
THE COMPLETE CONTINUITY PROPERTY IN BANACH
SPACES

SHANGQUAN BU AND EERO SAKSMAN

Abstract. Let X be a complex Banach space. We show that the fol-
lowing are equivalent: (i) X has the complete continuity property, (ii)
for every (or equivalently for some) 1 < p < ∞, for f ∈ hp(D, X)
and rn ↑ 1, the sequence frn is p-Pettis-Cauchy, where frn is defined
by frn(t) = f(rneit) for t ∈ [0, 2π], (iii) for every (or equivalently for
some) 1 < p < ∞, for every µ ∈ V p(X), the bounded linear opera-

tor T : Lq(0, 2π) → X defined by Tφ =
∫ 2π

0
φdµ is compact, where

1/q +1/p = 1, (iv) for every (or equivalently for some) 1 < p <∞, each
µ ∈ V p(X) has a relatively compact range.

Through this note (X, ‖ · ‖) denotes a complex Banach space, D denotes
the open unit disc in the complex plane. λ will be the normalized Lebesgue
measure on [0, 2π]. For a Banach space Y , we denote by BY the closed unit
ball of Y . Given 1 < p < ∞ we denote by hp(D, X) the space of all X-valued
harmonic functions f on D such that

‖f‖p = sup
0<r<1

(
∫ 2π

0
‖f(reit)‖pdλ(t))1/p < ∞.

h∞(D, X) will be the space of all X-valued bounded harmonic functions on
D equipped with the norm ‖f‖∞ = supz∈D ‖f(z)‖. For f ∈ hp(D, X) and
n ∈ Z, we define the Fourier coefficient f̂(n) by

f̂(n) = r−|n|
∫ 2π

0
f(reit)e−intdλ(t).

for 0 < r < 1. It is clear that f̂(n) is independent from the choice of
0 < r < 1. We let for Λ ⊂ Z and 1 < p ≤ ∞

hp
Λ(D, X) = {f ∈ hp(D, X) : f̂(n) = 0 for n /∈ Λ}.

Let B be the collection of all Borel subsets of [0, 2π]. If µ is a countably
additive X-valued measure on [0, 2π], 1 < p < ∞, we define the p-variation
of µ by
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‖µ‖p = sup(
∑
E∈π

‖µ(E)‖p

λ(E)p−1
)1/p

where the supremum is taken over all finite partition of [0, 2π], we use the
usual convention: λ/0 is 0 or ∞ provided λ = 0 or λ > 0, respectively. For
p = ∞, we let

‖µ‖∞ = inf{C ≥ 0 : ‖µ(E)‖ ≤ Cλ(E) for all E ∈ B}.
We denote by V p(X) the space of all countably additive X-valued measures
µ on [0, 2π] such that ‖µ‖p < ∞. For µ ∈ V p(X), the range of µ is defined
as the set {µ(E) : E ∈ B}. Let µ ∈ V p(X) and let n ∈ Z, the Fourier
coefficient µ̂(n) is defined by

µ̂(n) =
∫ 2π

0
e−intdµ(t).

We let
V p

Λ (X) = {µ ∈ V p(X) : µ̂(n) = 0 for n /∈ Λ}.
For 1 < p < ∞ and µ ∈ V p(X), one can give sense to

∫ 2π
0 φ(t)dµ(t)

when φ ∈ Lq(0, 2π) (first for simple functions, then extend on Lq(0, 2π) by
density), where 1/p + 1/q = 1. Furthermore we have ‖

∫ 2π
0 φdµ‖ ≤ ‖µ‖p‖φ‖q

(see [1]). In particular, for z ∈ D, z = reiθ, we can define

P (µ)(z) =
∫ 2π

0
Pr(t− θ)dµ(t),

where Pr(t) = 1−r2

1−2r cos(t)+r2 is the Poisson kernel. It is known that P (µ) ∈
hp(D, X) and, moreover, the correspondence µ 7→ P (µ) yields an isomor-
phism between V p

Λ (X) and hp
Λ(D, X) for Λ ⊂ Z (see [1, Theorem 1.1] and

[4]).
If 1 ≤ p < ∞, f ∈ Lp(0, 2π;X), the p-Pettis-norm of f is defined by

‖|f‖|p = sup
η∈BX′

(
∫ 2π

0
| < η, f(t) > |pdλ(t))1/p,

A sequence fn in Lp((0, 2π), X) is said to be p-Pettis-Cauchy, if fn is a
Cauchy sequence for the norm ‖| · ‖|p.

If Y is another Banach space, a bounded linear operator T : X → Y
is said to be completely continuous (or Dunford-Pettis) if it maps weakly
convergent sequences in X into norm convergent sequences in Y . Recall
that X is said to have the complete continuity property (CCP , in short), if
each bounded linear operator T : L1(0, 2π) → X is completely continuous
(the CCP was introduced in [8], see [6], [9] and [10] for more information
about this property). It is known [8] that every space with the weak Radon-
Nikodym property (see [7] for this notion) has the CCP . The simplest
examples of Banach spaces with the CCP are separable dual spaces, since
it is well known that they have the RNP .
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Let Λ ⊂ Z, X is said to have the type I-Λ-complete continuity property
(I-Λ-CCP , in short), if every µ ∈ V ∞

Λ (X) has a relatively compact range
[10]. X is said to have the type II-Λ-complete continuity property (II-Λ-
CCP , in short), if every µ ∈ V 1

Λ (X) which is λ-continuous, has a relatively
compact range [10]. It is clear from the definitions that type II-Λ-CCP
implies the type I-Λ-CCP , the type I-Λ-RNP (resp. II-Λ-RNP ) implies
the type I-Λ-CCP (II-Λ-CCP ) [5] [3]. The following characterization of the
type I-Λ-CCP has been given by M. A. Robdera and P. Saab [10, Theorem
3.3]. For f ∈ hp(D, X) and rn ↑ 1, we denote by frn the function in Lp(0, 2π)
defined by frn(t) = f(rneit) for t ∈ [0, 2π].

Theorem 1. Let Λ ⊂ Z. Then X has the type I-Λ-CCP if and only if for
every f ∈ h∞Λ (D, X), rn ↑ 1, the sequence frn in L∞(0, 2π;X) is 1-Pettis-
Cauchy.

We will establish the following result which is the key point for our main
result.

Theorem 2. Let Λ ⊂ Z and assume that X has the type II-Λ-CCP . Then
for 1 < p < ∞, f ∈ hp

Λ(D, X) and rn ↑ 1, the sequence frn is p-Pettis-
Cauchy.

It is well known that when Λ = Z, the type I-Λ-CCP and type II-Λ-
CCP coincide with the CCP [10]. This fact together with Theorem 1 and
Theorem 2 gives the following characterization of the CCP which is one of
the main result of this paper.

Theorem 3. X has the CCP if and only if for every (or equivalently for
some) 1 < p < ∞, f ∈ hp(D, X) and rn ↑ 1, the sequence frn is p-Pettis-
Cauchy.

Proof. The condition is clearly necessary by Theorem 2 as the type II-Z-
CCP and the CCP are equivalent. Now assume that for some 1 < p < ∞,
for every f ∈ hp(D, X) and rn ↑ 1, the sequence frn is p-Pettis-Cauchy. Then
in particular for every f ∈ h∞(D, X), rn ↑ 1, the sequence frn is p-Pettis-
Cauchy. Hence frn is 1-Pettis-Cauchy. By Theorem 1 this implies that X
has the type I-Z-CCP , i.e. the CCP . This finishes the proof. �

We should compare Theorem 3 with the following well known character-
ization of the RNP : a complex Banach space X has the RNP and only if
for every (equivalently for some) 1 < p < ∞, for every f ∈ hp(D, X) and
rn ↑ 1, the sequence frn is convergent in Lp(0, 2π;X).

In the proof of Theorem 2 we will use the following lemma.

Lemma 4. Let 1 < p < ∞ and µ ∈ V p(X). Then the range of µ is
relatively compact if and only if the operator T : Lq(0, 2π) → X defined by
Tφ =

∫ 2π
0 φ(t)dµ(t) is compact, where 1/q + 1/p = 1.

Proof. Assume first that the range of µ ∈ V p(X) is relatively compact. It
is clear that the operator T is well defined and bounded on Lq(0, 2π) [1, p.
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349]. We claim that for any ε > 0, there exists δ > 0 such that for each
φ ∈ Lq(0, 2π) satisfying λ(supp(φ)) ≤ δ with ‖φ‖q ≤ 1 we have ‖Tφ‖ ≤ ε.
Here supp(φ) = {x : φ(x) 6= 0} is the support of φ .

By [1, Proposition 1.1], there exists a positive function g ∈ Lp(0, 2π) such
that for all φ ∈ Lq(0, 2π), one has

‖
∫ 2π

0
φ(t)dµ(t)‖ ≤

∫ 2π

0
g(t)|φ(t)|dλ(t).

Therefore

‖Tφ‖ ≤
∫ 2π

0
g(t)|φ(t)|dλ(t) ≤ ‖φ‖q(

∫
supp(φ)

|g(t)|pdλ(t))1/p.

Then the claim follows easily from the absolute continuity of the Lebesgue
integrals.

Now since the range of µ is relatively compact, the set T (BL∞(0,2π)) is
also relatively compact as BL∞(0,2π) is the closed absolute convex hull of
{χA : A ∈ B}, where we denote by χA the characteristic function of A.

Let ε > 0 be fixed and let 0 < δ < 1 is the positive number according to
the claim. Let φ ∈ Lq(0, 2π) be such that ‖φ‖q ≤ 1. We let φ = φ1 + φ2,
where φ1(t) = φ(t) if |φ(t)| ≤ 1/δ and φ1(t) = 0 otherwise. Then

λ(supp(φ2))/δ ≤
∫

supp(φ2)

dλ(t)
δq

≤
∫

supp(φ2)
|φ2(t)|qdλ(t) ≤ 1.

Therefore λ(supp(φ2)) ≤ δ. One obtains that ‖Tφ2‖ ≤ ε by the claim.
Moreover Tφ1 ∈ Mδ := T (δ−1BL∞(0,2π)). Hence dist(Tφ, Mδ) ≤ ε for
all φ ∈ Lq(0, 2π) with ‖φ‖q ≤ 1. This implies that the set {Tφ : φ ∈
Lq(0, 2π), ‖φ‖q ≤ 1} is relatively compact as Mδ is relatively compact and
ε > 0 is arbitrary.

Conversely, assume that the operator T is compact. Then T (BL∞(0,2π))
is relatively compact as we have BL∞(0,2π) ⊂ BLq(0,2π). We deduce that the
range of µ being a subset of T (BL∞(0,2π)), is also relatively compact. This
finishes the proof.

�

PROOF OF THEOREM 2:

Assume that X has the type II-Λ-CCP , 1 < p < ∞, f ∈ hp
Λ(D, X)

and rn ↑ 1. For any η ∈ X ′, the function < η, f > belongs to hp
Λ(D, C).

Therefore, by the classical result, there exists fη ∈ Lp(0, 2π) with f̂η(n) = 0
for n /∈ Λ satisfying

< η, f(reiθ) >=
∫ 2π

0
Pr(θ − t)fη(t)dλ(t),

for θ ∈ [0, 2π] and 0 ≤ r < 1. Now for E ∈ B we can define µ(E) ∈ X ′′ by

< µ(E), η >=
∫

E
fη(t)dλ(t).
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Since fη(t) = limr↑1 < η, f(reit) > a.e. for t ∈ [0, 2π], we get by Fatou’s
lemma

| < µ(E), η > | ≤
∫

E
lim
r↑1

| < η, f(reit) > |dλ(t) ≤ ‖η‖ lim inf
r↑1

∫
E
‖f(reit)‖dλ(t).

It follows that

‖µ(E)‖ ≤ lim inf
r↑1

∫
E
‖f(reit)‖dλ(t).

Now let π be a finite partition of [0, 2π], so that we may estimate

∑
E∈π

‖µ(E)‖p

λ(E)p
λ(E) ≤

∑
E∈π

lim inf
r↑1

(
∫

E

‖f(reit)‖dλ(t)
λ(E)

)pλ(E)

≤
∑
E∈π

lim inf
r↑1

∫
E
‖f(reit)‖pdλ(t) ≤ lim inf

r↑1

∑
E∈π

∫
E
‖f(reit)‖pdλ(t)

= lim
r↑1

∫ 2π

0
‖f(reit)‖pdλ(t) = ‖f‖p

p < ∞

by Jensen’s inequality. Consequently µ ∈ V p(X ′′). The same proof as [1,
Theorem 1.1] shows that the range of µ is actually contained in X. It
follows easily from the definition of µ that µ̂(n) = 0 whenever n /∈ Λ, i.e.
µ ∈ V p

Λ (X).
The measure µ is λ-continuous as µ ∈ V p(X). It follows from the defi-

nition of the type II-Λ-CCP that the range of µ is relatively compact. By
Lemma 4 the operator T : Lq(0, 2π) → X defined by Tφ =

∫ 2π
0 φ(t)dµ(t) is

compact. Hence the adjoint operator T ∗ : X ′ → Lp(0, 2π) is also compact.
For η ∈ X ′ and φ ∈ Lq(0, 2π), one has

< T ∗η, φ >=< η, Tφ >=< η,

∫ 2π

0
φ(t)dµ(t) >=

∫ 2π

0
φ(t)fη(t)dλ(t).

Therefore T ∗η = fη. For each η ∈ BX′ , the function fη belongs to Lp(0, 2π),
so we can identify fη with its harmonic extension via the Poisson kernel in
D. By the classical result

lim
n,m↑∞

‖fη(rm·)− fη(rn·)‖p = 0.

We deduce that

lim
n,m↑∞

sup
η∈BX′

‖fη(rm·)− fη(rn·)‖p = 0

as the set {fη : η ∈ BX′} = T ∗(BX′) is relatively compact in Lp(0, 2π). This
completes the proof.
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From the proof of Theorem 3 and the isomorphism between hp(D, X) and
V p(X), it is clear that we have the following characterizations of the CCP .

Theorem 5. The following statements are equivalent:
(i) X has the CCP .
(ii) For every 1 < p < ∞, every µ ∈ V p(X) has a relatively compact

range.
(iii) For some 1 < p < ∞, every µ ∈ V p(X) has a relatively compact

range.
(iv) For every 1 < p < ∞, for every µ ∈ V p(X), the corresponding

operator T on Lq(0, 2π) is compact, where 1/p + 1/q = 1.
(v) For some 1 < p < ∞, for every µ ∈ V p(X), the corresponding

operator T on Lq(0, 2π) is compact, where 1/p + 1/q = 1.

Remarks: (i). It was shown in [2] that a complex Banach space X has
the type I-N-CCP (or equivalently the type II-N-CCP , called the analytic
CCP ) if and only if for each 1 ≤ p < ∞, f ∈ hp

N(D, X) and rn ↑ 1, the
sequence frn in Lp(0, 2π) is p-Pettis-Cauchy (see also [11]). One can easily
use the argument used in the proof of Theorem 3 to give another proof of
this result. We should also notice that the method used in [2] does not
work in the CCP -case. The reason is that in [2], one uses the fact that for
every f ∈ hp

N(D, X), there exist g ∈ h∞N (D, X) and h ∈ h∞N (D, C) such that
f = g/h. This is no longer true for functions in hp(D, X). One should also
compare our Theorem 2 with [10, Theorem 3.4], which deals only with the
case p = 1 and assumes that Λ is a Riesz-set.

(ii). We can also formulate a similar result as Theorem 5 for the analytic
CCP , but in this case we use µ ∈ V p

N (X) for 1 ≤ p < ∞. p = 1 is allowed
as for f ∈ h1

N(D, X), the corresponding measure µ in the proof of Theorem
2 is in V 1

N (X), hence µ is λ-continuous by the vector-valued Riesz Theorem.

Acknowledgements: The authors are most grateful to O. Blasco and J.
Diestel for many helpful discussions
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