THE COMPLETE CONTINUITY PROPERTY IN BANACH SPACES

SHANGQUAN BU AND EERO SAKSMAN

ABSTRACT. Let X be a complex Banach space. We show that the following are equivalent: (i) X has the complete continuity property, (ii) for every (or equivalently for some) $1 , for <math>f \in h^p(\mathbb{D}, X)$ and $r_n \uparrow 1$, the sequence f_{r_n} is p-Pettis-Cauchy, where f_{r_n} is defined by $f_{r_n}(t) = f(r_n e^{it})$ for $t \in [0, 2\pi]$, (iii) for every (or equivalently for some) $1 , for every <math>\mu \in V^p(X)$, the bounded linear operator $T : L^q(0, 2\pi) \to X$ defined by $T\phi = \int_0^{2\pi} \phi d\mu$ is compact, where 1/q + 1/p = 1, (iv) for every (or equivalently for some) 1 , each $<math>\mu \in V^p(X)$ has a relatively compact range.

Through this note $(X, \|\cdot\|)$ denotes a complex Banach space, \mathbb{D} denotes the open unit disc in the complex plane. λ will be the normalized Lebesgue measure on $[0, 2\pi]$. For a Banach space Y, we denote by B_Y the closed unit ball of Y. Given $1 we denote by <math>h^p(\mathbb{D}, X)$ the space of all X-valued harmonic functions f on \mathbb{D} such that

$$\|f\|_p = \sup_{0 < r < 1} (\int_0^{2\pi} \|f(re^{it})\|^p d\lambda(t))^{1/p} < \infty.$$

 $h^{\infty}(\mathbb{D}, X)$ will be the space of all X-valued bounded harmonic functions on \mathbb{D} equipped with the norm $||f||_{\infty} = \sup_{z \in \mathbb{D}} ||f(z)||$. For $f \in h^p(\mathbb{D}, X)$ and $n \in \mathbb{Z}$, we define the Fourier coefficient $\hat{f}(n)$ by

$$\hat{f}(n) = r^{-|n|} \int_0^{2\pi} f(re^{it}) e^{-int} d\lambda(t).$$

for 0 < r < 1. It is clear that $\hat{f}(n)$ is independent from the choice of 0 < r < 1. We let for $\Lambda \subset \mathbb{Z}$ and 1

$$h^p_{\Lambda}(\mathbb{D}, X) = \{ f \in h^p(\mathbb{D}, X) : \hat{f}(n) = 0 \text{ for } n \notin \Lambda \}.$$

Let \mathcal{B} be the collection of all Borel subsets of $[0, 2\pi]$. If μ is a countably additive X-valued measure on $[0, 2\pi]$, $1 , we define the p-variation of <math>\mu$ by

Date: November 26, 2002.

¹⁹⁹¹ Mathematics Subject Classification. 46B20, 46B22, 46E40 46G10.

Key words and phrases. The complete continuity property, vector-valued Hardy spaces, vector measures.

This research is supported by the NSF of China and by the Academy of Finland.

$$\|\mu\|_p = \sup(\sum_{E \in \pi} \frac{\|\mu(E)\|^p}{\lambda(E)^{p-1}})^{1/p}$$

where the supremum is taken over all finite partition of $[0, 2\pi]$, we use the usual convention: $\lambda/0$ is 0 or ∞ provided $\lambda = 0$ or $\lambda > 0$, respectively. For $p = \infty$, we let

$$\|\mu\|_{\infty} = \inf\{C \ge 0 : \|\mu(E)\| \le C\lambda(E) \text{ for all } E \in \mathcal{B}\}.$$

We denote by $V^p(X)$ the space of all countably additive X-valued measures μ on $[0, 2\pi]$ such that $\|\mu\|_p < \infty$. For $\mu \in V^p(X)$, the range of μ is defined as the set $\{\mu(E) : E \in \mathcal{B}\}$. Let $\mu \in V^p(X)$ and let $n \in \mathbb{Z}$, the Fourier coefficient $\hat{\mu}(n)$ is defined by

$$\hat{\mu}(n) = \int_0^{2\pi} e^{-int} d\mu(t)$$

We let

$$V^p_{\Lambda}(X) = \{ \mu \in V^p(X) : \hat{\mu}(n) = 0 \text{ for } n \notin \Lambda \}$$

For $1 and <math>\mu \in V^p(X)$, one can give sense to $\int_0^{2\pi} \phi(t) d\mu(t)$ when $\phi \in L^q(0, 2\pi)$ (first for simple functions, then extend on $L^q(0, 2\pi)$ by density), where 1/p + 1/q = 1. Furthermore we have $\|\int_0^{2\pi} \phi d\mu\| \leq \|\mu\|_p \|\phi\|_q$ (see [1]). In particular, for $z \in \mathbb{D}$, $z = re^{i\theta}$, we can define

$$P(\mu)(z) = \int_{0}^{2\pi} P_{r}(t-\theta) d\mu(t),$$

where $P_r(t) = \frac{1-r^2}{1-2r\cos(t)+r^2}$ is the Poisson kernel. It is known that $P(\mu) \in h^p(\mathbb{D}, X)$ and, moreover, the correspondence $\mu \mapsto P(\mu)$ yields an isomorphism between $V^p_{\Lambda}(X)$ and $h^p_{\Lambda}(\mathbb{D}, X)$ for $\Lambda \subset \mathbb{Z}$ (see [1, Theorem 1.1] and [4]).

If $1 \le p < \infty$, $f \in L^p(0, 2\pi; X)$, the *p*-Pettis-norm of *f* is defined by

$$|||f|||_p = \sup_{\eta \in B_{X'}} (\int_0^{2\pi} |<\eta, f(t)>|^p d\lambda(t))^{1/p},$$

A sequence f_n in $L^p((0, 2\pi), X)$ is said to be *p*-Pettis-Cauchy, if f_n is a Cauchy sequence for the norm $\||\cdot\||_p$.

If Y is another Banach space, a bounded linear operator $T: X \to Y$ is said to be completely continuous (or Dunford-Pettis) if it maps weakly convergent sequences in X into norm convergent sequences in Y. Recall that X is said to have the complete continuity property (CCP, in short), if each bounded linear operator $T: L^1(0, 2\pi) \to X$ is completely continuous (the CCP was introduced in [8], see [6], [9] and [10] for more information about this property). It is known [8] that every space with the weak Radon-Nikodym property (see [7] for this notion) has the CCP. The simplest examples of Banach spaces with the CCP are separable dual spaces, since it is well known that they have the RNP. Let $\Lambda \subset \mathbb{Z}$, X is said to have the type *I*- Λ -complete continuity property $(I-\Lambda-CCP, \text{ in short})$, if every $\mu \in V_{\Lambda}^{\infty}(X)$ has a relatively compact range [10]. X is said to have the type $II-\Lambda$ -complete continuity property $(II-\Lambda-CCP, \text{ in short})$, if every $\mu \in V_{\Lambda}^{1}(X)$ which is λ -continuous, has a relatively compact range [10]. It is clear from the definitions that type $II-\Lambda$ -*CCP* implies the type $I-\Lambda$ -*CCP*, the type $I-\Lambda$ -*RNP* (resp. $II-\Lambda$ -*RNP*) implies the type $I-\Lambda$ -*CCP* (II- Λ -*CCP*) [5] [3]. The following characterization of the type $I-\Lambda$ -*CCP* has been given by M. A. Robdera and P. Saab [10, Theorem 3.3]. For $f \in h^p(\mathbb{D}, X)$ and $r_n \uparrow 1$, we denote by f_{r_n} the function in $L^p(0, 2\pi)$ defined by $f_{r_n}(t) = f(r_n e^{it})$ for $t \in [0, 2\pi]$.

Theorem 1. Let $\Lambda \subset \mathbb{Z}$. Then X has the type I- Λ -CCP if and only if for every $f \in h^{\infty}_{\Lambda}(\mathbb{D}, X)$, $r_n \uparrow 1$, the sequence f_{r_n} in $L^{\infty}(0, 2\pi; X)$ is 1-Pettis-Cauchy.

We will establish the following result which is the key point for our main result.

Theorem 2. Let $\Lambda \subset \mathbb{Z}$ and assume that X has the type II- Λ -CCP. Then for $1 , <math>f \in h^p_{\Lambda}(\mathbb{D}, X)$ and $r_n \uparrow 1$, the sequence f_{r_n} is p-Pettis-Cauchy.

It is well known that when $\Lambda = \mathbb{Z}$, the type *I*- Λ -*CCP* and type *II*- Λ -*CCP* coincide with the *CCP* [10]. This fact together with Theorem 1 and Theorem 2 gives the following characterization of the *CCP* which is one of the main result of this paper.

Theorem 3. X has the CCP if and only if for every (or equivalently for some) $1 , <math>f \in h^p(\mathbb{D}, X)$ and $r_n \uparrow 1$, the sequence f_{r_n} is p-Pettis-Cauchy.

Proof. The condition is clearly necessary by Theorem 2 as the type II- \mathbb{Z} -CCP and the CCP are equivalent. Now assume that for some $1 , for every <math>f \in h^p(\mathbb{D}, X)$ and $r_n \uparrow 1$, the sequence f_{r_n} is p-Pettis-Cauchy. Then in particular for every $f \in h^{\infty}(\mathbb{D}, X)$, $r_n \uparrow 1$, the sequence f_{r_n} is p-Pettis-Cauchy. Hence f_{r_n} is 1-Pettis-Cauchy. By Theorem 1 this implies that X has the type I- \mathbb{Z} -CCP, i.e. the CCP. This finishes the proof. \Box

We should compare Theorem 3 with the following well known characterization of the RNP: a complex Banach space X has the RNP and only if for every (equivalently for some) $1 , for every <math>f \in h^p(\mathbb{D}, X)$ and $r_n \uparrow 1$, the sequence f_{r_n} is convergent in $L^p(0, 2\pi; X)$.

In the proof of Theorem 2 we will use the following lemma.

Lemma 4. Let $1 and <math>\mu \in V^p(X)$. Then the range of μ is relatively compact if and only if the operator $T : L^q(0, 2\pi) \to X$ defined by $T\phi = \int_0^{2\pi} \phi(t) d\mu(t)$ is compact, where 1/q + 1/p = 1.

Proof. Assume first that the range of $\mu \in V^p(X)$ is relatively compact. It is clear that the operator T is well defined and bounded on $L^q(0, 2\pi)$ [1, p.

349]. We claim that for any $\epsilon > 0$, there exists $\delta > 0$ such that for each $\phi \in L^q(0, 2\pi)$ satisfying $\lambda(supp(\phi)) \leq \delta$ with $\|\phi\|_q \leq 1$ we have $\|T\phi\| \leq \epsilon$. Here $supp(\phi) = \{x : \phi(x) \neq 0\}$ is the support of ϕ .

By [1, Proposition 1.1], there exists a positive function $g \in L^p(0, 2\pi)$ such that for all $\phi \in L^q(0, 2\pi)$, one has

$$\|\int_0^{2\pi} \phi(t) d\mu(t)\| \le \int_0^{2\pi} g(t) |\phi(t)| d\lambda(t).$$

Therefore

$$||T\phi|| \le \int_0^{2\pi} g(t) |\phi(t)| d\lambda(t) \le ||\phi||_q (\int_{supp(\phi)} |g(t)|^p d\lambda(t))^{1/p}.$$

Then the claim follows easily from the absolute continuity of the Lebesgue integrals.

Now since the range of μ is relatively compact, the set $T(B_{L^{\infty}(0,2\pi)})$ is also relatively compact as $B_{L^{\infty}(0,2\pi)}$ is the closed absolute convex hull of $\{\chi_A : A \in \mathcal{B}\}$, where we denote by χ_A the characteristic function of A.

Let $\epsilon > 0$ be fixed and let $0 < \delta < 1$ is the positive number according to the claim. Let $\phi \in L^q(0, 2\pi)$ be such that $\|\phi\|_q \leq 1$. We let $\phi = \phi_1 + \phi_2$, where $\phi_1(t) = \phi(t)$ if $|\phi(t)| \leq 1/\delta$ and $\phi_1(t) = 0$ otherwise. Then

$$\lambda(supp(\phi_2))/\delta \le \int_{supp(\phi_2)} \frac{d\lambda(t)}{\delta^q} \le \int_{supp(\phi_2)} |\phi_2(t)|^q d\lambda(t) \le 1.$$

Therefore $\lambda(supp(\phi_2)) \leq \delta$. One obtains that $||T\phi_2|| \leq \epsilon$ by the claim. Moreover $T\phi_1 \in M_{\delta} := T(\delta^{-1}B_{L^{\infty}(0,2\pi)})$. Hence $dist(T\phi, M_{\delta}) \leq \epsilon$ for all $\phi \in L^q(0,2\pi)$ with $||\phi||_q \leq 1$. This implies that the set $\{T\phi : \phi \in L^q(0,2\pi), ||\phi||_q \leq 1\}$ is relatively compact as M_{δ} is relatively compact and $\epsilon > 0$ is arbitrary.

Conversely, assume that the operator T is compact. Then $T(B_{L^{\infty}(0,2\pi)})$ is relatively compact as we have $B_{L^{\infty}(0,2\pi)} \subset B_{L^{q}(0,2\pi)}$. We deduce that the range of μ being a subset of $T(B_{L^{\infty}(0,2\pi)})$, is also relatively compact. This finishes the proof.

PROOF OF THEOREM 2:

Assume that X has the type II- Λ -CCP, $1 , <math>f \in h^p_{\Lambda}(\mathbb{D}, X)$ and $r_n \uparrow 1$. For any $\eta \in X'$, the function $< \eta, f >$ belongs to $h^p_{\Lambda}(\mathbb{D}, \mathbb{C})$. Therefore, by the classical result, there exists $f_{\eta} \in L^p(0, 2\pi)$ with $\hat{f}_{\eta}(n) = 0$ for $n \notin \Lambda$ satisfying

$$<\eta, f(re^{i\theta})>=\int_{0}^{2\pi}P_{r}(\theta-t)f_{\eta}(t)d\lambda(t)$$

for $\theta \in [0, 2\pi]$ and $0 \le r < 1$. Now for $E \in \mathcal{B}$ we can define $\mu(E) \in X''$ by

$$<\mu(E),\eta>=\int_E f_\eta(t)d\lambda(t).$$

Since $f_{\eta}(t) = \lim_{r \uparrow 1} < \eta, f(re^{it}) >$ a.e. for $t \in [0, 2\pi]$, we get by Fatou's lemma

$$|<\mu(E),\eta>|\leq \int_E \lim_{r\uparrow 1}|<\eta, f(re^{it})>|d\lambda(t)\leq \|\eta\|\liminf_{r\uparrow 1}\int_E \|f(re^{it})\|d\lambda(t).$$

It follows that

$$\|\mu(E)\| \le \liminf_{r \uparrow 1} \int_E \|f(re^{it})\| d\lambda(t).$$

Now let π be a finite partition of $[0, 2\pi]$, so that we may estimate

$$\begin{split} \sum_{E \in \pi} \frac{\|\mu(E)\|^p}{\lambda(E)^p} \lambda(E) &\leq \sum_{E \in \pi} \liminf_{r \uparrow 1} \left(\int_E \frac{\|f(re^{it})\| d\lambda(t)}{\lambda(E)} \right)^p \lambda(E) \\ &\leq \sum_{E \in \pi} \liminf_{r \uparrow 1} \int_E \|f(re^{it})\|^p d\lambda(t) \leq \liminf_{r \uparrow 1} \sum_{E \in \pi} \int_E \|f(re^{it})\|^p d\lambda(t) \\ &= \lim_{r \uparrow 1} \int_0^{2\pi} \|f(re^{it})\|^p d\lambda(t) = \|f\|_p^p < \infty \end{split}$$

by Jensen's inequality. Consequently $\mu \in V^p(X'')$. The same proof as [1, Theorem 1.1] shows that the range of μ is actually contained in X. It follows easily from the definition of μ that $\hat{\mu}(n) = 0$ whenever $n \notin \Lambda$, i.e. $\mu \in V^p_{\Lambda}(X)$.

The measure μ is λ -continuous as $\mu \in V^p(X)$. It follows from the definition of the type II- Λ -CCP that the range of μ is relatively compact. By Lemma 4 the operator $T : L^q(0, 2\pi) \to X$ defined by $T\phi = \int_0^{2\pi} \phi(t)d\mu(t)$ is compact. Hence the adjoint operator $T^* : X' \to L^p(0, 2\pi)$ is also compact.

For $\eta \in X'$ and $\phi \in L^q(0, 2\pi)$, one has

$$< T^*\eta, \phi> = <\eta, T\phi> = <\eta, \int_0^{2\pi} \phi(t) d\mu(t)> = \int_0^{2\pi} \phi(t) f_\eta(t) d\lambda(t).$$

Therefore $T^*\eta = f_\eta$. For each $\eta \in B_{X'}$, the function f_η belongs to $L^p(0, 2\pi)$, so we can identify f_η with its harmonic extension via the Poisson kernel in \mathbb{D} . By the classical result

$$\lim_{n,m\uparrow\infty} \|f_{\eta}(r_m\cdot) - f_{\eta}(r_n\cdot)\|_p = 0.$$

We deduce that

$$\lim_{n,m\uparrow\infty}\sup_{\eta\in B_{X'}}\|f_{\eta}(r_m\cdot)-f_{\eta}(r_n\cdot)\|_p=0$$

as the set $\{f_{\eta} : \eta \in B_{X'}\} = T^*(B_{X'})$ is relatively compact in $L^p(0, 2\pi)$. This completes the proof.

From the proof of Theorem 3 and the isomorphism between $h^p(\mathbb{D}, X)$ and $V^p(X)$, it is clear that we have the following characterizations of the *CCP*.

Theorem 5. The following statements are equivalent:

- (i) X has the CCP.
- (ii) For every $1 , every <math>\mu \in V^p(X)$ has a relatively compact range.
- (iii) For some $1 , every <math>\mu \in V^p(X)$ has a relatively compact range.
- (iv) For every $1 , for every <math>\mu \in V^p(X)$, the corresponding operator T on $L^q(0, 2\pi)$ is compact, where 1/p + 1/q = 1.
- (v) For some $1 , for every <math>\mu \in V^p(X)$, the corresponding operator T on $L^q(0, 2\pi)$ is compact, where 1/p + 1/q = 1.

Remarks: (i). It was shown in [2] that a complex Banach space X has the type I-N-CCP (or equivalently the type II-N-CCP, called the analytic CCP) if and only if for each $1 \leq p < \infty$, $f \in h^p_{\mathbb{N}}(\mathbb{D}, X)$ and $r_n \uparrow 1$, the sequence f_{r_n} in $L^p(0, 2\pi)$ is p-Pettis-Cauchy (see also [11]). One can easily use the argument used in the proof of Theorem 3 to give another proof of this result. We should also notice that the method used in [2] does not work in the CCP-case. The reason is that in [2], one uses the fact that for every $f \in h^p_{\mathbb{N}}(\mathbb{D}, X)$, there exist $g \in h^\infty_{\mathbb{N}}(\mathbb{D}, X)$ and $h \in h^\infty_{\mathbb{N}}(\mathbb{D}, \mathbb{C})$ such that f = g/h. This is no longer true for functions in $h^p(\mathbb{D}, X)$. One should also compare our Theorem 2 with [10, Theorem 3.4], which deals only with the case p = 1 and assumes that Λ is a Riesz-set.

(ii). We can also formulate a similar result as Theorem 5 for the analytic CCP, but in this case we use $\mu \in V^p_{\mathbb{N}}(X)$ for $1 \leq p < \infty$. p = 1 is allowed as for $f \in h^1_{\mathbb{N}}(\mathbb{D}, X)$, the corresponding measure μ in the proof of Theorem 2 is in $V^1_{\mathbb{N}}(X)$, hence μ is λ -continuous by the vector-valued Riesz Theorem.

Acknowledgements: The authors are most grateful to O. Blasco and J. Diestel for many helpful discussions

References

- O. Blasco, Boundary values of functions in vector-valued Hardy spaces and geometry of Banach spaces, J. Funct. Anal. 78 (1988), 346–364.
- [2] S. Bu, A note on the analytic complete continuity property, J. Math. Anal. Appl. 265 (2002), 463–467.
- [3] P. Dowling, Radon-Nikodym property associated with subsets of countable discrete abelian groups, *Trans. A.M.S.* **327** (1991), 879–890.
- [4] P. Dowling, Duality in some vector-valued function spaces, Rocky Mountain J. Math. 22 (1992), 511–518.
- [5] G. A. Edgar, Banach spaces with the analytic Radon-Nikodym property and compact abelian groups, Proc. International Conf. on Almost Everywhere Convergence in Probability and Ergodic Theory (Columbus, Ohio), 195–213, Academic Press (1989).
- [6] M. Girardi, Dunford-Pettis operators on L^1 and the complete continuity property, *Ph. D. thesis*, University of Illinois, Urbana, IL, (1990).

- [7] K. Musial, The weak Radon-Nikodým property in Banach spaces, Studia Math. 64 (1979), 151–173.
- [8] K. Musial, Martingales of Pettis integrable functions, *Measure Theory* (Oberwolfach 1979), 324–339, Springer Lecture Notes in Math. **794** (1980).
- [9] N. Randrianantoanina, Banach spaces with complete continuity properties, *Quaest. Math.* 25 (2002), 29–36.
- [10] M. A. Robdera and P. Saab, Complete continuity property of Banach spaces associated with subsets of a discrete abelian group, *Glasgow Math.* J. 43 (2001), 185–198.
- [11] M. A. Robdera and P. Saab, The analytic complete continuity property, J. Math. Anal. Appl. 252 (2000), 967–979.

Department of Mathematical Science, University of Tsinghua, Beijing 100084, China

E-mail address: sbu@math.tsinghua.edu.cn

UNIVERSITY OF JYVÄSKYLÄ, DEPARTMENT OF MATHEMATICS AND STATISTICS, P.O. BOX 35 (MAD) FIN-40014 UNIVERSITY OF JYVÄSKYLÄ, FINLAND

E-mail address: saksman@maths.jyu.fi