and choose a sequence {R;};en of
continuous affine mappings greater than or equal to P + Q,, such that

lim Ri(n)dT,(n) = 7. (4.11)

’i—>OO 50 (IOO)

We can assume that this sequence is monotonically decreasing, and hence there exists
a Borel measurable function R = lim; .. R; with R > P + Q,, and

L, R = (1.12)

using the monotone convergence theorem. If it held that 7,({n € &(I>®) : R(n) >
(P + Q,)(n)}) > 0, then there would be real numbers r and g such that also the
set {n € E,(I°) : (P+ Q,)(n) < r < q < R(n)} has positive measure. By the Borel
regularity, this set contains a compact subset C' of positive measure. Now for each n € C
there is a continuous affine mapping R > P + Q,, such that 7%(77) < r. Relying now
on compactness and continuity, we can choose a finite number of them, say, Ri,..., Ry
such that for each n € C there is 1 < j < k with R;(n) < r. For each i € N we
choose a continuous affine mapping 7%1 such that P+ Q,, < 7’:’,, <R, 7%1, - ,7i’,k. Hence
Ri<r<r+R—q<TR;— (g —7) on C and R; < R, elsewhere. Therefore,

S LJ([W) ﬁi(n)dm(n) < /gg(loo) Ri(n)dr.(n) — (¢ — r)7.(C), (4.13)

which finishes the proof of (4.10) as we let i — oco. Using now (4.10) and (4.6), we get
that

[+ a)man) = inf{ | R@dnm:r=P+o,
£ (1) 5 (1)

is continuous and afﬁne} (4.14)

= inf{R(n) : R > P+ Q, is continuous and affine} = (P + Q,)(u).

Letting n — oo and using the dominated convergence theorem, we have shown that
(4.8) cannot happen and thus finished the proof. O

Notice that in the previous theorem we actually proved that the equilibrium measure
can be chosen to be ergodic. The ergodicity of the equilibrium measure is crucial in the
following proposition, which, for example, in the similitude and conformal cases gives
information about the so called local Hausdorff dimension of the equilibrium measure.
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Proposition 4.2. Suppose t > 0 and p is an ergodic t—equilibrium measure. Then

i 108 al[ifn]) _
n—cc log ¢, () Eu(t)

(4.15)

for p—almost all i € I*°.

Proof. Let us first note that due to the invariance of the equilibrium measure and the-
orem of Shannon-McMillan (for example, see Chapter 3 of Zinsmeister [23]) we have

hy, = — lim ~log nu([i]n)) (4.16)

for p—almost all 1 € I*°. We can get a similar kind of expression for the energy as well.

Indeed, using Kingman’s subadditive ergodic theorem (for example, see Steele [21]) and
the BVP, we have

E,(t) = lim 1> ([i]) log v/} (n)

n—oo

ieln
= lim 1 Z/ log 1! (h)dp(h)
n—oo leln N
= lim © log ¥, (0™(1))du(1) (4.17)
n—oo Joo
= lim llog@/) ( "(3 ))

= lim Zlog 45, (h)
for p—almost all j € I°°. Now the claim follows easily from the fact
P(t) = E,(t) + h,. (4.18)
O

Now, with the help of this proposition, we can prove the next theorem, our main
tool in studying the Hausdorff dimension of the equilibrium measure on affine systems.
We define the equilibrium dimension of a measure p € M(I*) by setting dim,(p) =
inf{dim,(A) : A is a Borel set such that pu(A) = 1}.

Theorem 4.3. Suppose P(t) =0 and p is an ergodic t—equilibrium measure. Then

dimy, (1) = t. (4.19)
Proof. Let us denote
R= {i € 1% : lim l(())gg ZS[IL"])) 1} (4.20)

and take an arbitrary Borel set A C I*° for which p(A) = 1. Using Proposition 4.2, we
also have (RN A) =1. Fix i € RN A and g < t. Now it follows from the definition of
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the cylinder function, Proposition 4.2 and (4.16) that
1 ' 1 i
tim inf LDy, Logu(lil)
n—0eo log ¢1|n(h) n—0oo log ¢1‘n (h) + IOg St—q
1

— > 1. 4.21
1+ logst q ( )
Thus there exists ng = ng(i) such that
log 95, (h)

whenever n > ng. Denoting Ay = {1 € RN A : no(i) < k}, we have RN A = |J;, 4k
Hence, using (4.22), we get for each i € Ay

p([i]n])
<1 (4.23)
7. (0)
whenever n > k. Take {[i;]}, to be any cover for A such that |i,;| > k and [i;]NA, # O

for every j. We can choose each i; to be of the form 1i|, for some i € Ay and n € N.
Hence by (4.23)

pA) < () < v < K, Y [ el @29

from which we get G(Ax) > K, 'u(Ag). Now, clearly, G4(R N A) = limy .. G¥(Ay) >
K imy oo pi(Ag) = K (R N A), which gives G4(A) > 0 and dimy(A) > ¢. Since
q < t was arbitrary as was the choice of the Borel set A of full measure, we conclude
dimy (p) > t. The proof is finished by recalling Theorem 3.2. O

In the similitude and conformal cases we obtained the desired dimension result easily
straight from Theorem 3.8. For the affine IFS we can not apply Theorem 3.8 because
in that case it gives only upper and lower bounds for the Hausdorff dimension of the
equilibrium measure. But using now Theorem 4.3, we can extend a little the result of
Falconer [5] to be more suitable for our purposes.

Theorem 4.4. Suppose mappings of an affine IFS are of the form p;(x) = Ajx + a;,

where |A;| < %, as i € I and the cylinder function is chosen to be the singular value
function, ! = o'(A;). We also assume that P(t) = 0, p is an ergodic t—equilibrium
measure and m = pon~t. Then for H™#!—almost all a = (ay, ..., ax;) € R we have

dimy, (1) = dimp (A) (4.25)

whenever A C E = E(a) is a Borel set such that m(A) = 1.

Let us make a few comments on this theorem. The constant % here is improved from
the one used by Falconer. In fact, rather surprisingly, it is proven to be sharp in a
sense if |4;] > 5 + ¢ for some ¢ € I and for any € > 0, then the theorem may fail. See
Proposition 3.1 of Solomyak [20] for details. Falconer did not state his theorem for sets
with full m—measure, but the same proofs will apply basically because due to Theorems
4.3 and 3.2, we have dim,(A) = dim(/*°) whenever A C I has full y—measure. Notice
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that in the theorem no separation condition of any kind is assumed. However, there are
situations where the equilibrium dimension and the Hausdorff dimension do not coincide
if we just assume |A4;| < % for every ¢ € I. For example, there is too much overlapping
among the sets p; (X)), or these sets are aligned in a way that it is not possible to obtain
economical covers using ellipsoids, and, thus, the use of the singular value function does
not fit. In the theorem all of these “bad” situations are excluded by the statement
“for H¥!-almost all a”. It is an interesting question to find a characterization for
these “bad” situations. Hueter and Lalley have provided in [9] with checkable sufficient
conditions for the theorem to hold for all a.

The following theorem, which we obtain easily as a corollary from Theorem 4.4, gives
a partially positive answer to the open question proposed by Kenyon and Peres in [12].
They asked whether there exists a T—invariant ergodic probability measure on a given
compact set, where the mapping 7' is continuous and expanding, such that it has full
dimension. In our case the mapping 7' is constructed by using inverses of the mappings

of IF'S.

Theorem 4.5. Suppose mappings of an affine IFS are of the form ¢;(x) = Az + a;,
where |A;| < %, as i € I and the cylinder function is chosen to be the singular value
function, ! = o'(A;). We also assume that P(t) = 0, pu is an ergodic t—equilibrium
measure and m = pon . Then for H™#!—almost all a = (a1, ..., ax;) € R¥! we have

dimg(m) = dimpy(E), (4.26)
where E = FE(a).
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