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Abstract. We show that, in a complete metric measure space equipped with a
doubling Borel regular measure, the Poincaré inequality with upper gradients in-
troduced by Heinonen and Koskela [HK98] is equivalent to the Poincaré inequality
with “approximate Lipschitz constants” used by Semmes in [Sem01].

1. Introduction

In this note we prove the following result which seems to have been informally
conjectured by Semmes [Sem01, p. 17].

Theorem 1. Let p ≥ 1. Then every complete metric measure space equipped with
a Borel doubling measure admits a weak (1, p)-Poincaré inequality with upper gradi-
ents if and only if it admits a weak (1, p)-Poincaré inequality with the “approximate
Lipschitz constant operator” Dε, quantitatively.

The terminology of the above theorem is explained in Section 2, the proof given
in Section 3, and the necessity of the hypotheses on the given metric measure space
discussed in Remark 2. For now we note that, roughly speaking, the above theorem
claims that a Poincaré inequality holds for all functions on a metric measure space,
with the gradient replaced by an infinitesimal measurement of oscillation, if a dis-
cretized version of the Poincaré inequality holds for all functions and at all scales,
with bounds independent of the scale of the discretization. The former condition has
been widely studied and is rich in application; see [Che99, Hei01, HK98, Kei, KRS].
The latter condition is often easier to verify, especially when the metric measure
space is studied using discrete approximations. For example, the weak p-Poincaré
inequality with Dε, p ≥ 1, is easily seen to persist under measured Gromov-Hausdorff
convergence. Consequently, Theorem 1 provides another proof of the fact that the
(1, p)-Poincaré inequality on complete metric measure spaces equipped with Borel
doubling measures persists under measured Gromov-Hausdorff convergence, as long
as all relevant constants are uniformly controlled; see [Kei02].
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2. Terminology

Throughout this paper (X, d, µ) denotes a metric measure space where µ is Borel
regular. We denote the ball with center x ∈ X and radius r > 0 by

B(x, r) = {y ∈ X : d(x, y) < r},

and use the notation

uA =
1

µ(A)

∫
A

u dµ = −
∫

A

u dµ,

for every A ⊂ X and measurable function u : X −→ [−∞,∞]. The measure µ is
said to be doubling if there is a constant C > 0 such that

µ(B(x, 2r)) ≤ Cµ(B(x, r)),

for every x ∈ X and r > 0. A function u : X −→ R is Lipschitz if there exists a
constant L > 0 such that

|u(x)− u(y)| ≤ Ld(x, y),

for every x, y ∈ X.
We now recall the definitions of upper gradients and Poincaré inequalities on

metric measure spaces as given by Heinonen and Koskela [HK98]. A Borel function
g : X −→ [0,∞] is said to be an upper gradient of some measurable function
u : X −→ [−∞,∞] if

|u(x)− u(y)| ≤
∫

γ

g ds,

for every x, y ∈ X and every locally rectifiable curve γ joining x and y. A metric
measure space (X, d, µ) is said to admit a weak (1, p)-Poincaré inequality with upper
gradients, p ≥ 1, if there exist constants C > 0 and λ ≥ 1 so that for every
measurable u : X −→ [−∞,∞] and every upper gradient g of u, we have

(1) −
∫

B(a,r)

|u− uB(a,r)| dµ ≤ Cr

(
−
∫

B(a,λr)

gp dµ

) 1
p

,

for every a ∈ X and r > 0. The (1, p)-Poincaré inequality is sometimes called strong
if λ = 1.

We now summarize a definition for a Poincaré inequality on metric measure spaces
introduced by Semmes [Sem01, Section 2.3]. For every ε > 0 we define an operator
Dε so that for every measurable function u : X −→ [−∞,∞], we have

Dεu(x) = sup
y∈B(x,ε)

|u(x)− u(y)|
ε

,

for every x ∈ X. Then (X, d, µ) is said to admit a weak (1, p)-Poincaré inequality
with Dε, p ≥ 1, if there exist constants C > 0 and λ ≥ 1 so that for every measurable
function u : X −→ [−∞,∞] we have

(2) −
∫

B(a,r)

|u− uB(a,r)| dµ ≤ Cr

(
−
∫

B(a,λr)

(Dεu)p dµ

) 1
p

,

whenever a ∈ X and 0 < ε < r. Note that the constants are required to be
independent of ε.
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3. Proof of Theorem 1

Let us first show that (2) implies (1). For this we define the pointwise Lipschitz
constant Lip so that for a real-valued Lipschitz function u,

Lip u(x) = lim sup
y→x

|u(x)− u(y)|
d(x, y)

,

for every x ∈ X. Now by [Kei02, Theorem 1.3.4], inequality (1) follows (for all
measurable functions) as soon as we have

(3) −
∫

B(a,r)

|u− uB(a,r)| dµ ≤ Cr

(
−
∫

B(a,λr)

(Lip u)p dµ

) 1
p

,

for all real-valued Lipschitz functions u and all a ∈ X and r > 0. So it suffices
to show that (2) implies (3). For this we take a real-valued Lipschitz function u
and a ball B(a, r), and let ε → 0 in (2). Since u is Lipschitz, the functions Dεu
are bounded by some constant L > 0 not depending on ε, and thus we can use the
Lebesgue Dominated Convergence Theorem to replace the right hand side of (2) by
the right hand side of (3).

To show that (1) implies (2), we use the ε-partition of unity to approximate a lo-
cally p-integrable function u (note that it suffices to prove (2) for locally p-integrable
functions). A similar method is used in [KM98] by Koskela and MacManus. Fix
ε > 0 and cover X by balls Bi = B(xi, ε) so that the balls B(xi, ε/5) are disjoint.
This can be done because of the existence of a doubling measure in X. Note that it
then follows that the balls in {Bi} have overlap bounded by a number that depends
only on the doubling constant associated with µ, and therefore not ε. As in the stan-
dard construction of partition of unity, one can now define Cε−1-Lipschitz functions
0 ≤ φi ≤ 1 so that the support of φi lies inside Bi for all i and

∑
i φi(x) = 1 for all

x ∈ X. Here and below C > 0 is a varying constant whose value in any one usage
is fixed and depends only on the doubling constant of µ and the constants in (1).
Having the partition of unity for ε > 0, we approximate u by a function uε, where

uε(x) =
∑

i

Viφi(x), Vi = −
∫

Bi

u(y) dµ(y).

This approximation turns out to be useful for our purpose. Following [KM98], we
define a function DA

ε u, similar to Dεu, by

DA
ε u(x) = −

∫
B(x,ε)

|u(x)− u(y)|
ε

dµ(x).

This function can be used to find an upper gradient for uε; define gε by

gε(a) = −
∫

B(a,2ε)

DA
5εu(x) dµ(x).

If d(a, b) < ε, then, by [KM98, Lemma 4.6], we have

|uε(a)− uε(b)| ≤ Cd(a, b)gε(a),

It further follows that Cgε is an upper gradient of uε.
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Now we estimate the left hand side of the Poincaré inequality by using uε. First,
we have

−
∫

B(a,r)

|u(x)− uB| dµ(x) ≤ −
∫

B(a,r)

|uε(x)− u(x)| dµ(x)

+ −
∫

B(a,r)

|uε(x)− uε,B| dµ(x) +−
∫

B(a,r)

|uε,B − uB| dµ(x)

≤ 2−
∫

B(a,r)

|uε(x)− u(x)| dµ(x) +−
∫

B(a,r)

|uε(x)− uε,B| dµ(x).

The first term can be estimated by using the definition of uε as follows:

−
∫

B(a,r)

|uε(x)− u(x)| dµ(x) = −
∫

B(a,r)

∣∣∣ ∑
i

−
∫

Bi

u(y) dµ(y)φi(x)− u(x)
∣∣∣ dµ(x)

≤ −
∫

B(a,r)

∑
i

φi(x)−
∫

Bi

|u(y)− u(x)| dµ(y) dµ(x)

≤ 7Cε−
∫

B(a,r)

∑
i

φi(x)D7εu(x) dµ(x) = 7Cε−
∫

B(a,r)

D7εu(x) dµ(x)

≤ 7Cr

(
−
∫

B(a,λr)

D7εu(x)p dµ(x)

) 1
p

.

Here we used Hölder’s inequality, the doubling property of µ, and the assumption
ε ≤ r. The second term can now be estimated by the Poincaré inequality (1), to get

−
∫

B(a,r)

|uε(x)− uε,B| dµ(x) ≤ Cr

(
−
∫

B(a,λr)

gε(x)p dµ(x)

) 1
p

= Cr

(
−
∫

B(a,λr)

(
−
∫

B(x,2ε)

DA
5εu(y) dµ(y)

)p

dµ(x)

) 1
p

= Cr

(
−
∫

B(a,λr)

(
−
∫

B(x,2ε)

−
∫

B(y,5ε)

|u(y)− u(z)|
5ε

dµ(z) dµ(y)

)p

dµ(x)

) 1
p

≤ 3Cr

(
−
∫

B(a,λr)

D7εu(x)p dµ(x)

) 1
p

.

Combining the estimates we have (2) with ε replaced by 7ε. This completes the
proof of Theorem 1.

Remark 2. The proof that the weak (1, p)-Poincaré inequality with upper gradients,
p ≥ 1, implies the weak (1, p)-Poincaré inequality with Dε did not use the assumption
that (X, d) is complete. However, the converse implication requires this hypothesis.
To see this, consider a non-complete metric measure space (X, d, µ) equipped with a
Borel doubling measure, that admits (1) for all Lipschitz functions u and their upper
gradients g, but that does not admit (1) for all measurable functions u and their
upper gradients g. Such metric measure spaces have been constructed by Koskela
[Kos99]. By the above argument that (1) implies (2), it follows that (2) holds on
(X, d, µ) for all Lipschitz functions u. We can then use the density of Lipschitz
functions amongst p-integrable functions to conclude that (2) holds on (X, d, µ) for
all p-integrable functions, and therefore for all measurable functions. Thus (X, d, µ)
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is a (non-complete) metric measure space equipped with a Borel doubling measure,
that admits a (1, p)-Poincaré inequality with Dε, but that does not admit a (1, p)-
Poincaré inequality with upper gradients.
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