FRACTIONAL BROWNIAN MOTION AND
MARTINGALE-DIFFERENCES

ARI NIEMINEN

ABsTrACT. We generalize a result of Sottinen [6] by proving an approximation
theorem for the fractional Brownian motion, with H > 1/2, using martingale-
differences.

1. INTRODUCTION

The fractional Brownian motion is a continuous Gaussian process with station-
ary increments. It is perhaps the simplest process with a long-range dependency
property: when the so-called Hurst index, H > 1/2 the increments of the process
are positively correlated, when H < 1/2 the increments are negatively correlated
and when H = 1/2 they are uncorrelated and we have a Brownian motion. Some
studies of financial time series and telecommunication networks have shown that
this kind of process with long-range dependency - memory - might be a better
model in some cases than the traditional standard Brownian motion.

T. Sottinen [6] has shown how to approximate the fractional Brownian motion,
in case H > 1/2 by a "disturbed" random walk. In section 2 we show how to do
this by martingale-differences.

2. FRACTIONAL BROWNIAN MOTION AND MARTINGALE-DIFFERENCE

2.1. Fractional Brownian motion. We denote by (Z;):>0 a normalized frac-
tional Brownian motion (FBM) with self-similarity parameter H € (0,1). Frac-
tional Brownian motion is a continuous zero mean Gaussian process which has
stationary increments and the following covariance function

1
EZ 7, = 5(52’1’ + 128 — |5 —t2H).

We assume that Z is defined on a probability space (2, F,P). If H = % we
have the standard Brownian motion, which is denoted by W, with independent
increments. We assume that H > %, so that the increments are positively correlated
and we have the following kernel representation of Z with respect to the standard
Brownian motion (see [2] and [4])

(2.1) Zy = /Ot z(t, s)dWs,

with the deterministic kernel

H —1/2)cgs'/2~H [FyH-1/2(y — g)H-3/2¢ <t
(2.2)  z(t,s):= ( [2)ens N (u—s) u, 0<s <
0, otherwise,

where

_ 2HT(3/2 — H)
NN\ T(H+ 1202 - 2H)
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Remark 2.1. The function z is square integrable. When H > 1/2, there exists
constant My such that z(t,s) < Mys'/?>~H for all t,s € R.

2.2. Convergence to the FBM. We state here two results that are needed to
prove the Theorem 2.8. We denote by D = D(0,T) the Skorohod space of right
continuous functions on the interval [0, T], that have left-hand limits and equip D
with the following metric.

Definition 2.2. Let A := {A:[0,1] — [0,1] : A a strictly increasing and continuous
mapping of [0, 1] onto itself}. We define

d(z,y) :=inf{e > 0: I\ € A such that ||A|| < e and sup |z(t) — y(A\(t))| < e},
t

where [|A[| ;= sup,, |log w|

Under this metric D is a separable and complete metric space. For details we
refer to [1]. Let X be a random function of D, i.e. X : Q@ — D and (X™)%2, be a
sequence of random functions of D and

Tx :={te€ (0,1): P(X; # X;_) =0} U {0,1}. We denote by % the convergence
in distribution and by s the convergence in probability. By convergence in dis-
tribution we mean, that a sequence X" converges in distribution to X, if for every
bounded, continuous real function ¢ on D

E¢(X") === BE¢(X).

For details of the convergence in distribution in D we refer to [1]. The proof of the
first theorem we need can be found in [1], p.129.

Theorem 2.3. Suppose that
n n d
(Xt1>---)th) - (Xtu'--:th)
holds whenever ty,...,t, € Tx. Assume further that P{X; # X;_} =0 and that
E{|IX]" - X2 |“|X5 — X7} < [F(t2) = F(t1)]*,
forty <t<tsandn > 1, where C' >0, a > % and F' is a nondecreasing, continuous
function on [0,1]. Then
x4 x.

The second theorem we need can be found for example in [5], p. 511. Let’s
suppose that stochastic sequences are given on the probability space (Q, F, P).
We denote a sequence of martingale-differences by &" := ({P,FP), 1 < i < n,
meaning that the process £” is adapted to the filtration F where F§* = (0, Q) and
FCF/, CF. Let

[nt]
XP=> &, 0<t<T,
i=1

where X{* = 0, when |nt] = 0.
Theorem 2.4. Let t € (0,T], 07 > 0 and let the square-integrable martingale-
differences £™, n > 1, satisfy the Lindeberg condition: for € >0
[nt]
P
> E((&8) Ijer >ey | Fy) = 0.
i=1

Then
[nt] » §
S E? S0l = XS5 N0,07).

i=1
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Now we can prove, by using representation (2.1), that one can approximate
the fractional Brownian motion with martingale-differences, when H > 1/2. Let
(EM)n>1 = (&, F")n>1, © < n, be a sequence of square integrable martingale-
differences such that

(2.3) lim (&))" =1 as.

n—00 ]_/n
forall 1 <7 <n and

C
2.4 ma; < — a.s. forsomeC >1.
( ) 1<z<Xn |£ | \/ﬁ -
This kind of sequences are pretty easy to construct as we can see in the next

example.

Example 2.5. Let 51, it =1,...,n, be for all n > 1, independent random vari-
ables satisfying P(e} = 1) = P(e}} = —1) = 1/2 and define the filtration F}* :=
o(el,...,el). Let (V") be a sequence of predictable functions such that |V;*| <

C as for all i < n, and (V;")? 272%% las. foralll <i < n. Denote &r =
Vel [/n. Then the sequence (£]"),>1, @ < n, is a sequence of martingale-differences
and satisfies the conditions (2.3) and (2.4).

Denote
[nt]

=y &
=1

The following result is from [3], p. 437. This theorem states, that if we change the
condition (2.3) a bit, then the process W;* converges in distribution to a fractional
Brownian motion with H = 1/2. Thus this result is kind of an extension of the
Theorem 2.8.

Theorem 2.6. If we replace the condition (2.3) by a condition

L]
Z(fff 2%t as.,
i=1

then the process W{* converges in distribution to a Brownian motion W .

Let’s finally state a lemma that is needed for the proof of the Theorem 2.8.
Lemma 2.7. Let z and (§"),>1 be as above, H € (1/2,1) and ti,t; € [0,1]. Then

] = |nt
E / |_n i ,S) ds/ Z(M,S)d )2 2= / z(tg, s)z(t;, s)ds a.s.
i1 n

Proof. Let’s take t; = t for simplicity and prove first the case

n

(25) > /if(S)dS)Q(E"Z =2 [P s,

£ i
=1

where f is a square-integrable function such that 0 < f(s) < Ms'/>~H. Notice
that z(tg,s) < Mys'/?>~H,

Denote now
nl ‘”/ o (577

where t € (=1, 1]. Now
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G0 = /f ) (1)

and so we need to prove that

/01 gn(s)ds = ;n;nQ(/; f(s)ds)2(§l”)2 2% /01 f(s)ds as.

Now we have, for t € (&1, &

n’n

b0 <3 [ i) ey =t

and, for all » > 1, and for 0 < e < we get by using Hdélder’s inequality

H 1/2

1 n B 2(1+¢)
[ s = e Y ws ([T sy gy
0 i=1 =

n i

< M22n3(1+5)71n7(1+25)/ (1/2 H)(2(1+€))d (é-n) (1+¢)
-1

> : ;
=1 n

n i
< M2C0+e) Z/" 120 0+e) gg g,
; i1

1
< M202(1+€)/ 8(172H)(1+5)d8 < 0,
0

since (1 —2H)(1+¢) > —1. Thus (hn)p>1 is a.s. uniformly integrable and so is
(92)n>1. Furthermore, for all ¢ € (0,1]

ﬁ f(s ds 1/6\7;_)2%—@)]”2(75) a.s.,

where 7 = i(t,n), because

if(s)ds) 272 f2(t)  and (l/f_,”\/ﬁ)2n—>_oo)1 a.s.

1
/ s)ds H—°°>/ f2( a.s.
0

and we have proved (2.5). Next we will prove the original claim. Let us first denote
= % and t := % We need to show that the difference

i—1

Thus

n

Zn2(/n z(tk,s)ds/n z(tl,s)ds—/n z( Z,s)ds/n z(tf,s)ds)(f{‘)2

i=1
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tends to zero almost surely as n tends to infinity. Notice that z(tg,s) > z(t%,s)
because z is increasing with respect to the first argument. Now we obtain

i
n

0< an(/" z(tk,s)ds/n z(tl,s)ds—/n 2( ﬁ,s)ds/ ,2'(tl",s)ds)(f{‘)2
i=1 = = = =

n

= Zrﬂ(ﬁ%l 2(ty, s)ds ﬁﬁ.l (z(t,s) — z(t}, s))ds

n n

i

n
i—

— ﬁ_ (z(t7,8) — z(ti, s) + z(tl,s))ds/ . (z(tg,s) — z(tk,s))ds) (fg‘)2

<302 [T tes)ds [ (ot s) — (67, 8))ds(€D)?
=1 [7 ’ /1"1 l l
+y 0’ /7 (2t 5) — 2(t1,8) + 2(t1, 5))ds / |2(tk 5 5) — 2(tk, 5)|ds (€])?
=1 n n

i
n

< Z;nQ xi Z(tk,S)dS/ ) (Z(tl,s) — Z(tl”’s))ds(glny

i—

+y n /: |2(t7,s) — 2(t1, 5)|ds ﬁ—l |2(tk, 8) = 2(th, 5)|ds(&7)°
i=1 n

—1 i—1
n

C S0 [ atns)ds [T 12 s) — (b, 5)|ds (D).
St [ ttwsias [ 12069) - =0

From (2.2) we see that
|2(t1,8) — 2(t}, 8)| < My st/>~Hp=(H=1/2)
and the same is, of course, true for |z(tx, s) — z(t}, s)|. Now we get that

Z;nQ /i z(tk,s)ds/ . (2(t1,8) — 2(t7))ds (&)

i—

< Ml’qn—(H—l/Q)Zn2/" z(tk,s)ds/n 81/2—Hd8(€ln)2 rH_oo>0’
i=1 = !

i
i—
n

—(H—1/2) n—o0

because Mn —— 0 and

i

n i 1

E nz/ z(tk,s)ds/ s/ H gs(gn)? n_>—oo>/ 2(ty, s)sY/ > Hds < oo,
i—1 i—1

i=1 n o 0

a.s by the first part of this proof. Similarly the last two summands tend to zero
and we have the claim. O
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Denote now

t
A ::/ 2" (t, s)dW}
0

[nt]

=3 / $)dse,

where function 2" (¢,-) is an approximation of function z(t,-): for s > < and for all
te€0,T]
g t
2" (t,s) == n/ z(m,u)du
s-1 N

Theorem 2.8. If H > 1/2, then the process Z™ converges in distribution to the
fractional Brownian motion Z.

Proof.We prove the theorem by using the Theorem 2.3. First we show that the
finite-dimensional distributions of Z" converge to those of Z. We use Cramer-Wold

device and the Theorem 2.4 for that. Let a,...,a4 € R and t,...,t; € [0,T] be
arbitrary. We want to show, that the linear combination

d
"= Z Qg ZZZ
k=1
converges in distribution to a normally distributed random variable with expecta-

tion zero and variance
d 2
E( 3 ax Ztk) .
k=1

The fact that the expectation is zero is trivial.
Let us write Y as

[nT] d i Lnth
_ né! Zak/ = ,8)ds
i=1 k=1 = n
[nT]
i=1
The Lindeberg condition is satisfied if for all £ > 0 we have that
[nT]
Z E((Y")’Igjyr sy | DEN}

Let us consider the set
{IY;" > e} ={(¥{")* > °}.
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By using the Cauchy-Schwartz inequality and the facts that z is an increasing

function with respect to its first argument and decreasing with respect to the second
argument(see [2]) we have

(V)2 = n2(n)? Z / |_nth 3)2

3

d 2

< n?(€r) (];ak/ z(T,s)ds)
2(gn)? da = 722 s)ds
<€) (Lm) n/ (T, 5)d

where A := (Y4, az)? and 0" := fO% 2%(T, s)ds
So we obtain

(2.6) {1 > e} € {n(€})*As"™ > €%}
Using the inclusion (2.6) and the Cauchy-Schwartz inequality we get
E((Yin)zf{\Yi"\>s}|Fin—1)

- nzak / A0 ) B 1y oy 1)

d » 202

< (nzak/o Z(T,S)dS) —E(Iyp > 1 FL)
k=1

< C?AS"E(Ip(ery2 asn >3 | Fit 1),

where the first inequality is true almost surely. Now we are able to show that the
Lindeberg condition is satisfied:
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[nT]

ZE

"Iy r e i)
[nT|

< Z C2A5nE([{n(§in)zA5n>€2}|F ) a.s
i=1

[nT]

< C? A" Z I{CZA&TL g2} — 0
i=1
Big because 6" — 0, so we have I{¢2 45n.2) = 0 for large n
Furthermore,
[nT] LnTJ
Y=

2
nf"Zak/ ds)
i=1 i=1
[nT| d i i
_ 2(¢ny2 m Inti] m o nt]
= n* (&) Zakalﬁilz( - ,s)dsﬁi1 ( )
i=1 k=1 n n
d InT] i i
_ > Lt w ot 2
=Y aan Y [ o s [T sy
k, =1 i=1 n n
By Lemma 2.7 and the Ito-isometry
lim

[nT]

;1 awarn® 3 /

d T
= Z akal/ z(tg, s)z(t;, s)ds
k=1 0

n—o0

T T
akal/ z(tk,s)dWs/ z(t, dW)
k=1 0 0

tr ty
akal/ z(tk,s)dWs/ 2(ty, dW)
k=1 0 0

=E Z aray Zy, Zy,
k=1

d 2
- E(Zathk) .
k=1
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Now by the Theorem 2.4, the finite-dimensional distributions of Z™ converge to
those of Z.

Let s,t € [0,T], s < t, be arbitrary. By the Cauchy-Schwarz inequality, the
Ito-isometry and the fact that E§'E} = 0, when i # j, we get

[nt]
pzp -z = B(on [ () -2 gy’

i=1 o

Lnt)
<C? Z/ |_ntJ z(%,u))zdu

<o [edw -2 vy

Int] _ Lnsy "

n n

= (C?

Now for arbitrary s < ¢t < u
E\Z} - Z}||Z0 - 2P| < (B(Z) = Z3))\P(B(Z) - 7))/

H H
< 2|t lns] |\ Lm0t
= n n n n
H
< oo |lnul _ Lns) P
= n n
If u—s> 1 then
(2.7) B|Z} — 77128 — ZP| < 207 (u — 5)PH.

If on the other hand u — s < %, then either s and ¢t or ¢ and u lie in a same

subinterval [Z, Z£L) for some integer m. Thus the left-hand side of (2.7) is zero.

Therefore (2.7) holds for all s < ¢ < u and by the Theorem 2.3 Z" 4 7.0

Finally I would like to thank Esko Valkeila for suggesting the topic and for his
guidance. I would also like to thank Stefan Geiss for his guidance and for many
helpful comments.
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