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Abstract

Let f be a mapping of finite distortion omitting a set of positive
conformal modulus. We show that if the distortion of f satisfies a cer-
tain subexponential integrability condition, then small regular Cantor
sets are removable.
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1 Introduction

We call a mapping f ∈ W 1,1
loc (Ω, Rn) a mapping of finite distortion if it

satisfies

(1.1) |Df(x)|n ≤ K(x, f)J(x, f) a.e.,

where K(x, f) < ∞ and if also J(·, f) ∈ L1
loc(Ω). Here Ω ⊆ Rn is a do-

main i.e. an open and connected set. When K(·, f) ∈ L∞(Ω), f is called
a mapping of bounded distortion, or a quasiregular mapping. Quasiregular
mappings are by now well understood, see the monographs [18] and [21].
Many basic results of quasiregular mappings have recently been generalized
for mappings of finite distortion under some integrability assumptions on
the distortion function K. Let us describe an assumption that has turned
out to be sharp in many respects. Let Φ : [0,∞) → [0,∞) be a strictly
increasing, differentiable function. We call such functions Orlicz functions
and we make the following two assumptions:

(Φ-1)
∫ ∞

1

Φ′(t)
t

dt = ∞,

(Φ-2) t Φ′(t) increases to infinity when t →∞.
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We shall consider mappings of finite distortion f for which there exists a Φ,
satisfying conditions (Φ-1) and (Φ-2), such that

(1.2) exp(Φ(K(·, f))) ∈ L1
loc(Ω).

It has been shown that mappings of finite distortion satisfying this as-
sumption are continuous, open and discrete, and that they have the Lusin
property, i.e. they map sets of measure zero to sets of measure zero, see [4],
[6] [8], [9], [10] for these as well as other results.

The main methods in the study of quasiregular mappings are modulus in-
equalities and quasilinear partial differential equations. Until very recently,
only the latter method has been available in the more general setting of
mappings of finite distortion. In [12], Koskela and Onninen generalize the
modulus inequalities to the class of mappings of finite distortion satisfying
Assumption (1.2). Their results open new possibilities in the development
of this theory. In this paper we prove a certain removability theorem using
these inequalities.

Let us next recall some removability results related to the setting of this
paper. Recall that the (conformal) n-modulus of a path family Γ is defined
by

M(Γ) = inf
{∫

Rn

ρn(x) dx : ρ : Rn → [0,∞) is a Borel function such that∫
γ
ρ ≥ 1 for each locally rectifiable γ ∈ Γ

}
.

For a mapping of finite distortion f , define the Kn−1-modulus MKn−1(·,f)(Γ)
by

MKn−1(·,f)(Γ) = inf
{∫

Rn

ρn(x) Kn−1(x, f) dx : ρ : Rn → [0,∞) is a Borel

function such that
∫

γ
ρ ≥ 1 for each locally rectifiable

γ ∈ Γ
}

.

For a set A ⊆ Rn, we denote MKn−1(·,f)(A) = MKn−1(·,f)(Γ), where Γ is the
family of all non-constant curves starting at A. Note that since K(x, f) ≥ 1
for all x ∈ Ω, the inequality M(Γ) ≤ MKn−1(·,f)(Γ) always holds. If E and
F are compact sets contained in a domain D ⊆ Rn, we then denote by
∆(E,F, D) the family of all curves joining E and F in D.

Already in 1970 Martio, Rickman and Väisälä [16] proved that a set of
zero conformal modulus is removable for a quasimeromorphic (see below)
mapping omitting a set of positive conformal modulus. This theorem holds
also for mappings of finite distortion satisfying Assumption (1.2), if we as-
sume the removable set to be of zero Kn−1-modulus, see [17] for discussion.

2



Later Iwaniec and Martin [5] and Iwaniec [2] have shown that there exists
a bound m(K) > 0 so that sets with Hausdorff dimension smaller than m
are removable for bounded K-quasiregular mappings. In dimension three,
Rickman [22] has shown that for each λ > 0 there exists a Cantor set E in R3

with Hausdorff dimension smaller than λ, and a bounded K(λ)-quasiregular
mapping f : R3 \E → R3 that does not extend continuously to any point of
E.

In [7] Järvi and Vuorinen showed that even when the omitted set consists
only of a sufficiently large finite number of points, then some self-similar
Cantor sets are removable for quasiregular mappings. Their proof is based
on Rickman’s work on the generalizations of the Picard theorems and the
corresponding continuity estimates near the omitted values, see [19], [20].
In this paper we shall give a removability result similar to the theorem by
Järvi and Vuorinen. Our proof uses the modulus inequlities of [12] and the
methods in [7]. Since we do not have any decent Rickman-Picard theorems
for mappings of finite distortion, we have to make a stronger assumption on
the omitted set; we shall assume that the omitted set is of positive conformal
modulus. Naturally, the removable Cantor sets in our case are also smaller
than in the quasiregular case. We shall state our main theorem in Section
3. Since the statement is a bit technical, we give a simplified statement at
the end of this introduction.

Our notation will be similar to [7]. We denote by Rn the one-point
compactification of Rn, and give Rn the chordal metric q(x, y) = |x−y|√

(1+|x|2)(1+|y|2)
, x, y 6= ∞

q(x,∞) = 1√
1+|x|2

.

We shall denote a chordal ball with center x and radius r by Q(x, r), while
the corresponding Euclidean notation is B(x, r). Also, for a set A, d(A) will
denote the Euclidean diameter of A, and q(A) the chordal diameter. For
modulus, the notation introduced earlier will also be used for curve families
in Rn.

We extend the definition of a mapping of finite distortion to Rn-valued
mappings as follows: Let f : Ω → Rn be a mapping, Ω ⊆ Rn. Then f is
a mapping of finite distortion, if each x ∈ Ω has a neighborhood U ⊆ Ω
so that g ◦ fU : U → Rn is a mapping of finite distortion for some Möbius
transformation g : Rn \ {p} → Rn, where fU is the restriction of f to
U . Note that Assumption 1.2 is well-defined for Rn-valued mappings also,
since the distortion does not depend on the Möbius transformation g. In
the case of quasiregular mappings, the Rn-valued generalizations are often
called quasimeromorphic mappings.

Let us state a special case of Theorem 3.7 below.
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Theorem 1.1. Let F ⊆ Rn be the image of the one-third Cantor set under
the stereographic projection, and let E be a regular (as defined in Section 2)
Cantor set. Moreover, let f : B(0, 1) \ E → Rn \ F be a mapping of finite
distortion for which

(1.3) I =
∫

B(0,1)
exp(γK) < ∞, where γ > 0.

Then there exists a constant C = C(I, γ, n) > 0 such that if

H| log t|−C (E) = 0,

then f extends to mapping of finite distortion f̃ : B(0, 1) → Rn satisfying
(1.3). Moreover, C(I, γ, n) → ∞ as γ → ∞, and thus E may have positive
conformal modulus when γ is large enough (compared to the other data).

Here HΛ is the Hausdorff measure with respect to a gauge function
Λ. In our main theorem, Theorem 3.7, the function Φ(t) = γt (see (1.2))
is replaced by a general Orlicz function. Also, general omitted sets are
considered, and the size of the removable Cantor set will depend on the
modulus of the omitted set. Estimates for the size of the removable Cantor
sets are given in Section 4.

Earlier removability results for mappings of finite distortion have been
proved in [1], [3], [13] and [17]. In [1] it is proved that if

(1.4) f : D(0, 1) \ E → C

is a bounded mapping of finite distortion satisfying (1.3) for a large enough
constant γ, and if E ⊆ D(0, 1) is any compact set with H| log t|−3/2(E) = 0,
then E is removable for f . It follows, in particular, that in this case all sets
of zero conformal modulus are removable. They also show that if γ is small,
then there are regular Cantor sets E of zero conformal modulus that are not
removable for mappings f as in (1.4). Thus Theorem 1.1 can be viewed as
an extension of their result, and their example shows that our theorem is
in a sense sharp. In fact they have given, using Rickman’s nonremovability
result mentioned above, also a similar example in dimension three.

2 Cantor sets

We shall construct our Cantor set inductively. First, remove an open interval
of length 1− t1 from the middle of [0, 1]. Denote E1 = [0, t1/2]∪ [1− t1/2, 1].
In the second step remove similarly an open interval of length t1

2 (1 − t2)
from the middle of each of the two intervals in E1. The resulting set E2

then consists of four intervals of equal length. Continuing similarly, we have
in the pth step a set Ep consisting of 2p intervals of length

(2.1)
∏p

i=1 ti
2p

=
Tp

2p
.
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Let
Ẽp = Ep × Ep × . . .× Ep ⊂ Rn.

We obtain the Cantor set E by setting

E =
∞⋂

p=1

Ẽp.

We shall give a decomposition of the complement of E, which will be useful
in proving Theorem 3.7. The set Ẽp consists of 2np cubes. By (2.1), each
cube is contained in a ball with the same center and of radius rp =

√
nTp

2p+1 ,
and such balls are disjoint even if we enlarge the radii to

Rp =
rp√
n

(
2
tp
− 1
)

.

From now on we assume that Rp > rp, which is implied by tp < 2/(1+2
√

n).
Let the centers of these balls be z(p, i), i = 1, . . . , 2np, and let

(2.2) Sp,i := Sn−1(zp,i, α(rp, Rp)), i = 1, . . . , 2np,

where α(rp, Rp) ∈ (rp, Rp) is suitably chosen, see Theorem 3.7. Each Sp,i

encloses 2n of the spheres Sp+1,j of the next generation, and we denote by
Gp,i the domain bounded by Sp,i and the spheres of the next generation.
Then we have the decomposition

2n⋃
i=1

(B1,i \ E) =
∞⋃

p=1

2np⋃
i=1

Gp,i,

where B1,i = B(z1,i, α(r1, R1)), i = 1, . . . , 2n.

3 Modulus of continuity on annuli

We will use the following modulus inequality, which is a counterpart for
the Poletsky inequality of quasiregular mappings. This is a special case of
Theorem 4.1 in [12].

Lemma 3.1. Let f : Ω → Rn be a mapping of finite distortion satisfying
(1.2), with an Orlicz function Φ for which (Φ-1) and (Φ-2) hold. Let Γ be a
path family in Ω. Then

(3.1) M(fΓ) ≤ MKn−1(·,f)(Γ).

For spherical rings we have the following upper bound for the Kn−1-
modulus, see [12], Theorem 5.3.
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Lemma 3.2. Suppose that I =
∫
B(0,1) exp(Φ(K)) < ∞. Let 0 < 4r < R < 1.

Then there exist C1, C2 > 0 depending on n, Φ and I such that

(3.2) MKn−1(·,f)(Γ) ≤ C1

(∫ R/2

2r

ds

sΦ−1 (log(C2s−n))

)1−n

=: ϕ(I, R, r),

where Γ is the family of all curves connecting B(0, r) and Rn \B(0, R).

In what follows, ϕ will stand for the function defined in Inequality (3.2).
The next lemma gives a lower n-modulus bound, see [7], Lemma 2.12 for a
proof.

Lemma 3.3. Let F ⊂ B(0, t) be a continuum. Then there exists a constant
λ > 0 so that

M(Γ) ≥
(

log
(

λt

d(F )

))1−n

,

where Γ is the family of all curves connecting F to Sn−1(0, t).

Now we have the following estimate on annuli.

Lemma 3.4. Let 0 < a < b < ∞, s > 0, and let

f : B(0, b) \B(0, a) → B(0, s)

be a mapping of finite distortion with∫
B(0,b)\B(0,a)

exp(Φ(K)) ≤ I.

If α(a, b) ∈ (a, b), then
(3.3)

d(fSn−1(0, α(a, b))) ≤ λs exp
(
−
(
ϕ(I, b, α(a, b)) + ϕ(I, α(a, b), a)

) 1
1−n
)
.

Proof. Fix x, y ∈ Sn−1(0, α(a, b)) with |f(x) − f(y)| = d(fSn−1(0, α(a, b)))
and a continuum C ⊆ Sn−1(0, α(a, b)) joining x and y. Let Γ′ be the family
of all curves joining fC and Sn−1(0, s) and let Γ be the family of the maximal
liftings (see [21] Chapter II, Section 3) of paths of Γ′ starting at C. Then
|γ| ∩ ∂(B(0, b) \B(0, a)) 6= ∅ for all γ ∈ Γ. The Kn−1-modulus of the family
Γ can now be estimated by the moduli of two spherical rings, and by Lemma
3.2

MKn−1(Γ) ≤ ϕ(I, b, α(a, b)) + ϕ(I, α(a, b), a).

On the other hand, Lemma 3.3 implies that

M(Γ′) ≥
(

log
(

λs

d(fSn−1(0, α(a, b)))

))1−n

,
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and thus by Lemma 3.1,(
log
(

λs

d(fSn−1(0, α(a, b)))

))1−n

≤ M(Γ′) ≤ MKn−1(Γ)

≤ ϕ(I, b, α(a, b)) + ϕ(I, α(a, b), a),

which implies (3.3).

Lemma 3.4 is also locally valid for mappings taking values in Rn. We
state this as a corollary, see [7], Corollary 2.14 for a proof of a similar
statement.

Corollary 3.5. Let 0 < a < b < ∞, 0 < s < 1√
2
, and let

f : B(0, b) \B(0, a) → Q(0, s)

be a mapping of finite distortion with∫
B(0,b)\B(0,a)

exp(Φ(K)) ≤ I.

Then
(3.4)

q(fSn−1(0, α(a, b))) ≤
√

2λs exp
(
−
(
ϕ(I, b, α(a, b)) + ϕ(I, α(a, b), a)

) 1
1−n
)
.

The following lemma will give continuity estimates for Rn-valued map-
pings omitting sets of positive conformal modulus. See [21], Lemma III 2.6
for the proof.

Lemma 3.6. Let F be a compact subset of Rn such that M(F ) > 0.
Moreover, let 0 < L < 1 and choose a ball B(x, r) containing F so that
q(Rn \ B(x, r)) < L

2 . Assume that C is a continuum in Rn with q(C) ≥ L.
Then

(3.5) M(Γ) ≥ 3−n min{C(n), (log(2λr/L))1−n,M(Γx,L)} =: η(L),

where Γ is the family of all curves joining F and C, λ is as in Lemma 3.3
and Γx,L = ∆(F, Sn−1(x, 2r), B(x, 2r)).

We are finally ready to state our main theorem. The proof will be given
in Section 5.

Theorem 3.7. Assume that E is a Cantor set defined as in Section 2.
Moreover, assume that F ⊆ Rn is a closed set of positive conformal modulus.
Let f : B(0, 1) \ E → Rn \ F be a mapping of finite distortion satisfying

(3.6) I =
∫

B(0,1)
exp(Φ(K)) < ∞
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with an Orlicz function Φ for which (Φ-1) and (Φ-2) hold. Moreover, assume
that in the construction of Section 2, for each p ∈ N there exists α(rp, Rp) ∈
(rp, Rp) such that

ϕ(I,Rp, α(rp, Rp)) + ϕ(I, α(rp, Rp), rp)(3.7)

≤ min{(3n + log λ)1−n, η((2
√

2(2n + 1))−1)} =: w,

where λ is as in Lemma 3.3 and η as in (3.5). Then f extends to mapping
of finite distortion f̃ : B(0, 1) → Rn satisfying (3.6).

4 Estimates for the Cantor set

In this section we will estimate the Hausdorff dimensions of the removable
sets in Theorem 3.7 with respect to suitable gauge functions. We first note
that ∫

0

ds

sΦ−1 (log(C2s−n))
=

1
n

∫ ∞ Φ′(t)
t

dt = ∞

as soon as Assumptions (Φ-1) and (Φ-2) hold for Φ, and thus for each I,R >
0, ϕ(I,R, r) → 0 as r → 0. So, given the distortion function and the omitted
set in Theorem 3.7, there exists a sequence (tp) so that if the construction of
the Cantor set is carried out by using this sequence, then the assumptions
of Theorem 3.7 are satisfied. One may for example choose α(a, b) =

√
ab,

which is the most convenient choice in the case of quasiregular mappings.
In principle it is also possible to estimate the size of the largest possible
set satisfying these assumptions. However, if we do not know the Orlicz
function Φ, these estimates are quite implicit. For this reason we will only
consider the case where the Orlicz function is of form Φ(t) = γt, γ > 0. In
particular, we will establish the bound given in Theorem 1.1.

First we want to choose the numbers α(rp, Rp) so that we have the
smallest possible upper bound for ϕ(I, Rp, α(rp, Rp)) + ϕ(I, α(rp, Rp), rp).
From the equation ϕ(I, Rp, α(rp, Rp)) = ϕ(I, α(rp, Rp), rp) we have

α(rp, Rp) = exp(−
√
| log rp|| log Rp|).

From the inequality
2ϕ(I, α(rp, Rp), rp) ≤ w,

where w is as in Theorem 3.7, we then have the essentially sharp condition

(4.1) rp ≤ Rb
p, where b = exp(3C

1
n−1

1 nw
1

1−n /γ).

Since

Rp =
rp√
n

(
2
tp
− 1
)

=
Tp

2p+1

(
2
tp
− 1
)
≥ Tp−1

2p+1
=

rp−1

2
√

n
,
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the radii rp can be defined by the requirement rp ≤
(

rp−1

2
√

n

)b
. So if we set

rp = C(n)−(2b)p

for a large enough constant C(n) > 1, Condition (4.1) is then satisfied for
all p ∈ N. The gauge function Λ for the Hausdorff measure HΛ has to be
defined so that the sequence(

2npΛ(C(n)−(2b)p
)
)

p

behaves essentially like a sequence converging to a positive number (recall
that in the pth step there are 2np balls). So the correct function is of type

(4.2) Λ(t) = | log t|−n logb 2.

Since our Cantor construction is regular and the gauge function Λ is nice, this
’obvious upper bound’ for the gauge function is also a lower bound. Because
sets with finite H| log t|1−n−ε-measure have positive conformal modulus (see
cf. [1]), it especially follows that when γ is large enough compared to the
other data so that n logb 2 > n − 1, the removable set may have positive
conformal modulus.

5 Proof of Theorem 3.7

Let the Cantor set E and the decomposition be as above. By composing
f with a Möbius transformation, we may assume that ∞ /∈ E. So there
is no problem in using Lemma 3.6. We shall first show that there exists a
continuous extension f̃ of f , defined in B(0, 1). To prove this, we show that
for each p = 0, 1, . . . the following estimates hold for every r = p, p + 1, . . .
and i = 1, . . . , 2nr:{

q(fGr+1,i) ≤ 1
2
√

2
(Ah)p

q(fSr+2,i) ≤ λAphp+1, A =
√

22(2n + 1)λ,
(5.1)

where λ is as in Lemma 3.3. Here we require Ah < 2−n, i.e.

h <
1

2n+3/2(2n + 1)λ
.

For p = 0 and fixed r, i, let Γ be the family of all paths connecting fSr+2,i

and F . Moreover, denote by Γ′ the family of all maximal liftings of paths in Γ
starting at Sr+2,i. Since all paths in Γ′ intersect S(zr+2,i, Rp)∪S(zr+2,i, rp),
Lemmas 3.1 and 3.2, together with assumption (3.7) imply

M(Γ) ≤ MKn−1(Γ′) ≤ MKn−1(Γ∗) ≤ w,
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where Γ∗ is the family of all paths joining Sr+2,i and the complement of
B(zr+2,i, Rp) \B(zr+2,i, rp). Thus by Lemma 3.6,

(5.2) q(fSr+2,i) ≤
1

2
√

2(2n + 1)
,

and this holds for the spheres S1,i also. From inequality (5.2) and the open-
ness of f , it follows that the chordal diameter of a set fGk,i is bounded by
the sum of the chordal diameters of the images of the spheres forming the
boundary of Gk,i;

q(fGr+1,i) ≤ q(fSr+1,i) +
2n∑

j=1

q(fSr+2,j) ≤
2n + 1

2
√

2(2n + 1)
=

1
2
√

2
.

This is the first inequality in (5.1). For the second inequality we notice that
Sr+2,i is on the common boundary of Gr+1,i1 and Gr+2,i2 for some i1, i2.
Thus by the first inequality of (5.1), f maps the annulus B(zp,i, Rr+3) \
B(zp,i, rr+3) into a ball of chordal diameter 1/

√
2, and Corollary 3.5 com-

bined with Assumption (3.7) gives

q(fSr+2,i) ≤ λh.

Note that Assumption (3.7) suffices for this, since

ϕ(I,Rp, α(rp, Rp)) + ϕ(I, α(rp, Rp), rp) ≤ (3n + log λ)1−n

implies

exp
(
−
(
ϕ(I,Rp, α(rp, Rp)) + ϕ(I, α(rp, Rp), rp)

) 1
1−n
)

<
1

2n+3/2(2n + 1)λ
.

Thus both inequalities in (5.1) hold for p = 0. We then assume that (5.1)
holds for a fixed p. Using the second inequality in (5.1) and the openness of
f as above, we then have

q(fGr+2,i) ≤ λ(2n + 1)hp+1 =
1

2
√

2
(Ah)p+1,

which is the first inequlity in (5.1) for p + 1. For the second inequality,
notice again that Sr+3,i is on the common boundary of Gr+2,i1 and Gr+3,i2

for some i1, i2. Thus by the first inequality of (5.1), f maps the annulus
B(zp,i, Rr+3)\B(zp,i, rr+3) into a ball of chordal diameter 1√

2
Ap+1hp+1, and

Lemma 3.4 and the openness of f give

q(fSr+3,i) ≤ λAp+1hp+2.

This proves (5.1) for all p.
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Now let Bs,i be the ball whose boundary is Ss,i. Then there are 2(m−s)n

balls Bm,j , m > s, in Bs,i and by (5.1),

q(f̃(Bs,i \ E)) ≤ q

(
f

( ∞⋃
m=s

Gm,j

))
≤ 1

2
√

2

∞∑
m=s

2(m−s)nAm−1hm−1

=
1√
2
2−sn−1A−1h−1

∞∑
m=s

(2nAh)m → 0(5.3)

as s →∞, whenever 2nAh < 1. Thus f has a limit at every x ∈ E.
Denote the extended mapping by f̃ . To show that f̃ is a mapping of

finite distortion, we have to show that f̃ is absolutely continuous on all lines
parallel to coordinate axis, that the weak partial derivatives of f̃ are locally
integrable and that also the Jacobian of f̃ is locally integrable. We may
assume that f̃ takes values in Rn. First, since the Hausdorff dimension of
E is less than n− 1 and f has the ACL property, it follows that also f̃ has
the ACL property, see cf. [23], Theorem 35.1. Thus weak partial derivatives
exist. Secondly, by using Inequality (1.1), the subexponential integrability
of K and Hölder’s inequality, one sees that the local integrability of the
Jacobian guarantees local integrability of the partial derivatives. Thus it
suffices to show that the Jacobian of f̃ is locally integrable. For this we
first show that f̃ satisfies the Lusin condition, which is implied by |f̃E|=0.
Since the question is local, we may assume that f̃E ⊆ B(0, 1). By the
construction of E, E can be covered by 2np balls B(zp,i, rp), i = 1, . . . , 2np

for each p = 1, 2, . . .. Thus f̃E can be covered by the sets f̃B(zp,i, rp). As
in Inequality (5.3), we have

q(f̃B(zp,i, rp)) ≤
(Ah)p−1

1− 2nAh
for p = 1, 2, . . . .

Denote λp = (Ah)p−1

1−2nAh . Then we can estimate the θ-Hausdorff contents by

Hλp

θ (f̃E) ≤
2np∑
i=1

d(f̃B(zp,i, rp))θ ≤ 2np2θλθ
p → 0 as p → 0

whenever 2n(Ah)θ < 1. This holds for θ > n log 2

log 1
Ah

. By our choice of h,

it particularly follows that |f̃E| = 0. Having the Lusin property, we will
prove the local integrability of the Jacobian by standard arguments using the
topological degree, cf. [11], Lemma 3.3. Let x0 ∈ E. Since E∪ f̃−1(f̃(x0)) is
totally disconnected, there exists a sphere Sn−1(x0, ε) such that Sn−1(x0, ε)∩
f̃−1(f̃(x0)) = ∅. Let V be the f̃(x0)-component of Rn \ f̃Sn−1(x0, ε) and let
U be the x0-component of f̃−1V . Then U is an open neighborhood of x0.
The topological degree µ(f̃(x0), f̃ , U) is now well-defined, and we have

N(y, f̃ , U) ≤ µ(f̃(x0), f̃ , U) = m < ∞,
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see cf. [15]. Here N(y, f̃ , U) = |{x ∈ U : f̃(x) = y}|. On the other hand by
[14], Theorem 9.2, the area formula holds for weakly differentiable mappings
satisfying the Lusin condition. Hence∫

U
Jf̃ =

∫
Rn

N(y, f̃ , U) ≤ |V |µ(f̃(x0), f̃ , U) < ∞.

Thus Jf̃ is locally integrable. The proof is complete.
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