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Abstract
Let f be a locally homeomorphic mapping of finite distortion in

dimension larger than two. We show that when the distortion of f
satisfies a certain subexponential integrability condition, small sets are
removable. The smallness is measured by a weighted modulus.

Mathematics Subject Classification (2000): 30C65.

1 Introduction

We call a mapping f ∈ W 1,1
loc (Ω, Rn) a mapping of finite distortion if it

satisfies
|Df(x)|n ≤ K(x, f)J(x, f) a.e., (1.1)

where K(x, f) < ∞ and if also J(·, f) ∈ L1
loc(Ω). In this paper Ω ⊆ R

n is an
open and connected set. When K(·, f) ∈ L∞(Ω), f is called a mapping of
bounded distortion, or a quasiregular mapping. Quasiregular mappings have
been widely studied, see the monographs [15] and [16]. Recently there has
been an extensive study of mappings of finite distortion. It has especially
been shown that, under suitable subexponential integrability conditions on
K(·, f), many properties of quasiregular mappings still hold true. See [4],
[5], [6], [7] and [8] for some basic properties, such as continuity, discreteness,
openness and the Lusin condition. Very recently the important modulus
inequalities of quasiregular mappings were generalized to the class of map-
pings of finite distortion by Koskela and Onninen [10]. These inequalities will
be used below in order to prove a removability theorem for locally home-
omorphic mappings of finite distortion with sufficiently regular distortion
function.

Let us next describe our assumptions on K(·, f). Let Φ : [0,∞) → [0,∞)
be a strictly increasing, differentiable function. We call such functions Orlicz
functions and we make the following two assumptions:
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(Φ-1)
∫ ∞

1

Φ′(t)
t

dt = ∞,

(Φ-2) t Φ′(t) increases to infinity when t → ∞.

We shall consider mappings of finite distortion f for which there exists a Φ,
satisfying conditions (Φ-1) and (Φ-2), such that

exp(Φ(K(·, f))) ∈ L1
loc(Ω). (1.2)

This assumption has turned out to be very sharp; for any Orlicz function
that does not satisfy (Φ-1), one can construct mappings of finite distortion
satisfying (1.2) and violating all of the above-mentioned basic properties,
see [9]. One of the constructions in [9] maps B(0, 1)\{0} homeomorphically
onto an annulus, showing that this assumption is sharp also for our Theorem
1.1 below.

The size of the removable set in our theorem will be given in terms of a
weighted modulus. Recall that the (conformal) n-modulus of a path family
Γ is defined by

M(Γ) = inf
{∫

Rn

ρn(x) dx : ρ : R
n → [0,∞) is a Borel function such that

∫
γ
ρ ≥ 1 for each locally rectifiable γ ∈ Γ

}
.

We shall also use the n-modulus on spheres. If Sn−1(a, r) is a sphere, define
the n-modulus of a path family Γ on Sn−1(a, r) by

MS(Γ) = inf
{∫

S
ρn(x) dHn−1(x) : ρ : Sn−1(a, r) → [0,∞) is a Borel

function such that
∫

γ
ρ ≥ 1 for each locally rectifiable γ ∈ Γ

}
.

For a mapping of finite distortion f , define the Kn−1-modulus MKn−1(·,f)(Γ)
by

MKn−1(·,f)(Γ) = inf
{∫

Rn

ρn(x)Kn−1(x, f) dx : ρ : R
n → [0,∞) is a Borel

function such that
∫

γ
ρ ≥ 1 for each locally rectifiable γ ∈ Γ

}
.

For a set A ⊆ R
n, we denote MKn−1(·,f)(A) = MKn−1(·,f)(Γ), where Γ is the

family of all non-constant paths starting at A. Note that since K(x, f) ≥
1 for all x ∈ Ω, the inequality M(Γ) ≤ MKn−1(·,f)(Γ) always holds. In
particular, sets of zero Kn−1-modulus have zero Hausdorff dimension. On
the other hand, Theorem 5.3 in [10] shows that, under Assumption (1.2),
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singletons have zero Kn−1-modulus. Hence the removable set in Theorem
1.1 below is always non-empty.

We denote by R
n the one-point compactification of R

n, and give R
n the

spherical metric, which is the metric that makes the stereographic projection
π : R

n → Sn(en+1/2, 1/2) an isometry. We extend the definition of a map-
ping of finite distortion to R

n-valued mappings as follows: Let f : Ω → R
n

be a mapping, Ω ⊆ R
n. Then f is a mapping of finite distortion, if each

x ∈ Ω has a neighborhood U ⊆ Ω so that g ◦ fU : U → R
n is a mapping

of finite distortion for some Möbius transformation g : R
n \ {p} → R

n,
where fU is the restriction of f to U . Note that Assumption 1.2 is well-
defined for R

n-valued mappings also, since the distortion does not depend
on the Möbius transformation g. In the case of quasiregular mappings, the
R

n-valued generalizations are often called quasimeromorphic mappings. Al-
though the target space in Theorem 1.1 is R

n, we shall only use Euclidean
distances in the target side, since our considerations will be local. The com-
pactified space is needed, however, since we will compose our mapping with
Möbius transformations, which possibly map infinity to a finite point.

We are now ready to state our theorem.

Theorem 1.1. Assume n ≥ 3. Let f : Ω \ E → R
n be a locally homeomor-

phic mapping of finite distortion, and assume that E is a compact set for
which MKn−1(·,f)(E) = 0. Moreover, assume that (1.2) holds with Φ satisfy-
ing conditions (Φ-1) and (Φ-2). Then f extends to a locally homeomorphic
mapping of finite distortion f̃ : Ω → R

n satisfying (1.2).

Theorem 1.1 generalizes Dairbekov’s result for quasiregular mappings,
see [2]. Earlier related papers are [1] by Agard and Marden, and [18] by
Zorich. Our proof uses the ideas of these authors and the modulus inequal-
ities of [10].

Earlier removability results for mappings of finite distortion were proved
in [3] and [11], using different methods. In particular, it was shown in [11],
that if a given Φ does not satisfy assumption (Φ-1), then there exists a
bounded mapping f of finite distortion, defined in the punctured unit cube
Q1 \ {0}, so that f satisfies assumption (1.2) but does not extend to a
mapping of finite distortion of the unit cube satisfying (1.2).

We also have the following removability theorem: If f is as in Theorem
1.1, but not necessarily locally homeomorphic, and if f omits a set of positive
conformal modulus, then sets of zero Kn−1-modulus are removable. This is
a generalization of a theorem by Martio, Rickman and Väisälä [13], Theorem
4.1, and their proof can essentially be carried out also in our situation, if
we replace the modulus inequalities and modulus of continuity estimates
of quasiregular mappings by the corresponding ones for mappings of finite
distortion, see [10], [5].
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2 Proof of Theorem 1.1

We first observe that the main task in proving Theorem 1.1 is to prove the
existence of a locally homeomorphic extension.

Lemma 2.1. Let f and E be as in Theorem 1.1. If f has a locally homeo-
morphic extension f̃ to Ω, then f̃ is a mapping of finite distortion satisfying
(1.2).

Proof. We may assume that f̃ is R
n-valued. Since E has Hausdorff dimen-

sion zero, the coordinate functions of f̃ are absolutely continuous on al-
most every line parallel to the coordinate axis (ACL), and thus weak partial
derivatives exist. By using inequality (1.1), the subexponential integrability
of K(·, f) and Hölder’s inequality, one can see that local integrability of the
Jacobian of f̃ implies local integrability of the weak partial derivatives. So
it suffices to show that the Jacobian of f̃ is locally integrable.

Let A ⊆ Ω be a compact set. Now for the locally homeomorphic mapping
f̃ the multiplicity function N(·, A) is bounded by some M < ∞. On the
other hand, the ACL property of f̃ , together with the Lusin condition,
implies that the area formula holds, see [12], Theorem 9.2. Thus

∫
A

Jf̃ =
∫

Rn

N(y, A) dy =
∫

f(A)
N(y, A) dy ≤ M |f(A)| < ∞.

We will need the following properties of local homeomorphisms, see [14]
for proofs.

A set A ⊆ R
n is called relatively locally connected, if every point in A

has arbitrarily small neighborhoods U such that U ∩ A is connected. Note
that the punctured sphere Sn−1 \ {p} is relatively locally connected if and
only if n ≥ 3.

Lemma 2.2. Let f : G → R
n be a local homeomorphism. Let A ⊆ R

n be
simply connected and locally pathwise connected, and let P be a component of
f−1(A) such that P ⊆ G. Then f maps P homeomorphically onto A. If, in
addition, A is relatively locally connected, then f maps P homeomorphically
onto A.

Lemma 2.3. Let f : G → R
n be a local homeomorphism and let F be a

compact set in G such that f is injective in F . Then F is injective in a
neighborhood of F .

Lemma 2.4. Let f : G → R
n be a local homeomorphism, let A, B ⊆ G and

let f be homeomorphic in both A and B. If A ∩ B �= ∅ and if f(A) ∩ f(B)
is connected, then f is homeomorphic in A ∪ B.
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Proof of Theorem 1.1. By Lemma 2.1, it suffices to show that f has a locally
homeomorphic extension to Ω. Consider the minimal subset of E with the
property that f does not have a locally homeomorphic extension to any point
in that set; it is clear that the minimal set exists. Without loss of generality
we may assume that E is this set. We are going to show that, for some point
z ∈ E, f extends to a neighborhood of z as a local homeomorphism, which
forces E to be the empty set. We may assume that 0 ∈ E, B(0, 1) ⊆ Ω and
S(0, 1) ∩ E = ∅.

The following modulus inequality, which is a counterpart of the Poletsky
inequality of quasiregular mappings, is a special case of Theorem 4.1 in [10].

Lemma 2.5. Let f : Ω → R
n be a mapping of finite distortion satisfying

(1.2), with an Orlicz function Φ for which (Φ-1) and (Φ-2) hold. Let Γ be a
path family in Ω. Then

M(fΓ) ≤ MKn−1(·,f)(Γ). (2.1)

Using Lemma 2.5, we have the following modification of [1], Step 1.

Lemma 2.6. Let f and E be as above. Let a ∈ R
n, 0 ≤ r1 < r2, and

let L be a ray emanating from a. Assume that S(a, r) ∩ f(S(0, 1)) = ∅ for
all r ∈ (r1, r2). Moreover, assume that a local inverse f−1

0 of f is spec-
ified in a neighborhood U of I := {x ∈ L : |x − a| ∈ (r1, r2)}. Then,
for almost every r ∈ (r1, r2), f−1

0 can be extended from S(a, r) ∩ U to
a homeomorphism (we denote the extension also by f−1

0 ) of S(a, r) onto
f−1
0 (S(a, r)) =: S∗

r ⊆ B(0, 1) \ E. Furthermore, for each such r the follow-
ing holds: if int(f−1

0 (S∗
r )) =: B∗

r ⊆ B(0, 1) \ E, then f−1
0 can be extended

from S(a, r) to a homeomorphism of either int(S(a, r)) or ext(S(a, r)) onto
B∗

r .

Proof. For each r ∈ (r1, r2), consider the spherical caps Cs,r with center
a and radius r, opening from the unique point kr in S(a, r) ∩ I, with the
opening angle s. Let t(r) be the supremum of those opening angles s for
which f−1

0 extends from U ∩ Cs,r to Cs,r as a homeomorphism. Now, by
Lemma 2.2, either f−1

0 extends to Ct(r),r as a homeomorphism, or

∂f−1
0 (Ct(r),r) ∩ E �= ∅.

Note that we assumed S(a, r) ∩ f(S(0, 1)) = ∅. Lemma 2.3 now implies
that in the former case t(r) = π, and hence by Lemma 2.2, f−1

0 extends
to a homeomorphism of S(a, r) in the former case. In the latter case there
exists y(r) ∈ ∂Ct(r),r such that every path γ in Ct(r),r connecting kr to y(r)
has a lift γ′ so that |γ′| ∩ E. To show this, consider for a y ∈ ∂Ct(r),r a
path γ connecting kr to y on the cap. Then for the unique lift γ′ of γ,
y′ ∈ |γ′| for a point y′ in ∂f−1

0 (Ct(r),r). Now, if y′ ∈ Ω \ E, then f is a local
homeomorphism mapping a neighborhood of y′ onto a neighborhood of y.
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Moreover, by Lemma 2.4, the inverse around y is an extension of f−1
0 . If

this happens for all points on the boundary of the cap, then f−1
0 extends to

the boundary as a homeomorphism, which is a contradiction by Lemma 2.3
and the maximality of the homeomorphic extension.

We want to show that the set of the radii for which the latter case applies
has linear measure zero. Denote this set by A. For r ∈ A, let Γr be the set
of all paths joining kr to y(r) in Ct(r),r. Then by [17], Theorem 10.2,

MS(Γr) ≥
Cn

r
. (2.2)

If we denote Γ =
⋃

r∈A Γr, then (2.2) gives

M(Γ) ≥ Cn

∫
A

1
r

dr. (2.3)

We assumed that each path in Γ has a lift ending at some point of E.
Thus there exists a path family Γ′ such that f(Γ′) = Γ and Γ′ ⊆ Γ∗ = {γ :
γ is a path ending at E}. Since MKn−1(·,f)(Γ∗) = 0, we have by Lemma 2.5
and inequality (2.3),

Cn

∫
A

1
r
≤ M(Γ) ≤ MKn−1(·,f)(Γ

′) ≤ MKn−1(·,f)(Γ
∗) = 0,

and thus |A| = 0 as desired.
The latter claim of the lemma is proved by the same argument as in [1],

page 458.

By composing f with a Möbius transformation if necessary, we may
assume that there exists a sequence (xn) in B(0, 1) \ E such that xn → 0
and yn = f(xn) → 0. We may also assume that 0 /∈ f(S(0, 1)) and that
|yn| < d(0, f(S(0, 1))) for all n. Now, for each n, there exists a neighborhood
Un of yn such that Un ⊆ B(0, d(0, f(S(0, 1)))) and that the local inverse f−1

n

of f , determined by f−1
n (yn) = xn, is a homeomorphism of Un onto some U ′

n

containing xn. We may also assume that supx∈U ′
n
|x| → 0.

Let Ln be a ray starting at 0 and passing through yn. Lemma 2.6 then
implies that there exists a sphere Sn = S(0, rn) intersecting Un so that
S′

n = f−1
n (Sn) is a topological sphere in B(0, 1) \ E, intersecting U ′

n. As
previously, we denote the extension of the local inverse also by f−1

n . Note
that rn → 0.

Denote B∗
n = int(S′

n). Let us first assume that for some index n,

B∗
n ∩ E �= ∅. (2.4)

For each q ∈ Sn, consider the line segment Ls
q = {tq : t ∈ (s, 1]}. Define Lq

to be the maximal Ls
q for which f−1

n is a homeomorphism from Lq onto the
lift L′

q which starts at f−1
n (q). Since S′

n ⊆ B(0, 1) and Bn ∩ f(S(0, 1)) =
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∅ (Bn = B(0, rn)), it follows from Lemma 2.2 that for all the Lq:s that
do not reach the origin, the lift L′

q must end at some point in E. Since
MKn−1(·,f)(E) = 0, inequality (2.1) implies that, for almost all q ∈ Sn, Lq

reaches the origin. Denote the set of these q:s by Z and fix one q ∈ Z.
Now we apply Lemma 2.6 again in order to show that, for almost all

points p in Lq with respect to the Hausdorff 1-measure, the mapping f has
an inverse from Sp = S(0, |p|) onto some S′

p ⊆ B(0, 1). Denote the set of
those p by T . Lemma 2.4 now implies that if we denote

W =
(
∪q∈Z Lq

) ⋃ (
∪p∈T Sp

)

and
W ′ =

(
∪q∈Z L′

q

) ⋃ (
∪p∈T S′

p

)
,

then in fact f−1
n : W → W ′ is a homeomorphism. We claim that f−1

n

actually extends to a homeomorphism of Bn \ {0}. To prove the claim, we
modify part of the proof of Lemma 2.2 given in [14].

Since Z ⊆ Sn and T ⊆ Lq are dense, W is relatively locally connected.
Let y ∈ W . We want to show that there exists a limit f−1

n (y). Choose
neighborhoods V1 ⊇ V2 ⊇ . . . so that ∩∞

1 Vi = {y} and Vi ∩ W is connected
for all i. Then also f−1

n (Vi ∩ W ) is connected for all i, and

(f−1
n (Vi ∩ W ))i

is a nested sequence of connected compact sets. Thus

Y =
∞⋂
i=1

f−1
n (Vi ∩ W )

is connected and nonempty. On the other hand, Y ⊆ f{−1}(y)∪E. Since f
is discrete and E has zero Hausdorff dimension, it follows that Y is a point.
This proves the claim.

Now the boundary of f−1
n (Bn \ {0}) has two components. Since f−1

n

is a homeomorphism in Bn \ {0}, one of the components has the property
that for every path γ in Bn \ {0} ending at the origin, the lift γ′ ends at
this component. Since E has Hausdorff dimension zero, the local homeo-
morphism property of f is then violated on points of this component, unless
the component is a point. Recall that f−1

n (Bn \ {0}) ⊂ B(0, 1). Thus f−1
n

extends to a homeomorphism of Bn, and f−1
n (Bn) = B∗

n. This contradicts
(2.4), unless E is empty.

Let us then assume that for all spheres Sn,

B∗
n ∩ E = ∅.

Then by Lemma 2.6, f−1
n extends, for all n, to a homeomorphism of either

B(0, rn) = Bn onto B∗
n, or R

n \ Bn onto B∗
n. By taking a subsequence, we

7



may assume that the same case occurs for all n. The two cases are similar,
and thus we will only consider the former.

Let tn be the supremum of numbers s ≥ rn with the property that f−1
n

has a homeomorphic extension to Bs = B(0, s), mapping into B(0, 1) \ E.
We then claim that tn < ∞ and that f−1

n has an extension to Btn , mapping
into B(0, 1) \ E, so that f−1

n (Stn) intersects S(0, 1).
To prove the first part of the claim, we assume that tn = ∞. We have

shown above that a local inverse of f , mapping from a punctured ball,
extends to the whole ball. The same argument shows that f−1

n has a limit at
∞, and thus f−1

n extends to a homeomorphism mapping R
n into B(0, 1)\E,

which is topologically impossible. Thus tn < ∞.
To prove the second part of the claim, set S∗

tn = f−1
n (Stn) and assume

that f−1
n does not extend to Btn . It follows that there exist points z0 ∈

E and y0 ∈ Stn , and a sequence (yη) ⊆ B(0, tn) such that yη → y0 and
f−1

n (yη) → z0. As previously, we find a sequence of spheres S(y0, tη) = Sη

intersecting a small neighborhood of yη, so that the spheres shrink to y0

and f−1
n extends to Btn ∪ Sη as a homeomorphism. We may assume that

E ∩ int(f−1
n (Sη)) = ∅, otherwise the case (2.4) applies. By Lemma 2.6,

f−1
n extends as a homeomorphism mapping either int(Sη) or ext(Sη) onto

int(f−1
n (Sη)). The former case is not possible, however, since f−1

n (yη) →
z0 ∈ E. Thus f−1

n maps ext(Sη) ∪ Btn into B(0, 1) \ E. Letting η → ∞, we
see that f−1

n extends to a homeomorphism mapping R
n\{y0} into B(0, 1)\E,

and further, f−1
n also has a limit at y0. This is topologically impossible. We

have shown that f−1
n extends to Btn , mapping into B(0, 1) \ E. By the

definition and the finiteness of tn and Lemma 2.3, it follows that f−1
n (Stn)

intersects S(0, 1). Thus the other part of the claim holds true.
We have constructed a sequence of balls Btn so that f−1

n (Btn) = S∗
tn

intersects S(0, 1) and f−1
n is a homeomorphism mapping Btn onto B

∗
tn =

int(S∗
tn) ∪ S∗

tn . Now, if two B
∗
tn :s intersect, they have to be identical, which

is seen as follows. By construction, the mappings f−1
n for n ∈ N are different

branches of f{−1}, defined at balls centered at the origin. Then, if two B
∗
tn :s

intersect, Lemma 2.4 implies that there exists an inverse defined in their
union, which is a contradiction. Recall that f−1

n was determined by the
requirement f−1

n (yn) = xn and that each S∗
n = f−1

n (Sn) passes through a
neighborhood U ′

n of xn which tends to zero as n → ∞. Since S∗
n ⊆ B

∗
tn , we

conclude that B∗
tm ∩B∗

tn = ∅ for infinitely many indices, and we may assume
this to be true for all of them.

We may also assume that there exists a sequence (x′
n) such that x′

n ∈
S∗

tn ∩ S(0, 1) and x′
n → x′

0 ∈ S(0, 1). Recall that S(0, 1) ∩ E = ∅. Therefore
f(x′

n) → f(x′
0) =: y′0. The requirement f−1

0 (y′0) = x′
0 uniquely determines a

local inverse f−1
0 of f in a neighborhood U of y′0. Now U ∩ Stn �= ∅ for all

n > N , when N is big enough. Hence for all n > N , f−1
n is by Lemma 2.4

an extension of f−1
0 , which is a contradiction. This proves the theorem.
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