Weighted BMO and discrete time hedging
within the Black-Scholes model

Stefan Geiss
Department of Mathematics and Statistics
University of Jyvaskyla
P.O. Box 35 (MAD)
FIN-40351 Jyvaskyla
Finland
geiss@maths.jyu.fi

January 17, 2003

Abstract

The paper combines two, at first glance rather different, objects:
spaces of adapted stochastic processes of weighted bounded mean os-
cillation (weighted BMO) and approximations of certain stochastic
integrals (driven by the geometric Brownian motion) by integrals over
piece-wise constant integrands. The consideration of the approxima-
tion error with respect to weighted BMO implies L, and uniform dis-
tributional estimates for the error by a John-Nirenberg type theorem.
The general results about weighted BMO are given in the first part
of the paper and applied to our approximation problem in the second
one.

1 Introduction

The approximation of stochastic integrals by integrals over piece-wise con-
stant integrands has for example in stochastic finance a natural interpreta-
tion: the pay-off of a continuously re-balanced portfolio is replaced by the
pay-off of a portfolio, re-balanced at finitely many trading dates only. The



approximation error between the stochastic integral, we were starting from,
and its approximation can be interpreted as risk.

Usually, the approximation error is measured with respect to Ly, which
has the following drawbacks: the resulting distributional tail-estimates are
rather weak. Secondly, if one fixes the number of discretization points in the
time-net and looks for the optimal discretization in order to minimize the
Ly-error, then there are in general very different asymptotically optimal time
nets and it may not be clear what net one should use.

The present paper approaches both problems. In order to replace the
Ly-criteria by a stronger one, one would use the L,-spaces with 2 < p < 00
in a first instance. However, in our situation it turns out that we can use
much stronger spaces, spaces of weighted bounded mean oscillation (weighted
BMO), while getting the same upper error bounds as in the case we would
measure the error with respect to Lo. The used BMO-spaces have two advan-
tages: estimates with respect to these spaces imply generally all L,-estimates
and secondly, by a weighted John-Nirenberg type theorem we obtain signifi-
cantly better tail-estimates than we would get from Ly-estimates (see Section
3.4). Moreover, for a large class of situations we show in Section 3.3 that the
asymptotically optimal time nets with respect to our weighted BMO-spaces
are unique in some sense.

The paper is divided into two rather different parts. Section 2 deals with
the weighted BMO-spaces in a more general context. In Section 3 we apply
these results to our approximation problems of stochastic integrals.

2 Weighted BMO-spaces

Let (€2, F,IP) be a complete probability space and F' = (F;):c[o,1] be a right-
continuous filtration with 7, C F such that Fy contains all F-null sets. By
CL(F) we denote the set of all F-adapted processes A = (A¢)scpo,77 such that
almost all paths are right-continuous and have finite left-hand side limits.
The symbol CL"(F) stands for the subclass of these processes such that
Ap(w) > 0 on [0,T] x Q, whereas CLy(F) is standing for the A € CL(F)
with Ay = 0. Given a stopping time o : Q — [0,7] and A € CLy(F) we
let A,_ = lim, 00 X0o A4 (o-2 +, where ) is a set of measure one on which
A is right continuous and has finite left-hand side limits. For a stochastic

process X = (X)epo,r] we let, as usual, X} := sup,¢ 4 |Xu|- Given B € F,
the normalized restriction of IP to B is defined by PPg(-) := IP(BnN -)/IP(B)



if IP(B) > 0 and Pg = 0 if IP(B) = 0. Finally, given A, B > 0 and ¢ > 0,
the expression A ~, B stands for A/c < B < cA. The BMO-spaces, we use,
are defined as follows:

Definition 2.1 Assume that 0 € (0,1), p € (0,00), A € CLy(F), and ® €
CLT(F). Letting S be the set of all stopping times o : Q — [0,T], we define

-|AT — A07|p :| »
A = sup||E |[——— | F» ,
| ”BMog’(]P) Uelg _ P ‘ .
1
[SUDye(or] | Au — Ag—|” »
||A||BMO§’*(IP) = Sup ]E E[ ](DP | fo’ )
oc€ES L g Loo
Ar — A,
lliog, @) = int{e>0: [P [Ar2t=ls e ]| <o),
: . i
and ||A||wo$g(m) =
su A, — A,
inf{c>0:H]P[ pue[U’T](IL | >c ‘.7'—0} < 0,065}:
g Loo

with inf ) := oo.

The quantities [|-[|goz and ||- ||BMO§’* model a classical approach to weighted
BMO in the probabilistic setting connected to the Garsia-Neveu lemma and
related results of Garsia, Stroock, and many others (see for example [6],
[14], [4], [1], and Remark 2.7 below). The approach to exploit || - [|gyoe, and

I|- ||BM0‘1’;,* has at least two sources: firstly, Stromberg [16] measured the mean-
0,

oscillation of complex-valued functions defined on IR" in a distributional way

by the sharp function Mg,s f. Secondly, in the non-weighted probabilistic

setting, which means here ®, = 1, the distributional approach can be found

in Emery [5] and in [8]. We also need

Definition 2.2 (i) Let () be a probability measure on [, F| with @ ~ IP
and L(w) = (dQ/dP)(w) > 0 for all w € Q. Given v € (1,00) and
¢ >0, welet Q € RH,(IP, ¢) provided that L € L,(2, F,IP) and

VE (L' |F,) < cE(L|F,) as.

for all stopping times o : Q — [0, 7.

3



(i) Given ¢,d € (0,00) and ® € CLT(F) with &, € L,(Q, F,IP), we let
® € SM,(IP,d) provided that for all stopping times o : Q — [0, 7] one
has that

E ( sup c1>3|7—:,> < d19! as.

u€lo,T]

The class of weights RH,, satisfying a reverse Holder inequality, is going back
to Izumisawa and Kazamaki [12] in the probabilistic setting. To shorten the
notation we agree that writing RH,(IP, c) or SM,(IP, d) means automati-
cally that v € (1,00), ¢ € (0,00), and ¢,d > 0. Our results about the spaces
introduced in Definition 2.1 follow immediately from Theorem 2.3 below.
This theorem transfers Emery [5] (Proposition 2) and [8] (Theorem 4.6) to
the weighted case and Stromberg [16] (Lemma 3.4) from the classical setting
of functions defined on IR" to the setting of stochastic processes.

Theorem 2.3 Let A € CLy(F) and 6 € (0,1). Assume that ¥ = (U,),e(o7y
is a process of F-measurable random variables Wy : Q — [0,00) such that
almost all trajectories have finite left-hand side limits, are right-continuous,
and are non-increasing. Assume furthermore that there is a 6 > 0 such that

P (|AT — A, | > V‘}}) < 6+ 6P (\IIU > V‘}}) a.s. (1)

for all v > 0 and stopping times o : Q@ — [0,T]. Then there are constants
a,a > 0, depending on 8 and & only, such that

]P(sup |Au—A(,_|>A+W‘]-}> <

u€lo,T

< P [ sup |4, — A, | > /\‘.7:0 + alP (\Ila > z‘}'@) a.s.
u€lo,T] a

for all X\, p,v > 0 and stopping times o : Q — [0,T]. Consequently, for all

p € (0,00) and B € F, of positive measure one has that

sup |A, — Ay |

< ¢ ||V,
u€lo,T] P ” ||Lp(]PB)

Ly(PPp)

where the right-hand side or both sides may be infinite, ¢, > 0 depends on
(p, @, a) only, and sup, ., %” < 00.



Proof. We fix a stopping time ¢ and B € F, of positive measure. For A > 0
we let
oy = inf{t € [0,T] | Ay — Ay | > )\} AT,

with the convention that inf () := co. For \,v > 0 we obtain

Py ( sup Ay — A,_| > )\+1/>

u€lo,T]
< ]PB |AJA+,,_A07|2A+V5 sup ‘AU_A0*|>A
u€[o,T]
S ]PB |Aa)\+,, - Aa—| 2 ‘Aa)\— - Ao—| + v, zl[lpT] |Au - AO’—| > )\)
< Pp |AJA+U—AT‘+\AT—AJA_| > v, ZFPT]|AU_A0._‘ >)\>

- ]PBﬁ{supue[a,TﬂAu_Aa—|>)‘} ( ‘A"Hv - AT| +[Ar = Aoy-| 2 V)

Py ( sup |A, — A,—| > )\)

u€lo,T]
S ]PBﬂ{supue[a,TﬂAu—Ag_\>)\}( |A0—A+V - AT‘ > 5) +

14
+]PBO{SupuE[o',T]‘AH_Aa-—‘>A} ( |AT — AU)\_‘ 2 5)]

Py ( sup |A, — A,—| > )\)

u€[o,T]
< |p liminf |Ap— A v
— Bﬂ{supue[(,,T]|Au—Aa—\>)\} n%;o%iriz,‘ T ((0’)\+y+%)/\T)—‘ > 5
v
0+ MPB”{S“Pue[a,TﬂAu—Aa—|>/\} (\Ij” > 5)}

Py ( sup |Ay — A,_| > )\)

u€|o,T]
. . Z/
< hmnmf]PBn{supue[a,T]lAu—Aa—|>>\} (‘AT - A((o—,\+,,+%)/\T)_‘ > 5) +

14
o 5PB”{S“Pue[a,T]|Au*AUf|>'\} (‘II” ~ 5) }



u€lo,T]

Py ( sup |A, — A,_| > )\)
vV
< 20 20P g ) (\If(, > g)]

Pp ( sup |A, — A,—| > A) .

u€lo,T]

Setting g := sup,cpy.ry |[Au — A, 5:= 20 € (0,1), and

W (C,v) := 20IP g (w(, > ) for CeF,

Wl

we have shown that
Pg(g>A+v) < [3+W(g> )\,V)}]Pg(g >\) for A\v>0.
By induction over N = 1,2, ..., where we use

W(Cl,V)IPB(Cl) < W(CQ,V)]PB(CZ) whenever 01 QCQ,

one easily sees that

Pp(g>A+Nv) <

s+ W(g > \v) (Zsk_1>] Pg(g>))

k=1

1
< [+ =We>An)|Pslg> N

1
< SNIPB (g > )\) —+ 1——SW(Q’ I/).
The rest follows by a computation for o := % and a := 3 (1 Vv (%))

log 20

The consequently-part follows from [3] (Lemma 7.1). a

Remark 2.4 Looking at the proof of Theorem 2.3 one quickly checks that
one can replace the assumption in Formula (1) by

P ( sup |Ay — Ay_| > 1/‘.7:0> < n+46P (\If(,. > 1/‘.7-"(,> a.s.
u€[o,T]

for n € (0,1). To what extend the range of # in Formula (1) can be enlarged

is not investigated here. The range 6 € (0,1/2) is sufficient for our purpose.
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Now we show that we can change the underlying measure in a moderate way.
One should note: while changing the measure we keep the whole process.
This is different from the usual setting (see for example [13] (Chapters 3.1
and 3.3)).

Corollary 2.5 For p,q € (0,00), @ € RH,(IP,c), and & € SM,(Q,d),
there is a constant C = C(p, q,v,c,d) > 0 such that

||'||BMO§’*(Q) <C ||'||BM0;1’(1P)-

Proof. Assume that ||A||Wog(lp) < 1. For A > 0 and B € F, of positive

measure we get
|Ap — A,_| 1
]PB <T > )\ S ﬁ

Letting 1 < u < co with 1 = 1 + I we can use the arguments from [2] (in
particular the lemma on p. 298) to conclude that

‘AT_AO'—‘ u 1
QB(T>)\ <c v for BeF, and X>0.

Choosing Xy > 0 such that 0 := c,u/% € (0,1) we get that

||'||BM0§9(Q) < Ao ||'||BM0§(IP)'

Hence ||A||BMO<01>9(Q) < Ao and the definition of || - [|gyoz, implies that
Q (\AT — A, | > 1/‘.7-'0> < 0+Q ()\0 sup &, > 1/‘.7:(,> a.s.
u€lo,T|

for v > 0. So we can finish by Theorem 2.3 and ® € SM,(Q, d). O



Corollary 2.6 Let 0 € (0, %), n € (0,1), p € (0,00), and & € SM,(IP,d).
(i) There is a constant ¢ = ¢(0,n,p,d) > 0 such that
I levoz, @y ~e oz ey ~e Ilavoz @) ~e ll-llawoz-@ey - (2)

(ii) Moreover, the finiteness of the quantities in Formula (2) for a given
A € CLY(F) is equivalent to:

(a) There are constants 6,d > 0 such that
P (|AT — A, | > 1/‘.7:(,) < #+46P| sup P, > z‘fa a.s.
u€lo,T| d

for all v > 0 and stopping times o : Q — [0,T].

(b) There are constants a,a > 0 such that, a.s.,

u€o,T] u€[o,T] a

P ( sup |Ay — Ay | > /w‘}'a) < e P ialP ( sup @, > Z‘}'J)
for all u,v > 0 and all stopping times o : Q@ — [0, T].

Proof. During the proof we drop the dependence on IP in the notation of the
BMO-spaces. (i) One easily has that

1 1
0% | lenog, < IMlhop < Iz and 1% [-lnog, < IFllmos
On the other hand, as in the proof of Corollary 2.5, Theorem 2.3 implies that
oz < cesd llmos,
with co.3) = c2.3)(p, ) > 0. By Remark 2.4 one also gets that
Iz < o @ 1 llavos:

with some c{, 3y = ¢{y.5)(P, ) > 0.

(ii) The implication (a) = (b) follows from Theorem 2.3. Knowing (b) we
can again use Theorem 2.3 and ® € SM,(IP,d) to get that ”A”BMOE”* < 00.
Finally, ”A”BMog’a < d with d > 0 implies (a) with 6 = 1. O

Part (ii) of the Corollary above can be viewed as a John-Nirenberg-type
theorem for the introduced BMO-spaces.
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Remark 2.7 (i) Assume that there is a constant ¢ > 0 such that

I oz < ¢l llmog  and & € SM,(IP, d).

Then
¢, < cd®jas. forall ¢e][0,7T].

Because of the continuity properties of ® and ® we have to check
t € (0,77 only. Define A = (Ay)ucjo;r] by Ay := 0if u € [0,t) and
Ay =@ if u € [t,T]. Then ||A||BMO§ < d so that ||A||BMo§’ < c¢d. But
this gives ®; < cd®} a.s.

A preliminary version of Corollary 2.6 in the discrete time setting was
announced in the seminar notes [9]. Instead of using Theorem 2.3 as
fundamental tool, [9] refers to a more abstract version of Theorem 2.3
presented without proof in the seminar notes [7]. Hence Corollary 2.6
(and henceforth its version in [9]) are proved here for the first time.

In [9] there is also indicated an example for the discrete time setting
showing that ® € SM,(IP,-) cannot be replaced by ® € SM,(IP, )
for 0 < ¢ < p in Corollary 2.6.

Finally, the reader is referred to [9] for comments about relations of
Theorem 2.3 to classical results of Garsia and Stroock: letting 6 €
(0,3),p€ (1,00), ®r € Ly(2, F,IP), ®, := IE ($r | F;), the inequality

1
oy < ¢ [Illaop, with ¥y :=E (2. [ 7)7,

which can be deduced from Theorem 2.3 and Doob’s inequality, can be
considered as continuous time refinement of [6] (Lemma II1.5.1) (see [4]
(par. 107 and 108, Chapter VI)).



3 Approximation error for discretizations of
certain stochastic integrals

3.1 Setting and motivation

We consider a Black-Scholes option pricing model with time-horizon 7" > 0
after discounting under the martingale measure. This means, we take S =
(St)tE[O,T] with

0_2
St = exp (O’Wt — Et) s o> 0,

as price-process, where W = (W,)cjo,17 is a standard Brownian motion de-
fined on a complete probability space (2, F,IP) with Wy = 0. As filtration
(Ft)teo,r) the augmentation of the natural filtration of W is used. For sim-
plicity, we also let F = Fr. By rescaling of time we may set 0 = 1 in the
following. Assume an European contingent claim with pay-off f(Sr), where
f : (0,00) —» R is a Borel-function with IEf(S7)? < oc. To obtain the
stochastic integral representation of f(Sy) we find an € > 0 (see for example
[11]) such that

F(t,y) =Ef(ySr_y) gives F € C*®((—¢,T) x (0,00)) (3)
and OF 2 2
BT 55ty =0 (4)

[to’s formula implies that

F
F(t,S;) =IEf(Sr) + aa—y(u, Sy)dS, for te€[0,7T)a.s.
(0,4]

Because of limyyr || F'(t, S;) — f(St)ll, = 0, and with %—g(T, y) := 0 for y > 0,
we end up with the desired representation

f(Sr) =IEf(Sr) + /(0 . g—lgj(u, Sy)dSy a.s.

To formulate the approximation problem, we are interested in, we introduce
the error-processes C(7) and C(7,v).
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Definition 3.1 (i) Letting N > 1 we define

Ti={(t:)ie| 0=ty <--- <t, =T} and Ty:={(t:)io|n < N}.

(i) Fort=(t;)'y €T welet ||7||co :=sup; |[t; — ti—1| and

P(r) := {v— V)7 |vZ Q — IR F,-measurable, ]E\UZSH < oo}

(ili) Gwen T €T andv € P(71), we define C(1,v) = (Cy(T,v))secpo,r] by

Ci(r,v) == (f(S1)|F) —Ef(Sr) — thl » (Stnt = St_iae) 5

=1

where all paths of C(7,v) are assumed to be continuous, Cy(-,-) = 0,

and
n—1

C(r) == C(r,v°) with v°:= <g§(tz75tl)>

1=0

In the definition above we used that IE(S,2E (t S;))? < oo for t € [0,T) (see
for example [11]). The definition of C(7) can be rephrased to be

L OF oF
Ci(r) = . By —— (4, Sy)dSy — Z By (ti1,S4_,) (St,-/\t - St,-,l/\t)
=1

which is the error-process of a simple approximation of a stochastic integral.
There are two results we would like to start from. The first one is due to
Zhang and can be formulated in our setting as follows:

Theorem 3.2 ([17]) Let K : [0,00) — IR be a Borel-function and assume
that sup,so(1 + [2]) ™| K (z)| < oo for some m > 1. If for

:/yK(ac)dac for y>0
0

does not exist a b € R with f(Sy) = bSr and if 7, := (in/T)?_,, then there
is a ¢ =c(K,T) > 0 such that

o NCr (s v)llz, < Cr(m)le, < for n=1,2,...

Sie

c\f
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The second result, we want to mention, is

Theorem 3.3 ([11]) There is a constant ¢ = ¢(T) > 0 such that for all
Borel-functions f : (0,00) — IR with IEf(S7)? < oo one has

1 .
“alfsm) < it (Cr(r)ly, < IC(DI, < calfir)

where T = (t;)1y € T and

For example, applying Theorem 3.3 to f(y) := (y — Ko)™, Ky > 0, gives

- L —
) < / du
) (; tic1 V T — U

where ¢ = ¢(T, Kj) > 0 (see [11]). Formula (5) shows that there are time nets,
quite different from the equidistant one, realizing the optimal rate 1/4/n in
Theorem 3.2. For instance, exploiting [11] (proof of Theorem 6.2) one could

use
s £ n 2
:(T—T(n ’)) for - <e< L. (6)
n 0 3

From the above, two problems naturally arises: firstly, is it possible to replace
in Theorem 3.2 the Ly-norm by a stronger quantity? This is of particular
interest if one wants to control uniformly the distribution of Cr(7). Up to
now, Theorem 3.2 only implies that

P (\CT(TH)\ > %) < (C“’;Q’)Z, A>0, (1)

which is far from being optimal in general, as we shall see later. Secondly, it
is not clear which of the time-nets, giving the order 1/4/n in Formula (5), is
the best one in a certain sense. Both problems are connected to each other
and will be approached now.

2

F2
5’26 du.

N

) < ca(f;7), (5)
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3.2 The basic technical estimate

We provide the main technical upper estimate for the expected quadratic
error in Theorem 3.4 below, which is used later on. For the rest of the paper
it is assumed that K : [0,00) — IR is integrable over compact intervals,

fly) = /Oy K(z)dz, and Y(y):=yK(y) for y > 0. (8)

Theorem 3.4 Assume that

[ @i

Given 7 = (t;)ly € T and a € [t;_1,t;), one has

2

E + E¥(S7)? < oo. 9)

E (ICr(7) = Ca(n)[* | Fa)
<7l [lE (U(Sr)* | Fa) + (Sa/Sis)” (B (¥(Sr) | Fiiy))” | as.

where ¢ > 0 depends on T only.

Let us turn to the proof. Through the whole sub-section we assume that the
conditions in Formulas (8) and (9) are satisfied.

Lemma 3.5 Let 0 < a < b < T and let FF € C°**([0,T) x (0,00)) be
given as in Formula (3). Then, for v, € R and (a,yo) = (0,1) or (a,yo) €
(0,7) x (0, 00),

b 8F 2
]E/ (a—y(ta yOStfa) - Ua) (yOStfa)th

b aF 2
NC(b—a)]E/ ((8—y(a’ Yo) — Ua) Yo +
o O°F ?
(b - ’LL) ((yOSua) 8—312 (’LL, yOSua)) du:

where C : (0,00) — [1,00) is an absolute function which is increasing and
satisfies limg o C'(6) = 1.
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Proof. We define f( ) := f(yoy) for y > 0 and T:=T—a. Applying [11]
(Corollary 3.3) to f, T, and the time interval [a,b] = [0,b — a] gives our
assumption. a

In the following we use the Gaussian measure

dy(z) == (2m) % exp (—2?/2) dx

and, for t > 0 and x € IR, the function

Lemma 3.6 Foru € [0,T) and y = Sy(z), x € R, one has

() ¥ y) = ¥ (Sr (VEz+ /L)) dul),
(ii) v B—Fuy R (ST<fx+\/7n>>[

Proof. For u* :==T —u € (0,T] we have (see for example [11] (Lemma A.2))

]dv()

oF W
ya—y(u,y) = Ef(ySu )u*,
,0*F

aQ(Uy) = ]Ef(ysu*)(u*uQ T T

We restrict ourself now to assertion (ii), the first one can be verified in the
same way. We get

82
82(

wy) = EfS, )(u,& e L

u*? u* u*

2* * 1
= [T KOE vy oS (Y Ve 1]y
i (n) [X[n, (Y )(u*2 " u)] n



= —| K@N (log(y/n) - U*/2>

(0,00) v
(1 . log(y/n) — u*/ 2) dn
u* Vu*
_ K(n)N,<\/ﬁx—logn—T/2>
(0,00) vur
(1 N Vur —logn — T/2> dn '
u* Vu*
Letting n' := —w, assertion (ii) follows. O

Given o > 0, we use the operator
Ay 1 Ly(R,y) = Lo ((0,1) x R, A x ),

where A is the Lebesgue measure, given by

(Apth) (v, z) := /]Rw (Vvz + /1 —wn) [\/% - \/5] dy(n).

The operator is related to the Ornstein-Uhlenbeck semi-group and satisfies

Lemma 3.7 ||Aa¢||L2((o,1)xm,,\><7) < (1++/0) ||¢||L2(1R,7)'

Proof. Let (h;,)_, be the orthonormal basis of Hermite polynomials in
Ly(IR, ). It is easy to check that

(Aghm) (1, 2) = u*T /M hy 1 (2) — VOUE by ()

form=1,2,... and (Ashy)(u,z) = —y/ohg(x) so that the claim follows. O

Lemma 3.8 Let 0 < a < u < T, v := 7% y = Si(z), v € R, and

Yo > 0, where yo = 1 in case of a = 0. Then

O?’F (Ar_o¥) (v, )

(yoy)2a—y2(u, Yoy) = N with  Y(z) := ¥(yoSr_a(x)).
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Proof. We let f( ) == f(yoy) and T := T — a. The corresponding functions
K and ¥ compute as K(z) = YoK (yoz) and U(z) = U(yoz). Moreover,
F(v,y) = F(a+v,yy) for (v,y) € [0,T) x (0,00), so that

0*F PF
2 —
yO 8y2 (a’ 'U, yoy) 8y2 ('U, y)

Applying Lemma 3.6 gives, for u € [a,T) and y > 0,

,0°F 82
@w)82(ww)= yaQ( —a,

),

~771] dy(n)
T—(u—a)
u—a T—u
= m/ (yOST a(\/ T_a” T_ g ))
— VT —a| dy(n)

N(Eicen
— o [ (or Vi)

VT —a Jr
Lﬁgz—vftﬂdﬂM-

O

Proof of Theorem 3.4. We recall that ¢;_; < a < t; for some 1 < i < n.
Let s;_1 := a and s;, := t;, for i < k < n. We obtain, a.s.,

|Cr(7) = Ca(7)|

F
/ ( Zx(tk 1,tk (tk 1, Sty _ 1)) ds,
(a,7]
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(o] <(?9 (u; Su) = %(m&)) ds,

- OF oF
t2 /ak L (ay (w5 = 3y (tk_l’st’“‘l)> A5

k=i+1

oF oF
‘a—y(a” Sa) - 8—y (tifla S‘ti_l)

- oF OF
S 1,85,_,) ) dS,
g/@k—l,sh] <8y (v, Su) = 8y (Sk L s ))

Hence by Lemma 3.5, a.s.,
E (|Cr(7) = Ca(n)|* | Fa)

oF oF 9
2IE ( 9 —(a,S,) — o (ti=1, Su_y)| 1(Su — Sa) | ]-"a>
,0°F 2
+2C;5.5 (T (Z/ (sp —u [ w52 —(u, Su)] du | fa)
Sk—1

oF oF 2
ay (CL S ) a—y (t,‘_l, Stil):|

+205)(T) 7]l E ( / " [(sﬁu_a)Q ?;f (4, o5 a)rdu> |

With respect to the first term we get, a.s.,

IN

|Sti - Sa‘

+

2

IN

IN

2 [, —1]7] 2 [

OF OF 2
5 050~ gy v )|

{Saaaz (a5 )] (S5 [St“%—lgj (i1, Stu)ﬂ

= 4" [l [ ((S7) | 7o) + (Sa/S1i ) (W(ST) | Fi))’]

2|ES, a—1|}52[

IN

4e" ||7]]
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where we have used Lemma 3.6 (i). Let us turn to the second term and fix
Yo = Sa(w). We have that

2
]E/ [ u—a a—F(u:yogu—a):| du

-/ / [ys O S| dutr(a

(AW (0Sr-a())) (;ﬁ:z,x)rdudm)

/]R/ol [(AT—a‘If(ZUoST—a(-))) (v,x)rdvdfy(x)

IAT—all® 1 (yoST—a ()7,
< (1 + \/T)2 ||‘Ij(yOST—a('))||i2('y)

IN

where we have used Lemmas 3.8 and 3.7. Hence

]E/ [ (S4Su_a) (u SaSu- a)rdu < 1+ VT)’E¥(S,5r_0)2%

3.3 The case K(Sr) € Ly

Our aim is to consider the approximation error with respect to the weighted
BMO-spaces BMOS . One problem consists in the variety of parameters p €
(0, 00) and processes ® one can take. With respect to p we take p = 2, which
comes naturally from the techniques we use (and may look then what other p
lead to equivalent spaces according to the results of Section 2). With respect
to the processes ® our policy is as follows: given f(Sr), we are searching for
® such that, on the one hand-side,

1

i 00hmog ~

which is the optimal rate in case we would measure ||Cr(7)||,, (see [11]),
and that on the other hand-side the tail distributions of ®, for example

18



P (suptE[O,T] ®; > A), are small. Considering the example f(y) := (Ko —y)",
Ky > 0, and taking 7 = (0,7) € T gives that

oF

Cr(t) = f(Sr) —Ef(Sr) — a—y(oa

1)(Sr—1)
with %—Z(O, 1) # 0, so that Cp(7) cannot behave better than Sy in a certain
distributional sense. This leads us to our first case ® = S.

Given @ € RH,(IP,c), it is easy to check that for all ¢ € (0, 00) there
is some d > 0 such that S € SM,(IP,d) N SM,(Q,d). Given p € (0,00),
Corollary 2.5 implies

| lavos @) ~e Il - [lavios gy (10)

for all measures @ ~ IP satisfying @ € RH,(IP,¢) and P € RH,(Q,¢) for
some v € (1,00) and ¢ > 0, where C = C(p,v,c) > 0.

The following result should be compared with the equivalence proved for
the Lq-error in Theorem 3.3.

Theorem 3.9 Let sup,sq |K(x)| < oo and assume that there is no b € IR
such that f(St) = bSt. Then there is a constant ¢ = ¢(K,T) > 0 such that
forallTe T:

1 :
VIrllee = dnf HIC T )llvosey < IC (M llaogmw) < ey/lI7l

It turns out that the asymptotically optimal time nets are unique: one
has to take the equidistant nets in order to minimize inf ¢, \/||7|| . In
particular this holds for the pay-off function of the European Call Option
f(y) = (y— Kp)* with Ky > 0 and is in contrast to the situation in which we
would measure ||Cr(7)||,, (see Formulas (5) and (6)). Moreover, this exam-
ple shows nicely that [|Cr (7)||;,q) and [|C (7)||guose) behave differently,

however taking the infimum over 7 € 7,, yields to the same rate 1/4/n, since

=

D=

o NCr (7, )|,y ~ €T (Dl 2,0p) ~ (Z/
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according to Formula (5), but

nt 10 () lmoge ~ 1€ (") lvogcey ~ /. T =t

Finally, as remarked by Formula (10), with respect to the BMO-estimates
we are allowed to change the measure in a moderate way.

Remark 3.10 Originally, the paper was only considering the pay-off of the
European Call Option f(y) = (y — Ky)™, Ko > 0, which can be proved in a
much more direct way. As an application of the paper in this earlier form,
[10] was showing that: given one knows the estimate for the European Call
Option, one can deduce estimates when K is non-negative, bounded, and
monotone. However, this argument cannot be applied to Theorem 3.9 in the
meanwhile general form, since K is not assumed to be monotone.

Proof of Theorem 3.9. (a) To get the upper estimate for ||C (7')||BMO§(]P),
we remark that Theorem 3.4 implies that

E (|Cr(r) — |]—') 34 17|l o su%\K(:r)F(l +1ES7)S? as.

and that we can replace in this inequality a by a stopping time o : Q — [0, 7.
(b) To get the lower bound for ||C (7, v)|[gyosp), we fix i € {1,...,n}

and let a € (t;, 1,t;,). For B € F, of positive measure we obtain, by Lemma
3.5,

/ Cr(7,0) — Ca(r,0) 2 dIP
B

t; F 2
zl//Oeqwm—%w>ﬁmw@
t'LO — 2 S
= / / (6F U, Sy—aSa) — 0_1) (Su_aga)QduleB

oF 2
> 1 _[t-a 0,5) —w, ) SidPy.
> )(%( ) W) ;

Hence
1 OF 2
C (r,v)|? > ———(tyy, —a <—a,Sa — vy, 1) a.s.
I () Fuogar) = oo o = a) Gy (@ 50) —
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and

GF oF
C(rv > \/ —a sup (a,y —(a,y2)|.
1C( )”BMog(]P) 2\/cos a0 8y 1) — oy (a, y2)
(11)
In order to prove our lower estimate, it is sufficient to prove that
oF OF
inf su t t, > g9 >0, 12
1e(0.T) 4, y2P>0 ay — () — ay — (%, 92) 0 (12)
because this would imply that
€0
C(r,v > ——— /7] ..
1€ (D lmozary 2 57—/ 7
To check Formula (12) let us fix ¢t € (0,7"). By Lemma 3.6 we get
oF oF
sup |—I(¢, - —t,
y1,y2>0 | OY () Ay (t:32)
oF oF
= su — (¢, - —(t,
e <8y ) = 5, y2)>
= sup IESr_; (K(y157-+) — K(y2S7-4))
Y1,92>0
= E gt sup IESy_y (K(ylgtST—t) - K(y2§tST—t))
y1592>0
> sup o]E SUEST ¢ (K (y1S:S7-t) — K (425157-+1))
Y1,Y2>
= sup ESr(K(y1Sr) — K(y2571)) -
ylay2>0
So it remains to verify that
sup . ]EST (K(ylST) - K(QQST)) > 0. (13)
Y1,Y2>
Assuming the contrary implies
EV (ySr) = yIESr K (ySr) = ay (14)

for some a € R. Let h(z) := ¥ (eﬁ“_g) = D o Cmhm () in Ly(7) so
that, for x € IR,

ae¥T® = U (eﬁ””ST>
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_ ~e-o? df

_ z&—“‘z—Q —§23 dé-
_ /}Rh(g)e b

= ™ e de
= h —hm e 2
| ne) (mz - (6)) =
m=0 " v m'
Hence o, = a\T/i and
Tz T
h(z) = az hm(z) = aeVTe 7
— vm!

in Ly(y). This implies that ¥(y) = ay a.s. on (0,00) and that K is a.s.
constant which is a contradiction to our assumption. Hence Formula (14)
cannot be true and we get Formula (13). O

The next theorem shows that the boundedness of K is necessary.

Theorem 3.11 Assume that Formula (9) is satisfied and assume that there
is some ¢ > 0 such that

L CT )llmogee) < /Tl

for all T € T. Then |[K(ST)| 1) < oo

Proof. Assuming that a € (t;,-1,%,), %0 € {1,...,n} we get from Formula
(11) and our assumption that

Cy/ 17l > ueig(ff)”C(T’ U)||BMO§(]P)
\/ —a sup

2 C(s. 5) Y1,42>0

)~ 2 w)
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By arranging the time nets in an appropriate way and by Lemma 3.6 we may

conclude

1
cC 2> ————— sup
2 C(3.5)(T) Y1,y2>0

oFr oF
a_y(“’ ?/1) - 8—y(a’ y2)

and

oF SN
8—y(a, y)‘ S 4c C(3_5)(T).

sup sup [ESr oK (ySr_)| = sup sup
ae(0,T) y>0 a€(0,T) y>0

With d := 4cy/c(3.5)(T) this gives

sup |[EV(ySt )| < dy
a€(0,7)

for all y > 0. Letting
G(a,y) == E¥(ySr_,)

for a € [0,7) and y > 0 we get an Lo-martingale (G(a, Sa))acpo,r) With
LiglG(a, Sa) = ¥(St) as.

and in Ly so that |¥(y)| < dy a.s. because of |G(a,y)| < dyon (0,7)x (0, c0).
Hence |K(y)| < d for almost all y > 0. !

3.4 The case K(S7) € L,

In this section we show that we can extend to error estimates from Theorem
3.2 from L, to L, in Theorem 3.12 and that we can improve Formula (7)
by Theorem 3.14. We shall only work under the measure IP. Letting £ €
{L,, BMO;D} we define

a,"(f(Sr) | E) = Jnf [|Cr(7)]l5,

P (f(S7) | E) = inf inf ||C
P (F(Sr)| E) = inf inf [Crlrv)lle

with the convention [|(X¢)iepo,r1llz, = | X7l
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2

+ \K(ST)\’J] < 00,

Theorem 3.12 Let2 <p<r < q< o0,
and .

B [/OST K (2)|da

@, := S, sup [E (|K(Sr)|" | Fu)]™  for a€[0,T].

u<a

Assume that there is no b € R such that f(St) = bSr and assume that
E ¢ {Lp,BMO;I’}. Then one has that

1 Ot snn i
% PF(ST) | E) < ai™(f(Sr) | E) < 7

forn =1,2 ..., where ¢ > 0 depends at most on (K,T,p,r,q). In order to
obtain the asymptotic optimal approzimation rate 1/\/n, equidistant nets can
be used.

Proof. For ¥(y) = yK(y) Holder’s inequality gives
E (9(Sr)? | Fo) + (Sa/Si_y)” (B (¥(Sr) | Fily))” < 02 as,,
where ¢; = ¢;(T,7) > 0, so that by Theorem 3.4 we get
E (|Cr(r) = Co()[* | Fa) < gy lI7llo P2

Again we can replace in this inequality a by a stopping time o : Q — [0, 7]
and deduce that

VT
N
On the other hand, since there are no a,b € IR such that f(S7) = a+b Sr a.s.
[11] (Theorem 4.6, Lemma A.3) implies that u — IE |S2(8F/9y)(u, S,)| is

a continuous function on [0, 7T") which is not identically zero, so that Theorem
3.3 gives that

51m ST ‘B:M:Oq) < C(3 4)01

1
aPY(f(S7) | L)
o/m S a0 [ L)
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for some ¢y = ¢co(f,T) > 0 (in [11] it was assumed that f(y) > 0 which is
irrelevant in this respect). To conclude the proof we have to check that

A7z, < sl Allgvos

for A € CLy(F) with ¢35 = c3(K,T,p,7,q) > 0 following from [|®7[[, < oo
and Theorem 2.3. O

Remark 3.13 Letting2 < q< oo, T =1, and

MRS

1 @ y<e

fly) = { e (losytd)” y>e

yields to K(S1) € Ly, f(S1) € Lo, but f(S1) & Ly. The latter implies for
opt

S
instance that ai® (f(S1) ‘ L,) = co. Hence in Theorem 3.12 one cannot take
p=gq.

Theorem 3.14 Let o > 0 and ¢ > 0. Assume that |K(x)| < c[1 + |z|*] for
x>0. Then

1
_ log [sup, P (C5(n) > IIrll4 A |
lim sup 5 < — 5
Ao\ >e [log ] 2T (a+ 1)

For all o > 0 there are K such that one has equality.

Proof. Let @ be defined as in Theorem 3.12. We get that
P < (S as.
for a € [0,T] and some ¢; = ¢1(T,r,¢,) > 0. Theorem 3.4 gives that
E (|Cr(7) = Co(T)[* | Fo) < oy I7llo0 (2T ass.
for all stopping times o : Q0 — [0,7] and some c; = co(T,7,¢,) > 0. Using

Theorem 2.3 with

T, .= sup (S7)*"
u€la,T]
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implies that
P (Cir) > Il ) < e+ B (W > 7)

= e P ()" > 7
for all pu, v > 0 with some 3,b > 0 depending at most on (7,7, ¢, «). Finally,
given ¢ € (0,1) we find Ay, y > 0 depending at most on (3, b, T, ) such that

inf {el_“ + BIP ((S;F)"‘“ > 3)} < AP ((S7)*F > A1)

A=puv,u>0,v>0 b

for A > Xy so that
P (Ci(r) > 1715, 0) < P (S > A1)

for A > Ay and the upper estimate follows by a standard computation. The
examples for equality are given by f(y) = (Ko — y)* with Ko > 0 fora =0
and f(y) = y*™ for a > 0. a

Remark 3.15 There are limit theorems for the error process Cr(7) of a
different nature: in [15] one considers limits of type lim, o /nCr(7,) for
T, = (T/n)}_, in distribution. Our problem is different: We are going to
improve Theorem 3.2 form L, to L, and even to stronger spaces as shown
in Theorem 3.14. So, in a sense, we are working with uniform distributions
holding for any time-net, and not with limit distributions.
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