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Abstract

The approximation of stochastic integrals appears in Stochastic
Finance while replacing continuously adjusted portfolios by discretely
adjusted ones. We describe uniform approximation properties of sto-
chastic integrals of this type by asymptotic properties of its integrands
and by the real interpolation method with parameters (6, 00). More-
over, connections to the Malliavin Sobolev spaces D; o and the corre-
sponding Besov type spaces are given.
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Introduction

The approximation of stochastic integrals has a natural interpretation in
Stochastic Finance: one replaces a continuously adjusted portfolio by a dis-
cretely adjusted one. To do this optimal in the quadratic mean sense, one has
to consider an Lo-approximation problem, in which a stochastic integral (the
pay-off of the continuously adjusted portfolio) is approximated by an integral
over an integrand, piece-wise constant in certain time intervals. Zhang [13]
considered this approximation with equidistant time nets in case the pay-off
g(YT), (Y)se[o,r) is the discounted price process, is formed by an absolutely
continuous function g. Gobet and Temam [7] extended this to some irreg-
ular pay-offs including the Binary-option with pay-off ¢(Yr) = X[x,00)(¥7),
K > 0. On the other hand, in [6] the Ls-approximation is considered by
means of deterministic time-nets, which are not necessarily equidistant. An
approximation with respect to weighted bounded mean oscillation instead of
Ly, which gives all L,-estimates, is described in [5].
In the above papers, except in [6], uniform error-estimates of type

[Q(YT) - ]Eg(YT)] - Z Ut; 4 (}/tz - }/;ifl)

i=1

< emax|t; — t;1]", (1)
Lo ’

where the v;, are certain F;-measurable random variables, play a central
role: for ¢; := LT Zhang [13] obtains 7 = 1 in his situation and Gobet and
Temam [7] give examples for i <n< %

The present paper relates the exponent 1 from Formula (1) to equivalent
conditions on the stochastic integral representation of g(Yr), to the Sobolev
spaces D;o in the Malliavin sense, and to the corresponding Besov type
spaces [D; 2, Lo]p,co- The results can be found in Section 2 and are proved in
Section 3. Examples are given in Section 4.

1 Preliminaries

Let us start with some notation. Given an open non-empty set A C IR", we
let C°(A) be the space of all h : A — IR such that the partial derivatives
Oh of all orders (also mixed) exist on A. By C;°(A) we denote the sub-
space of h € C*(A) such that sup,., |Oh(z)| < oo for all 9. Moreover,
C*>([0,T) x R) consists of those h € C*®((0,T) x (0,00)) such that all dh



can be continuously extended to [0,7) x IR. The space C*([0,7T) x (0,00))
is defined analogously.

In this paper we assume a standard Brownian motion W = (W})scpo,1
with Wy = 0 defined on a complete probability space (€2, F,IP). From W we
generate the right-continuous filtration (F)cjo,r) such that Fy contains all
null-sets of F, where we also assume that F = Fr. Welet 0 : (0,00) - R €
C*((0,00)) and 5,5 : R — IR be functions with

~ o(e®) 00 7 [ PRY
0<e<o(x):=—=€C(R) and b(z):= —50(:5) . (2)

e
The process X = (Xt)te[O,T] is the unique strong solution of
dX, = 5(X;)dW, + b(X,)dt (3)
with Xy = x9 € R, where we assume that all paths are continuous. Letting
Y, :=e* and yo:=e™,

we get

The condition & € Cy°(IR) generates a behavior of Y = (Y});c[o,r] similar
to that of the geometric Brownian motion. The process Y is generated via
the process X since later we shall exploit the transition density of X. Our
condition on & implies that there are x, k' € (0, 00) with

lo(y)o"(y)| < £ and |o'(y)| < &'

Let f : R — IR be a Borel-measurable function such that condition (i) of
Definition 1.1 below is satisfied and fix a transition probability I' of X =
(X4t)iepo,r) like in Theorem 5.1 below. Define

F(t,z) = /IRF(T —t,x, &) f(&)d¢ for (t,z) €[0,T) xR (4)
so that F' € C* ([0,T) x R) and

OF G20°F ~OF
54-5@7%)%—0 on [0,7) x IR. (5)



The transformation into the exponential setting is done by ¢ : (0,00) — R
and G € C*([0,T) x (0,00)) with

9(y) = f(logy) and G(t,y):= F(tlogy) (6)
so that
0G o2 0°G T oG
e + S 0 and g¢(Yr)=1Eg(Yr)+ i a_y(u’Yu)dY“ a.s. (7)

by It6’s formula (where we may set (0G/0y)(T,y) := 0). The set of terminal
value functions f, we finally are going to use, is given by

Definition 1.1 Let C, be the set of all Borel measurable f : IR — R such
that the following is satisfied:

(i) There is some m € {0,1,2,...} such that for all t > 0 one has

_ . |
su]g(l + 2™ fP *7)(z) < oo with y(z) == e 2.
zc

V21t

2
fy? a"(n)G(t,n)dn| < oo.

(ii) SUD¢¢[0,1) E

Remark 1.2 In Definition 1.1 part (i) is the essential part. Part (ii) is a
convenient technical condition for us. It could be of interest to check to what
extend it can be weakened or even removed. Relevant situations, in whose
condition (ii) is satisfied, are the following.

(i) One has o(n) = n so that ¢"(n) = 0.

(ii) In case, no additional assumptions on ¢ are imposed: the map f: R —
R is locally integrable and

3
E(If)(x+W,)? < oo with (If)(€) = / @)

for all £ > 0 and z € R. The proof can be found in Lemma 5.2 below.
In particular, this condition is satisfied, if for all 8 > 0 there is some
o > 0 such that |f(z)| < e for all z € R.



Next, motivated by Formula (1), we define classes AUY of random variables
having the same approximation rate n with respect to the process Y.

Definition 1.3 (i) The set of deterministic time nets T = (t;)", with
0=t <ty < -+ < t, =T is denoted by T and equipped with
|17]|o0 := maxoci<n |ti — tiz1|-

(i) Given Z € Ly(Q, F,IP) and 7 = (t;)I-y € T we let

a®®*(Z;7) :=inf

7 —IEZ— Z'Uz'—l (Ytl - Y;ii—l)

=1

Lo

where the infimum is taken over all F;,-measurable step-functions v;.

(iii) Let A)Y, n € [0,3] be the space of all Z € Ly(Q, F,IP) such that there

12
exists a ¢ > 0 such that for all T € T one has

a”(Z;7) < clIl%.

We let ‘Z‘A%’ := inf ¢, where the infimum is taken over all ¢ > 0 such

that the above condition is satisfied. The space A,’; will be equipped with
the norm
1Z1|lay == 12z, + 2] ay-

Remark 1.4 In case Z = g(Yr) with g(y) = f(logy), f € C,, we have

a®(g(Yr); 7) ~ inf (8)

", 9G
Z —-1EZ — Z a—y(ti—la Y;fi_1) (Y;fz - Y;fi—l)
=1

Lo

with ¢ = ¢(k, k', T) according to Lemma 3.3 below. So, if one would restrict
all considerations to random variables g(Y7) the right-hand side expression
of Formula (8) could replace a°*(-, 7). However, since we consider the gen-
eral interpolation space [A‘%/, Ls)1_9p,00 in Theorem 2.1 below we have to use

a®P*(-,7) as defined in Definition 1.3.

Later the approximation spaces A%’ are described by interpolation spaces
whose definition we recall now.

Definition 1.5 Let X, and X, be Banach spaces embedded in some Haus-
dorff topological vector space.



(i) Forz € Xo+ X and X > 0 the K-functional is given by

K(.Z',/\;Xo,Xl) = 1Hf{||f130||X0 + /\”.’,El”Xl | T = X2y +CC1} .

(i) Given 6 € (0,1), we let [Xo, X1l o, e the space of all v € Xo+ X, such
that
||‘,'E||[X0;X1]9,oo = ?\ulg )‘_aK(~T7 A; Xo, Xl) < 00.
>

It follows from the definition that, for x € X and A\ € [0,00), one has that
z € [Xo, X1y, if and only if sup, MK (2, \; Xo, X1) < oo. This is the
situation we are later in. The method described in Definition 1.5 (ii) is called
real interpolation method with parameters (#, co). For more information the
reader is referred to [2] or [1].

Finally, we shortly want to recall the definition of the Malliavin Sobolev
spaces D;o. Let H = L5[0,T] and consider a centered Gaussian family
(W (h))nen with covariance structure IEW (g)W (h) = (g, h)y. We assume
that the Brownian motion W = (W})sc[o,77, used so far, is a modification of
W (x0,4)tejo,r)- The Sobolev space Dy 5 is then the closure of all

Z = a(W(h), ., W(hy)) € Lo,

where all partial derivatives of & € C*°(IR") have at most polynomial growth,
with respect to the norm

1Z1lps, = /1212, + IDZ]I74
2

with

being the Malliavin differential operator.

We conclude with some notation: given A, B,C' > 0 and ¢ > 0, the
expression A ~. B stands for %B <A<cBand A~B+t(CforB-C<
A< B+C. For ¢ € R we let £ := max {{, 0} and for a real-valued function
« defined on a subset of R, |||« := sup, |a(z)].



2 Results

Before we formulate the characterizations of Formula (1) we need

oG 0*G
K(ty):=o(y)5-(t,y) and H(t):=|0"(Y)55(tY) )
dy Oy Ly
for t € [0,T) and y > 0. In particular, one has
T
(Vi) = Bg(v) + [ K (8, Y)aw, as. (10)
0

According to Lemma 5.4 below the function H : [0,T) — [0, 00) is increasing
and continuous.

Theorem 2.1 Forn € (0,1/2] and g(y) = f(logy) with f € C, the following
assertions are equivalent:

(C2) supsep (T — ER (f(f H(u)Qdu) ' < 0.
(C3) supeory(T = )2 7 [|K (£, Vi) 1, < 0.

(C4) supieory(T = 1)27" [ D(E (9(Y) | F) )|| g < o0

with D being the Malliavin derivative. If n € (0,1/2), then the above asser-
tions are equivalent to

(C5) g(¥i) € |AY, Lo

172n,oo'
Moreover, the decomposition g(Yr) = Z3 + Z7 with

oG 1
Zé‘ =1IE (g(YT)|.7:t) + a—y(t, Y;)(YT - Y;g) fOT‘ A > T_i,

where t :=T — X\~ 2, satisfies

sup A1 ||Z3\”AY + M2z, | < oo.
A>T-1/2 L



The theorem will be proved in Section 3. Let us first shortly discuss the
equivalences above.

Interpretation and further equivalent conditions 2.2 (i) Condition
(C1) is the approximation quantity we are interested in. For example,
(Yr — K)T € AY and x(x,00)(Yr) € AY, K > 0, in the situation of
Section 4. As shown in the proof of Theorem 2.1, condition (C1) is
also equivalent to the following. There is some ¢ > 0 such that

(CY) a(g(Yr);7) <en™™ forn=1,2,... and 7, := (iT/n)l,.
That means, it is enough to check (C1) for equidistant time nets.

(ii) As shown in [6] (Remark 4.2(2)), in case Y is the geometric Brownian
motion, one has, for u € [0,T),

2

b oG oG
—(,Y,)dY, — —(u,Y,)(Y; - Y,
" ay (Ua v)d v ay (U,, u)( i u)

d2

H(U)Q— pe)

where the derivative on the right-hand side is taken in the right-hand
side sense in ¢ = u. So the expression H(u)? in (C2) corresponds
to a certain 'L,-convexity’ of the martingale (IE(g(Y7)|F%))tco,r] with
respect to the underlying diffusion (Y;)icjo77. Large values of H(u)?
correspond to a large convexity and henceforth to a bad approximation.

(iii) Conditions (C3) shows that the approximation properties of g(Yr) are
completely characterized by the asymptotics of the integrand K from
the integral representation in Formula (10). Given 6 € (0,T), condition
(C3) is also equivalent to

(C3’) supyepo,ry(T — £): 71 ||K(t,V;) — B [K(t, Y2)| Fa-so) llz. < oo,
which follows from Lemma 5.3 below, and to
(C8”) supyepory(T — )2 " | K(1,Y:) — EIK (¢, V)] |z, < oo,
because of (C3) = (C3") = (C3').
(iv) As recalled in Proposition 3.5 below, the inclusion

[A?,LQ} c AY (11)

1-2n,00

8



is true in general and demonstrates that the real interpolation method
with parameters (, 0o0) from Definition 1.5 is well adapted to the ap-
proximation spaces A}. Condition (C5) shows that one has the con-
verse to inclusion (11) in case one restricts itself to random variables
of type g(Yr).

Now we show that g(Yr) € U, an<l AY implies an approximation rate of

1/+/n after optimizing over time nets of cardinality n. Hence Theorem 2.1 is
also saying how far we are from the optimal rate if we are using equidistant
time nets instead of non-equidistant ones.

Corollary 2.3 For all g(Yr) € AY, g(exp(-)) € C,, with n € (0,1/2] there

exist time nets 7, = (™), € T such that

sup v/n a®® (g(Yr);7,) < .
n=1,2,...

Proof. From Theorem 2.1 we know that ¢(Yr) € A) implies that
t
/ H(u)du < o(T — )27
0

for t € [0,7) and some ¢ > 0. Let s, := (1 — )T, n=0,1,2,... Forn > 1
we conclude that

(T — 5,)H (57-1)* = (5 — Sp—1)H(5p-1)* < /Sn H(u)?du < c(T — s5,)*"!

and H(s, 1) < +/c(T — s,)"!. Now assume that s, ; < s < s,. We get
H(s) < H(sn) < Vo(T = saya)7 < v/eAI (T = g1

and can finish with the arguments of [6](Theorem 6.2) and Lemma 3.3 below.

O

Remark 2.4 (i) In general, that means in case that sup,c ) H(t) > 0,
the approximation rate of 1/4/n as described in Corollary 2.3 is optimal.
To see this, one can use Lemma 5.4 below to check that

n ti
i o 20, >
o<m<1.13£tn<T; /t _l(tl w)H (u)"du >

forn =1,2,... and some ¢ > 0 depending on H only, and can combine
this with Lemma 3.3 below.

3o



(ii) Recently it was shown in [8] that there is an g(Yr) € Lo, where o(y) = y
and yo = 1, such that the conclusion of Corollary 2.3 does not hold true.

To formulate relations to the Sobolev spaces we let Ly(Yr) be the subspace
of all Z € Ly(Q2, F,1IP) such that there is a ¢ : (0,00) — IR with

glexp(-)) € C;, and g¢(Yr)=Z as.
Moreover, we need
A%(YT) = A’g NLy(Yr) and Dio(Yr) := D12 N Ly(Y7).
All three subspaces are equipped with the corresponding induced norms.
Theorem 2.5 A%(YT) = D1 5(Y7).
Theorem 2.6 Forn € (0,1/2) one has

[D12(Yr), Lao(Yr)], _y, o € Ay(Yr) C [Dig, Lo, . (12)

’

Like Theorem 2.1, the statements are verified in Section 3. Comments about
finding a converse to Theorem 2.6 can be found in Remark 3.9.

3 Proofs

We start with some lemmas before proving Theorem 2.1 itself. Throughout
this section we assume that f € C, and f(x) = g(e”).

Lemma 3.1 Fizt € (0,T). Let h,®: (0,00) = IR be continuous such that

d(y) == /y %dn and I (h(Yy)? + ®(V;)?) < oo,

and define M, := IE (h(Y;) ‘ Fu) for u € [0,t]. Then, for a € [0,t) with

2 2
t—a<: andc:= ey 0N has

N

(/f ]EMfd“); ~e @) — B (@) | ), - (13)

10



Proof. (a) First we show that we can find
0<--<a<a <y<b <b<---<o0

with lim,, a,, = 0 and lim,, b, = oo such that for

B = h(1)X(n<ncpy and  ®0(y) = /
{an<n<bn} v 0(77)

one has that
lirrlthg(Kg) —h(Y3)||,, =0 and lirrlan)?L(Y}) —®(YV)||,, =0 (14)

In fact, from lim,, a,, = 0 and lim,, b,, = oo the first limit follows by monotone
convergence. The particular choice of the a,, and b, is done as follows: if there
are yo < b, 1 oo such that sup,, |®(b,)| < co we take this sequence, otherwise

bn := sup {y > 0| [®(y)| = n}.
And analogously, we take yo > a, | 0 with sup,, |®(a,)| < co or, otherwise,
a, :==inf{y > 0| |®(y)| = n}.

Since
|89(v) — e(v)|[}, =

/Y< “I’(Y;:)—(I)(an”?d]P-{-/ ‘(I)(Kt)—q’(bn)Fd]P,

Yi>bn

by bounded or monotone convergence the second part of Formula (14) follows.
Replacing the A2 by appropriate compactly supported h,, € C*((0, c0)) such
that

lim {[n (Y2) = By (Y2)|, = lim [|@a(Y3) — S1(YD)][, = 0

B, (y) == /y (1) dn,

o o(n)
where we also use the distributional properties of Y;, we see that it is sufficient
to show our assertion for h, and ®,,.

for

11



A e Cy?([0,t] x R) N C™([0,) x IR) such that
DA 529%A (A,A ) dA B (€7)
o0+ .

(b) We fix n > 1 and, applying [12](Theorem 3.2.5), find a function

%-Fgw %—0 and A(t,x)z@n(e)z

Letting B(u,y) := o(y)A(u,logy), (u,y) € [0,t] x (0,00) and

a0 o? 0?
A= 5T T oy
we obtain
0B ¢? 32B oo
— ——B=0 with B(t,y) = h,
and, by Ito’s formula,

B(u,Y,) = / (v, Y,)dY, + / “(AB)(v, Y,)dv

a

= / (v,Y,)dY, +/u WB(U,YL)CM a.s.

a
for u € [a,t]. In particular,

a"o) (Y,

ho (V) :B(a,Ya)—l—/ %f(v Y,)dY, +/ %B(U,Yv)dv as.

a

For u € [a,t] and M} := E (ha(Y;) | Fu) we conclude ( (0B/dy)(v,y) =
o' (y)A(v,logy) + (o(y)/y)(0A/0z)(v,logy) is bounded) that

Mr = B(u,Yu)+]E(/:LQ)(YZ’)B(U,K,MM}'U) a.s.

u

and

(/atlE(ME)"’du)% ~ (/t EB(u, Yu)Zdu)%i
(/at]E {]E (/t O B, ojan| fu>rdu) g

12



Moreover,

(/:]E {]E ( ut WB(U,YU)@ | fu)rdu>é
</ [/utLQ)(mB(v%)dvrdu>
(/at]E(t — u) /ut [WB(U, YU)] 2 dvdu)
3 ( / e / tB(v,K,)%du)%

< (t—a) g </at IEB(u,Yu)Qdu)% ,

( / tlE(MZf)Qduf ~e ( / t ]EB(u,Yu)2du>é _

(c) Finally, letting

Oy = [ Bt gy [ 9005 0. 0) — o (40) B0, )|

N

<

&=

N

IN

IN
o~
|
S
|

so that

o o(n) 2 Oy
for u € [0,¢] and y € (0, 00) we obtain
oC  o?0°C
Y 479 _ 0 with —
o0 T 2 op 0 with C(t,y) = Pn(y)

so that, by It6’s formula and dY; = o(Y;)dW,,

t 9C 2
" (u,Y,)dY,
o Oy (. ¥o)

B tB(u,Yu)
= ®|[ S

E (3,(Y;) — E (8,(Y) | 7))" = E

2

t
= ]E/ B(u,Y,)?du.

13



Lemma 3.2 Let D : [0,T) — [0,00) be a non-decreasing and continuous
function and 1 < r < 0o. Then the following assertions are equivalent:

(i) There exists a constant ¢y > 0 such that, for allt € [0,T),

C1

/OD(u)du < m

(i) There exists a constant co > 0 such that, for all T = (t;)-y € T, one

has
n

Z/ (t; —u)D(u)du < ¢ ||T||c1>;%'

i=1 Yti-1

(ii’) There exists a constant ¢y > 0 such that, for alln = 1,2, ..., one has

“oraT T\
E / (—T—u) D(u)du < ¢, (—) :
e AN n

. 1 .
In particular, one can take co = TGT’"lcl, chy==Cco,andc; =42rcyif 1l <r < o0
and co = c1, ¢y = ¢, and c; =4, if r = 0.

Proof. We only check the case 1 < r < oo. (i1) = (i) is trivial, so let us

SV (i - 1o T—t _ _1 2

sTtﬁrt with (i') = (i). Let £ € (0,T) and n > 2 such that - < &=f < 4= < 2
en

t vl AT An 2 T 41
D(u)du < D(u)du < — T —wu) D(u)du
RS S W S

(i) = (i1). Assume now that 0 =59 < 57 < --- < 8, =T. We get

Z;n;/s:jl(sj —u)D(u)du

Sm—1 T
< sup [s; —sj_1 / D(u)du +/ (T — u)D(u)du
0

1<j<m Sm—1

14



= sup |[s; — ;- 1|/ du—i—[ —u/D ] T
1<j<m
+/ / D(v)dvdu
Sm—1+v0
Sm—1

sup [s; — ;-1 / du—(T—sm_l)/ i D(v)dv
1<j<m 0

IN

st cLr 11
< sup |s; —sj_1] D(u)du + " (T — $m_1) 7
0

1<j<m
1

1
A T S S |
1<j<m r— 1

Now consider 7 = (t;)i., € 7. We find a sub-net (s;)7.,, 0 = s < --- <
S$m = T such that

|so—s1/ <30 and § < |s;—s;1| <3

for j = 2,...,m, where 6 := ||7|| . In case of m > 2 we get

< Z/ (u)du

o 1
= { sup [s; — 81| (T'= sm_1) 7" + (T = sm-1)' ]
1<j<m r—1

1 r 1 2r—1 1
< “ =l < =
< o [355 + ———(30) }_ 3ei—7 II7lles
For m =1 we get T < 36 and
m T T u
Z/ (u)du = / (T —u)D(u)du = D(v)dvdu
0 o Jo
T
1 3 _1
: / ———du=——T" 7 <= 7|l
0 (T — u)? r—1 r—1
and we are done. |

15



Lemma 3.3 [6] Let 0 =ty < t, < --- < t, =T be a deterministic time net.
Then, for all1 < K < L <n,

't oG
inf / ay (t Y;, dY;, g Vi—1 Y;fz Y;fz 1
i=K

CzZ/tlt— 2du
ti—1

where the infimum is taken over all F; -measurable step-functions v; and
where ¢ > 1 depends on T, k, and &' only.

Proof. We have to verify that we can apply [6] (Theorem 3.1). Let us fix
0 <a < b< T and take an F,-measurable step-function v. For ®(s,y) :=
o(y)((0G/0y)(s,y) — v) we have that

IE sup ®(u,Y,)? <2 [IE sup (aaa—G> (u,Y,) +E sup [o(Yy,)v]?

u€[a,b] u€[a,b] Y u€la,b]

according to Lemma 5.3 below and IEsup,¢1r Y,? < co. Moreover,

2

"'+ loo'| < [g—{—/{'} o

Finally, Formula (7) implies
01061, o [0G], 0 [96] _
ot Loy ] " 2 dy? [y oy Loy]
on [0,7) % (0,00) ([6] (Theorem 3.1) uses as range of definition [0,7") X IR, but

from its proof it follows that the range can be replaced by [0,7) x (0, 00)).
Now [6] (Theorem 3.1) implies

]E(/ gj(t Y,)dY; — o(Y, ) /Eoyt ( (t,Y;) — u>2dt
o (b—a)E <a(ya) (gj(a Y,) - )) + / (b— t)H(t)2dt. (15)

This can be extended to 0 < a < b < T by letting b T 7T. Consequently,

16



2
oG -
IE (/0 ay (t }/t)d}/t Zvi_l(ni - Y;fz'—1)> ~e?

i1=1
= oG i
;(ti—til)]E [a(Y}i_l) [a—y(til,n ) - H +Z/t 1 (t;—t)H (t)?dt.
Taking the infimum over the v;, we arrive at the desired result. a

Proposition 3.4 For p € [0,1/2) and § € (0,T A (2/k)) the following as-
sertions are equivalent:

1

(i) supyeo (T (fo 2du) < Q.
(ii) supeor) (T — 1) | K(t,Y:) = E (K(t,Y2) | Faspvo) |, < oo
(i) supyepo,ry (T — 8)° | K (¢, Y2)|, < o0

Proof. (ii) < (iii) follows by Lemma 5.3 below and (i) < (i) is proved as
follows: Fix t € (0,7) and let a := (¢t — 6) V 0 so that t — a < §. Define

b) =) 5o ) and @)= [ 2y

so that
B(y) = 0(77)%(@ 0|4 - oG |3+ [ " (n)G(t,m)dn.

Yo

We get IEA(Y;)? < oo and IE®(Y;)? < oo as a consequence of Lemmas 5.4
and 5.3, [|G(t,Y3)|l,, < llg(Yr)l|,,, and Definition 1.1. Moreover, we have

Kt Yy) — B (K Y2) | Fo) ||, ~ |0(Y) — E(@(Y) | Fo) [, ¢ (16)
with
Y.
= 1l0"ll 9 (¥ I, + sup / o"(m)Gu,m)dn|| < oo
u€[0,T) Y0 Lo

again by Definition 1.1. For the right-hand side of Formula (16) we obtain
t
2
o)~ E (@) | 7[5, ~,,, [ B GIE) du

17



by Lemma 3.1 with ¢(3.1) = 525. Moreover, Lemma 5.4 yields

0’G
E (h(Y;)|Fy) = O(Yu)za—yZ(u, Ya)
so that .
oY) - E (8(v) | 7)), ~e / H (u)2du
and

1

! ( /( H(u>2du)2_c < K@Y —E (K1Y | Fo-swo) |,

C(3.1) t—48)+
t 3
< con ( / H(u)?du) o
(t—0)*

which implies our assertion. O

The next proposition is standard in approximation theory. For conve-
nience of the reader we include its proof.

Proposition 3.5 Forn € (0,1/2) one has [A}//Q, Loli—ope0 C A

Proof. Assuming 7 € [A}//Q, Ls)1_9p 0o there is an ¢ > 0 and, for all A > T3,
a decomposition Z = Z} + Z; with

Zolay + M| 2, < ext™
2

Fore >0and 7= (), with 0 =ty < t; < - <t, =T and ||7]|oc = A2
we find v, ...,v}) | such that

Z(/)\ - ]EZ(;\ - Zvi)\fl (Y;fz - Y;fi—1)

=1

1
< (\ZS\A{ +€> [l
2

Lo

Hence

Z—EZ - sz‘)\fl (Y;z - }/tifl)

=1

Lo

18



~-EZ; - Zv”n Yio)|| +14 -EZ

Iz,

Lo

< (|Zé|As;+s) Irlle + 12211,
2

IN

1
12y + 12, + VT
2

A2 4+ eT
clrlz, + VT,

so that |Z|4y < c. Since [Afp, Lo|i-9p,00 C Lo is true as well, we are done.
a

IN

Proposition 3.6 Let p € (0,1/2) and

t >
c:= sup (T —t)” (/ H(u)%iu) < 00.
t€[0,T) 0

sup AWK (g(¥r), %5 AY, Ly ) < o
2

A>0

Then

Proof. Fix A > T2 and let t := T — A2 so that ¢ € [0,7). Define a
decomposition g(Yr) = Z3 + Z7 by

oG

e
Z) = Eg(Y; —(u,Y,)dY, + —(t, ) (Yr = Y,
= Bg(0) + [ S Y)Y+ )~ )

and

oG

8—y(t’ Y;f) (YT - Y;f)

0G
W:/ u,Y,)dY, —
1 ; 6y( )

For Z} we get that

T
1722z, < csa) \// (T — u)H (u)%du
t
T u
= C@33) //H(U)dedu
t Jt




IA
%)
w
&
o)
N
—
N
| | &
S
N—
N
)

[ 1
— )\2;)—1
Ci3.3) € 1-9, 2 )

where c(33) > 0 is taken from Lemma 3.3.

Now we consider Z. Let 7 = (¢;)" o beanet 0=ty <t; <---<t, =T

and let ig € {1,...,n} be such that
tio—1 <t< t’i(]'

Then one has that

206G
Z(? - IEZ(? - zzzl a—y(ti—lﬁ }/;51—1)(Y;q, - Y;i—1)
", 9G
- Z a—(ta Y;f)(Y;fz - Y;fi—l)
1=10+1 Yy Lo
G vy, —mi@(t Y, )Y — Y, )
> 0 ay y L u = ay i—1y Lt; t; ti—1
oG
_a—y(tiO*l’ Kio—l)(n - Y;«io—l) .
oG oG
| G o Yig 4= i)+ G (i), — Y0 }
io—1 ti t
< ¢33 Z / (ti — w)H (u)?du + / (t —u)H (u)?du
i—1 Yti—1 tig—1
+2 sup %(a, Y)Y, —Y,)
a<t<b<Tb—a< 7]l || OV Lo

1
< ey llTlldoc(T —2)7

+2 sup E [— a,Y, Y;L] IE (— — 1) Fal -
0<a<t<O<Tb—as 7l ( ay 1 Yo |

20



Since (T'—t)~? = A\? it is sufficient to bound the second term from above by
Vb — aA?. In fact, applying Lemma 5.5, Formula (2), and Proposition 3.4
we have

E ([%(a,n)ifarm ((% - 1>2 \ﬂ))

2
< on BT @] 0-0
< c5.) e’ IEK (a,Y,)? (b — a)

< ) 5820%3.4) (T —1t)"2 (b—a)
< C(55) 5(?20%3.4))‘411 (b —a).

Since, for A > T3,
(1l +21220,,)
< A (|Z@|A§ + 225, + g (a)llz, + HZ?HLZ)
< T |lg(¥o)ly, + (T + 1A~ ('Z(/)\|A§ +A ||Z?HL2>
we have that

sup A K (g(YT),)\;A};,Lg) < 00.

AST™ 3
On the other hand,

sup  AXK (g(YT), A;A{,Lz) < A72)lg(Ya)|L, < oo
0<A<T—1/2 2

Lemma 3.7 For c:= [||5]|co + (1/20)]e"/?* one has

IDX;||3 ~e VE a.s. for te0,T).
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Proof. Fix t € [0,T]. It is known (cf. [10], p. 107) that we can write

DX, = (DyX;)scpor in H with

DX, = 5(X,) exp ( / X)W + / lb’ ;(A')Q} (Xu)du>

for0<s<t<Tand D,X;:=0for 0 <t<s<T. Since
t t
/ o' (Xy)dW, = /(lna) (X))o (Xy)dW,

= /(lno )X, /lna X,)b(X,)du

for s € [0,t] a.s., Itd’s formula gives that

/SA' dW+/f u)du

_ (lna)(Xt)—(lnﬁ)(Xs)—%/ (575 4 58] (Xo)du

— (nB)(X,) — (n)(X,) — % / o] (V)

and |
Dth = 6(Xt)€_% fs [UU”}(Yu)du

for s € [0,t] a.s. The assertion follows from |o¢”| < k and & > gy > 0.
Lemma 3.8 Fort € [0,T) one has that
1t ¢
Z/ uH(u)du - C < ||DG(t, Vi) 2y < A/ wH (u)?du+ C
0 0

for some A, C > 0 depending at most on g, o, and T. Moreover,

T
g(Yr) € D15 if and only if / H (u)?du < oo.
0

22



Proof. Applying [10] (Lemma 1.3.4) (cf. [11]) to

G(t.Y;) = Bg(Vy) + /0 t (%—j) (u, Y,)dW, as.

gives

t
DG ¥l = 16t i) ~ By, + [
0

with

p((+29) 1) = 01 [(+2%) 1+ (o2 1]

Lemma 3.7 implies

P ((a) )],

Vu

Y, [(0'%) (u,Y,) + <a%2—f> (u,Yu)]

Moreover, |o'| < k', o(y) ~q y for some d = d(o) > 0, and

T 2 2
/ EY? [aG (u, Yu)] du < oo since / Eo(Y,)? [3G (u, Yu)] du < oo,
0 Ay Ay

€(3.7)

(17)

Lo

so that the first assertion is proved. Applying [10] (Lemma 1.3.4) directly to
Formula (7) gives the moreover-part. !

Proof of Theorem 2 1. (C1) & (C1") & (C2) Letting D(u) := H(u)? and

r € (1,00] such that 3 — o= = 7 the equivalences follow from Lemmas 3.2

and 3.3.

(C2) & (C3) follows from Proposition 3.4.

(C2) & (C4) follows from Lemma 3.8.

(C5) = (C1) follows from Proposition 3.5.

(C2) = (C5) follows from Proposition 3.6 where p+n = 3. The moreover
part is a consequence of the proof of Proposition 3.6. O

Proof of Theorem 2.5. One has to combine Lemma 3.8 and (C1) < (C2)
of Theorem 2.1. O

23



Proof of Theorem 2.6. (a) We start with the right-hand side inclusion.
Since for A € (0,7 %) we can use ||0|lp,, + Allg(Y7)||;, < cA'"" with
¢ :=T7"|lg(Yr)|l,,, we may assume A > T~'/2. Taking g(Yr) = A} + A}
with

" oG T oG
A) =TEg(Y; +/ —(s,Y,)dYs, A} = —(s,Y,)dY,,
b= a0 + [ 5L v [ Gy
and t:=T — A\"2 € [0,T), we have
sup )\Qn_lK(g(YT),)\;DLQ,LQ)
/\ZT_I/2
< AL AY Al|AT
< s N ([143]lp,, + Al4),)
< sup A (IDA g + g (Ve)la. + (1 + V1A,
AST=1/2
So it remains to show that
sup )\2"_1||DA3||L3¢ <oo and  sup A*||A}||z, < oo. (18)

A>T—1/2 A>T-1/2

We start with the left-hand side inequality. Exploiting again [10] (Lemma
1.3.4), we conclude

t
IDAYE = B4}~ BAY + [ BIDK (s, Yl ds
0
t
< BlP+ [ EIDK (5 Yl ds
0
so that it remains to check that

¢
sup )\4’72/ IE ||DK (s,Y3)|)3, ds < oc.
0

A>T —1/2

Because of Formula (17) and o(y) ~ vy, this is equivalent to

t L€ G 2
sup (T —t 1_2”/ sIE [(aa'—) s, Y) + (02—> s,Ys} ds < oo
te[og)( ) i 9 (s, Y5) o (s, Y5)
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which follows from Theorem 2.1 since |0'| < k'. So the left-hand side in-
equality of Formula (18) is verified. For the right-hand side Theorem 2.1
gives

1
r 2 _1 1. _
1Az, = (/ ||K(uaYu)||%2dU> < ) (2n) (T —1)" = ey (20)72A7.
t

(b) The left-hand side inclusion of the theorem follows from Theorem 2.5 and
the proof of Proposition 3.5. |

Remark 3.9 It would be of interest to know to what extend we have equality
for the left-hand side in Formula (12). The proof of the right-hand side
inclusion gives a decomposition g(Yr) = A + A}, however A} is not of form
90(Y7) as it would be required to get a converse to the left-hand side inclusion
of Formula (12).

4 Examples

For simplicity we restrict our-self to o(y) = y and o = 1. Let K > 0,

1 z? x>0
06(0,§>, and hg(x).—{ 0 : z<0 -

Then the following table shows that the parameter n from Theorem 2.1 may
range through the whole interval (0, 1/2]:

Case | g(y) Optimal 7 in Theorem 2.1
A | (y—K)* 1/2
B (( K)*t)? (1/4) +(6/2)
C o) (¥) 1/4
D ((T/Q) +1logy) | (1/4) —(6/2)

Case A: Using the hedging formula for the European Call Option in the
Black-Scholes model (see for example [9]), we immediately get

log % +—(T—t))
K(t,y) = yN [ 2K with N(€) : /
ty) =y ( T © =7
so that supg<;or [|[K (8 Yo, < Y7, < oc. =
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Cases B and C follow from Gobet-Temam [7] (Theorems 1 and 2) in
combination with property (C1’) from Remark 2.2.

Case D: It is sufficient to show that

lim (7 — £)2*4 | K (¢, V3)] , € (0,00).

t—T
: P Geias 0K oF
Using I'(¢, z,&) = s=€ % and K(t,Y;) = §-(t,X;) on can compute

n _22 dn
K(t,Y,)= [ hg (W +nVT —t 2
( t) /IRe( t T 7 ) T—te 5

for t € [0,7), so that

EX (t,Y;)*

5 2

1 g1 Ly _n2 dn
— T —¢)"° 2/ e 2G/(T-) [/ ho(n+ y)ne™ 2 dy.
VoA -

The assertion follows by majorized convergence since

_a2 dnp 1°
0</[/h n+y)ne 2 }dy<oo.
R L/R ol ) V2T

5 Appendix

For convenience of the reader we summarize some classical or technical facts
used throughout this paper. If nothing stated on the contrary, we shall use
the notation from Section 1. In particular, the functions F', G, and K are
defined as in formulas (4), (6), and (9) so that

K(u,e”) = G%) (u, e®) = (a‘z—i) (u, z). (19)

Theorem 5.1 ([3], [4]) There exists a function T' : (0,7] x R x R —
[0,00) € C™ such that the following is satisfied:
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(i) For (s,z,&) € (0,T] x R x IR one has

or 2o ~ dr
o200 = T (o 06 +80) 2 (s, ,0)

(i) If ()’Z})te[oﬂ is the unique strong solution of Formula (3) with Xo = z
a.s., then for s € (0,T] and B € B(IR) one has

P ()N( c B) - /Br(s,x,g)dg.

(iii) Let k € {0,1} and I,m € {0,1,2,...}. There exists a constant ¢ > 0
such that for (s,x,€) € (0,T] x R x IR one has that

OTTL 28] < es (=€) where w(n) = —e b
askaxlaé_m S,x, S CS ’YCS €T — whnere ')/t 77 = 27Tt€ .

Moreover, assuming that f : R — IR satisfies Definition 1.1 (i), we have

k+1+m k+-l+m
0 / D(s, 2,6) (€)dé = / 0" 2,001 (E)de

ozxkostoxm xkaslaxm

n (0, 7] x R for k,m € {0,1,2,...} and l € {0,1}.

Lemma 5.2 Assume that f : IR — IR is locally integrable, satisfies Defini-
tion 1.1 (i), and that

E(If)(z+W)?*<oo with (If)( / |f(n)|dn
for allt >0 and x € IR. Then f € C,.

Proof. Without loss of generality we can assume that f > 0.
(a) Observing that for all ¢, ¢ > 0 there is an ¢, € (0,¢) such that

N
[M]

xz

_z_
2 2

o~

1 1
—e —e forall se€ (0,ty] and =z ¢ |—c¢,c
ek < (0,1 ¢ [-c.d
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we get limy o IER(W;) = h(0) for a continuous A : IR — [0, 0o) with IEA(WV};) <
oo for all £ > 0. Since

sup IE(If)(x + W,)? < \/t/eIE(If)(z + W;)?

s€e,t]
for 0 < £ < t, this gives

sup E(If)(z +W,)? < oo forall t>0 and z € RR.
s€(0,t]

(b) Using that 6(z) = e ®o(e®), 0 > &9 > 0, and |00”| < k we get that
2

sup IE
tel0,T7)

/ o ()Gt m)dn

Yo

2 Y}
ﬁ) sup E / Gt
Y n

0

2 t
ﬁ) sup IE /X F(t,€)d¢

Xt
/ /I‘{ C(5.1) Vees.1y(T—1) (gl)f(gl + §)d§’d§

2
<

2

2

VAN
N 7T N N TN TN
Q=
N~
N
M w
=EN=
N
&=

2 X 2
K
< —> sy sup B [ e (€) f(E+&)dg| d¢’
€0 t€[0,T) R zo
K ? 2 ! Xett i '
= (£) Gy 5w B [ veguan(@) | [ )] ag
€0 teo,7) R zo+¢’
2
K
< 2(2) g s [B [ o @)0106+ )]
€0 t€[0,T) R
2
K
+2 _) 0?5.1) sup [/ ’y%_l)(Tt)(g')(ff)(x0+§')2d§']
€0 te0,7) L/IR
2
K
< 2(£) BN+ W)
2
K
- (s_o> G sup BUH @+ We )"
so that we are done because of step (a). O
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Lemma 5.3 For f € C, one has

(1) Esup,epy K(u,Y,)? <oo forbe0,T),
(it) supierory E|E (K(t,Y)) | Fusyvo)|” < oo for s € (0,T).
Proof. (i) We have

E sup K(u,Y,)?

u€[0,]
OF 2
< |lo zo]E sup |——(u, X,
711 s |5 X
~ or
= I sup | [ ST~ X, 9)£(6)
u€l0,b] |JIR O
~12 0%5.1)
< ol =51 8P || Ve ayr-u)(Xu = E)F(E)
u€l0,b] |[JIR
0251)
< w 7B sup [c(1+ |X,[™"
(e T—p uEOb]I( |Xu[™)[?
< o0

where we have used Definition 1.1 (i).
(ii) For 0 < ¢ < § item (i) gives

E |IE (K (t, V)| Fe-spo)|” < s EK (u,Y,)* < o0
u€|0,

Hence we assume 0 < 6 <t < 7T and s:=t—3§. We get, a.s.,

‘IE( (Xt)(ZFtXt \f)‘ = ‘/ (5X5,§d§‘

:\/Fwoﬁwwnmaamﬂ
SHﬂ|/WtHW®&@M£
ﬂw|/wwgﬂ 5&@\5
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Since for m = 0,1

o"r
ogm

we get, with d = ¢y [[57]. + /3 17| < o0,

L 5m, 5)‘ < o5 Yoy a(— )

‘/ t€ (5Xs,£d5‘

/ |Ft ) ey 0 (X — €
< / / 1, )| F(E)AE e 5(Xs — E)dE
< cond /]R /]R Yegs 11— (€ = ENF(EAE 7oy 1 5(X, — E)d
= cand | Teur-sial€ = XA

Finally,
2

E ‘/ Vees.1)(T—t+8) (€ — X)[f(&)d¢

R
< B [ ot (€~ X (€
< oo / / oo (0 = €Yoy 1120y (€ — E) F(E)dde
= 0(5.1)/IR’)/c(5_1)(T—t+<s+s)(fU0—f)f(§)2df

< o sup [ v pulan — OF()dE
u€[6,2T] JIR
< o<
O
Lemma 5.4 The process ( (Yt) (t Yt)) o) C Ly(Q, F,IP) is a mar-
telo,

tingale with respect to (Fi)scpo,r), so that the function H : [0,T) — [0, 00)
defined in Formula (9) is continuous and increasing.
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Proof. By Formula (7) we have

0 (27G) 0P (L0G)
at \7 a2 2 0y? y?

on [0,7T) x (0,00) so that ( (Yt) (t Y})) o is a local martingale. To
telo,
conclude, we show that
0°G ?
IE sup {a( ) (1, Y})] < 00
t€[0,b] 3

for all b € [0,7T). Because of Formula (6) one quickly checks that

0°G o(y)? (0*F oF
= ot | .
o (t,y) ) ( 522 (t,logy) o (t, 0gy)>

o’ ()5

In view of Lemma 5.3 it remains to verify that

R2F 2
E t, X, <
tilth Ox? ( t) >
which follows from Theorem 5.1 and Definition 1.1. O

Lemma 5.5 For 0<a<b<T andc:=2 ||6||§o 25T one has that

]E((%—l) |]-'a) < ¢(b—a) a.s.

The lemma follows by a standard computation using Gronwall’s lemma.
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