THE COMPLETE CONTINUITY PROPERTY IN BANACH
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ABSTRACT. Let X be a complex Banach space. We show that the fol-
lowing are equivalent: (i) X has the complete continuity property, (ii)
for every (or equivalently for some) 1 < p < oo, for f € h?(D, X)
and 7, T 1, the sequence f,, is p-Pettis-Cauchy, where f;,, is defined
by fr,(t) = f(rne™) for t € [0,27], (iii) for every (or equivalently for
some) 1 < p < oo, for every u € VP(X), the bounded linear opera-
tor T : L9(0,27) — X defined by T¢ = fohgbdu is compact, where
1/q+1/p =1, (iv) for every (or equivalently for some) 1 < p < oo, each
1 € VP(X) has a relatively compact range.

Through this note (X, || - ||) denotes a complex Banach space, D denotes
the open unit disc in the complex plane. A will be the normalized Lebesgue
measure on [0, 27]. For a Banach space Y, we denote by By the closed unit
ball of Y. Given 1 < p < oo we denote by h?(D, X)) the space of all X-valued
harmonic functions f on ID such that

27 )
191 = s ([ 17GePan®)? < oc.
0<r<1 Jo

h*>(D, X') will be the space of all X-valued bounded harmonic functions on
D equipped with the norm || f||sc = sup,¢p || f(2)||. For f € hP(D, X) and
n € Z, we define the Fourier coefficient f(n) by

27 ) )

Ffn)=r=PL[ fret)e ™ dA(t).

0
for 0 < r < 1. It is clear that f(n) is independent from the choice of
O0<r<l1 Weletfor ACZand 1 <p <o

PR (D, X) = {f € P(D, X) : f(n) =0 for n ¢ A}.

Let B be the collection of all Borel subsets of [0,2x]. If 4 is a countably
additive X-valued measure on [0,27], 1 < p < 0o, we define the p-variation
of p by
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)P
iy = sup((3 N
Eenm
where the supremum is taken over all finite partition of [0, 27|, we use the
usual convention: A/0 is 0 or oo provided A = 0 or A > 0, respectively. For
p = 00, we let

Iielloo = inf{C > 0 : |u(E)|| < CA(E) for all E € B}.

We denote by V?(X) the space of all countably additive X-valued measures
pon [0,27] such that ||pl|, < co. For p € VP(X), the range of p is defined
as the set {u(E) : E € B}. Let p € VP(X) and let n € Z, the Fourier
coefficient fi(n) is defined by

27
f(n) = /0 e~ dpu(t).

We let
V(X)) ={peVP(X):a(n)=0for n ¢ A}.

For 1 < p < oo and p € VP(X), one can give sense to f027r¢>(t)du(t)
when ¢ € L9(0,2m) (first for simple functions, then extend on L?(0,27) by
density), where 1/p+ 1/q = 1. Furthermore we have Hfo%gbduﬂ <|lllpllollq
20

(see [1]). In particular, for z € D, z = re'’, we can define

21
P = [ Pt =0)du()
where P, (t) = % is the Poisson kernel. It is known that P(u) €
hP(D, X) and, moreover, the correspondence u +— P(u) yields an isomor-
phism between VI(X) and hf (D, X) for A C Z (see [1, Theorem 1.1] and
[4]).-
If1<p<oo, feLP(0,2m;X), the p-Pettis-norm of f is defined by

2w

171l = sup ([ 1< 76) > Pax®),
neByx, JO

A sequence f,, in LP((0,27),X) is said to be p-Pettis-Cauchy, if f, is a

Cauchy sequence for the norm ||| - [||,.

If Y is another Banach space, a bounded linear operator 7' : X — Y
is said to be completely continuous (or Dunford-Pettis) if it maps weakly
convergent sequences in X into norm convergent sequences in Y. Recall
that X is said to have the complete continuity property (CCP, in short), if
each bounded linear operator T' : L'(0,27) — X is completely continuous
(the CCP was introduced in [8], see [6], [9] and [10] for more information
about this property). It is known [8] that every space with the weak Radon-
Nikodym property (see [7] for this notion) has the CCP. The simplest
examples of Banach spaces with the CCP are separable dual spaces, since
it is well known that they have the RN P.
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Let A C Z, X is said to have the type I-A-complete continuity property
(I-A-CCP, in short), if every p € VX°(X) has a relatively compact range
[10]. X is said to have the type II-A-complete continuity property (II-A-
CCP, in short), if every u € V{(X) which is A-continuous, has a relatively
compact range [10]. It is clear from the definitions that type II-A-CCP
implies the type I-A-CCP, the type I-A-RNP (resp. II-A-RN P) implies
the type I-A-CCP (II-A-CCP) [5] [3]. The following characterization of the
type I-A-CCP has been given by M. A. Robdera and P. Saab [10, Theorem
3.3]. For f € h?(D, X) and r,, T 1, we denote by f, the function in LP(0, 27)
defined by f,, (t) = f(rne®) for t € [0, 27].

Theorem 1. Let A C Z. Then X has the type I-A-CC P if and only if for
every f € h(D,X), 11, the sequence f,, in L*°(0,2m; X) is 1-Pettis-
Cauchy.

We will establish the following result which is the key point for our main
result.

Theorem 2. Let A C Z and assume that X has the type I1-A-CCP. Then
for1 < p < oo, fehi(DX)andr,T1, the sequence f,, is p-Pettis-
Cauchy.

It is well known that when A = Z, the type I-A-CCP and type I1-A-
CCP coincide with the CCP [10]. This fact together with Theorem 1 and
Theorem 2 gives the following characterization of the C'C'P which is one of
the main result of this paper.

Theorem 3. X has the CCP if and only if for every (or equivalently for
some) 1 < p < oo, fe€h’(D,X) andr,11, the sequence f,, is p-Pettis-
Cauchy.

Proof. The condition is clearly necessary by Theorem 2 as the type II-Z-
CCP and the CCP are equivalent. Now assume that for some 1 < p < o0,
for every f € h?(D, X) and r,, T 1, the sequence f,, is p-Pettis-Cauchy. Then
in particular for every f € h*°(D, X), 7, T 1, the sequence f,, is p-Pettis-
Cauchy. Hence f,, is 1-Pettis-Cauchy. By Theorem 1 this implies that X
has the type I-Z-CCP, i.e. the CCP. This finishes the proof. O

We should compare Theorem 3 with the following well known character-
ization of the RN P: a complex Banach space X has the RN P and only if
for every (equivalently for some) 1 < p < oo, for every f € hP(D, X) and
rn T 1, the sequence f,, is convergent in LP(0,2m; X).

In the proof of Theorem 2 we will use the following lemma.

Lemma 4. Let 1 < p < o0 and p € VP(X). Then the range of p is
relatively compact if and only if the operator T : L1(0,27) — X defined by

T¢ = f027r¢(t)du(t) is compact, where 1/q+1/p=1.

Proof. Assume first that the range of p € VP(X) is relatively compact. It
is clear that the operator T is well defined and bounded on L4(0,27) [1, p.
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349]. We claim that for any e > 0, there exists 6 > 0 such that for each
¢ € L1(0,2m) satisfying A(supp(¢)) < ¢ with ||¢]l; < 1 we have [|[T¢] < e.
Here supp(¢) = {z : ¢(x) # 0} is the support of ¢ .

By [1, Proposition 1.1], there exists a positive function g € LP(0, 27) such

that for all ¢ € L9(0,2m), one has

21 2
1] o®)du®)] < / g()|o(t)|dA(R).
0 0

Therefore

2
el S/O g(B)[(t)|dA(t) < ||¢Hq(/ lg(t)PAA(B)'7.

supp(e)
Then the claim follows easily from the absolute continuity of the Lebesgue
integrals.

Now since the range of p is relatively compact, the set T'(Bre(g2r)) is
also relatively compact as Bpec(g2x) is the closed absolute convex hull of
{xa : A € B}, where we denote by x4 the characteristic function of A.

Let € > 0 be fixed and let 0 < § < 1 is the positive number according to
the claim. Let ¢ € L9(0,2m) be such that ||¢|, < 1. We let ¢ = ¢1 + ¢o,
where ¢1(t) = ¢(t) if |¢(t)| < 1/6 and ¢1(t) = 0 otherwise. Then

A(supp(62)) /8 < 0 [ Jetrane <1
supp(¢2) supp(¢2)

Therefore A(supp(¢2)) < J. One obtains that ||T'¢a|| < e by the claim.
Moreover Ty € Ms := T(6 ' Brwo(gar)). Hence dist(Tp,Ms) < e for
all ¢ € L9(0,27) with [|¢||; < 1. This implies that the set {T'¢ : ¢ €
L9(0,27), ||¢|lq < 1} is relatively compact as M; is relatively compact and
€ > 0 is arbitrary.

Conversely, assume that the operator T' is compact. Then T'(Bre(o2x))
is relatively compact as we have Bros(g2x) C Bra(o,2r)- We deduce that the
range of u being a subset of T'(Bp(g2r)), is also relatively compact. This

finishes the proof.
O

PROOF OF THEOREM 2

Assume that X has the type II-A-CCP, 1 < p < oo, f € h{(D,X)
and 7, 1 1. For any n € X', the function < 7, f > belongs to hp (D, )
Therefore, by the classical result, there exists f, € LP(0,27) with fn(n)
for n ¢ A satisfying

2m
<n. (e >= [P0~ Of 0,
0
for 6 € [0,27] and 0 < r < 1. Now for F € B we can define u(E) € X" by

< jW(B),y >= /E £ (£)aA(t)
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Since f,(t) = limy41 < n, f(re') > ae. for t € [0,27], we get by Fatou’s
lemma

[ <u(B)n> < [ tm] <n ") > N0 < olltimint [ [£e]a).
ET r E
It follows that
(B < timin [ 17re)are)

Now let 7 be a finite partition of [0, 27|, so that we may estimate

(B[P o 1f (re®)1dAE)
Z W)\(E) < hmlnf(/E )\(—E) AME)

1
FEern FEern 1 )

< Y liminf / f(re®)|[PdA(t) < liminf / F(ret)|[PdX(t
];ﬂ"“ EH( )[PAA(¢) ni EZ@EII( )IPAA(t)

2
=tim |G ParG) = (7] < oo

by Jensen’s inequality. Consequently p € VP(X"”). The same proof as [1,
Theorem 1.1] shows that the range of p is actually contained in X. It
follows easily from the definition of p that fi(n) = 0 whenever n ¢ A, i.e.
pe Vi(X).

The measure p is A-continuous as p € VP(X). It follows from the defi-
nition of the type II-A-CC P that the range of u is relatively compact. By
Lemma 4 the operator T : L9(0,27) — X defined by T¢ = fo%qb(t)du(t) is
compact. Hence the adjoint operator T* : X' — LP(0,27) is also compact.

For n € X’ and ¢ € L1(0,27), one has

21 27
<T™n,¢ >=<n,To >=<n, ; o(t)du(t) >= ; O(t) fr(t)dA(L).

Therefore T*n = f,,. For each € By, the function f; belongs to L?(0,27),
so we can identify f, with its harmonic extension via the Poisson kernel in
D. By the classical result

lim ||fn(7“m) - fn(rn')Hp =0.

n,mToo

We deduce that

lim sup an(rm) - fn(rn‘)Hp =0

n,mToo nEBy

as the set {f;, : 1 € Bx/} = T*(Bx) is relatively compact in LP(0,27). This
completes the proof.
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From the proof of Theorem 3 and the isomorphism between h?(D, X') and
VP(X), it is clear that we have the following characterizations of the CCP.

Theorem 5. The following statements are equivalent:

(i) X has the CCP.

(ii) For every 1 < p < oo, every u € VP(X) has a relatively compact
range.

(iii) For some 1 < p < oo, every p € VP(X) has a relatively compact
range.

(iv) For every 1 < p < oo, for every u € VP(X), the corresponding
operator T' on L1(0,2m) is compact, where 1/p+1/q = 1.

(v) For some 1 < p < oo, for every u € VP(X), the corresponding
operator T on L9(0,27) is compact, where 1/p+1/q = 1.

Remarks: (i). It was shown in [2] that a complex Banach space X has
the type I-N-CCP (or equivalently the type II-N-C'CP, called the analytic
CCP) if and only if for each 1 < p < oo, f € (D, X) and ry, 1 1, the
sequence fr, in LP(0,2m) is p-Pettis-Cauchy (see also [11]). One can easily
use the argument used in the proof of Theorem 3 to give another proof of
this result. We should also notice that the method used in [2] does not
work in the C'CP-case. The reason is that in [2], one uses the fact that for
every f € h{(D, X), there exist g € A (D, X) and h € hY(D,C) such that
f = g/h. This is no longer true for functions in A?(D, X). One should also
compare our Theorem 2 with [10, Theorem 3.4], which deals only with the
case p = 1 and assumes that A is a Riesz-set.

(ii). We can also formulate a similar result as Theorem 5 for the analytic
CCP, but in this case we use u € V§(X) for 1 <p<oo. p=1is allowed
as for f € hi (D, X), the corresponding measure 4 in the proof of Theorem
2 is in Vi (X), hence p is A-continuous by the vector-valued Riesz Theorem.

Acknowledgements: The authors are most grateful to O. Blasco and J.
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