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Abstract. We give a negative answer to a conjecture of J. E. Shapiro concerning
compactness of the di�erence of two composition operators acting on the Hardy
space H2. This is done by providing an example of composition operators Cφ1

and Cφ2 such that their di�erence is non-compact on H2, but the singular parts
of the Aleksandrov measures of the inducing maps φ1 and φ2 agree at each point
α ∈ ∂D. Here D stands for the unit disc of the complex plane and φ1, φ2 : D→ D
are holomorphic.

1. Introduction

Let D be the unit disc of the complex plane and φ : D → D a holomorphic

map. The classical Littlewood subordination principle guarantees that the equation

Cφf = f ◦φ always de�nes a bounded linear operator Cφ on the Hardy spaces Hp for

0 < p <∞. During the past few decades a considerable amount of research has been

done with the goal of explaining the operator-theoretic properties of Cφ in terms of

the function-theoretic properties of the inducing map φ.

The compactness of Cφ was �rst described by J. H. Shapiro [S]. He considered the

Nevanlinna counting function for φ, which is de�ned as Nφ(w) =
∑

φ(z)=w log(1/|z|),
and obtained the general expression

‖Cφ‖2
e = lim sup

|w|→1−

Nφ(w)
log(1/|w|)

for the essential norm (i.e. the distance, in the operator norm, from the space of

compact operators) of Cφ acting on H2. In particular, Cφ is compact on H2 if and

only if Nφ(w) = o(log(1/|w|)) as |w| → 1−. It was previously known (see [ST]) that

if Cφ is compact on Hp for some p, then it is compact on Hp for all p.

Another solution to the compactness problem can be given by means of the positive

measures τα that are de�ned on the unit circle ∂D by the Poisson representation

(1) Re
α+ φ(z)
α− φ(z)

=
∫

∂D
P (z, ζ) dτα(ζ)

for each α ∈ ∂D. These measures are often called the Aleksandrov measures of φ

because A. B. Aleksandrov [A] used them to analyse the boundary values of inner

functions. In [CM] Cima and Matheson showed that the essential norm of Cφ on H2

can also be expressed as

‖Cφ‖2
e = sup

α∈∂D
‖σα‖,
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where σα is the singular part of τα. In particular, it follows that Cφ is compact on

the Hardy spaces Hp if and only if all the measures τα are absolutely continuous.

An implicit form of this last statement was already obtained by Sarason [Sa] and

Shapiro and Sundberg [SS1], who considered Cφ as an operator acting on the spaces

M and L1 of complex Borel measures and integrable functions on ∂D and showed

that the compactness and weak compactness of Cφ on these spaces are equivalent to

compactness on Hp.

The natural problem of characterizing the compactness of the di�erence of two

composition operators has also been studied. This question �rst arose in the works of

MacCluer [M] and Shapiro and Sundberg [SS2], which deal with connectivity prop-

erties of the set of composition operators. It was later studied by J. E. Shapiro [Sh]

in terms of the Aleksandrov measures of the inducing maps. To be speci�c, let

φ1, φ2 : D → D be two holomorphic maps and let σi
α stand for the singular part of

the Aleksandrov measure of φi at point α ∈ ∂D. Shapiro proved that a necessary

condition for the di�erence Cφ1 − Cφ2 to be compact on H2 is that

(2) σ1
α = σ2

α for all α ∈ ∂D,

and he conjectured [Sh, Conjecture 5.4] that this condition is also su�cient.

The main result of this note is a negative answer to Shapiro's conjecture.

Theorem 1. There exist two holomorphic maps φ1, φ2 : D → D such that their

Aleksandrov measures satisfy (2), but the di�erence Cφ1−Cφ2 is non-compact on Hp

for all p ∈ [1,∞).

It may be of interest to note that our proof shows that the maps φ1 and φ2

can actually be chosen univalent. In addition, it turns out that the corresponding

composition operators have equally interesting properties on the non-re�exive spaces

H1, L1 and M .

Theorem 2. Let φ1, φ2 be the maps provided by the proof of Theorem 1 so that they

satisfy condition (2). Then the operator Cφ1 − Cφ2 is not weakly compact on any of

the spaces H1, L1 and M .

2. Proof of Theorems 1 and 2

We will make use of the following well-known estimate for the norm of a function

f ∈ H2:

‖f‖2
H2 − |f(0)|2 ∼

∫
D
|f ′(z)|2(1− |z|) dA(z),

where A denotes the planar Lebesgue measure, normalized so that the area of the

unit disc is 1. The abbreviation a ∼ b entails the existence of positive constants C1

and C2 so that always C1a ≤ b ≤ C2a. In fact, a precise identity rather than just an

equivalent expression for the H2 norm can be obtained by replacing the weight 1−|z|
by 2 log(1/|z|). The resulting identity is known as the Littlewood-Paley identity.

If φ : D → D is a univalent map, we may perform a change of variables in the

above integral to get

(3) ‖Cφf‖2
H2 − |f(φ(0))|2 ∼

∫
φ(D)

|f ′(w)|2(1− |φ−1(w)|) dA(w).

The following simple estimate will be instrumental to our work.



DIFFERENCE OF COMPOSITION OPERATORS 3

Lemma 1. Let φ : D → D be univalent with φ(0) = 0, and assume that B is an open

disc of radius 3
4 contained in φ(D). Then, for all f ∈ H2,

‖Cφf‖2
H2 ≥ c

∫
B
|f ′(w)|2 dist(w, ∂B) dA(w),

where c > 0 is a constant independent of φ, B and f .

Proof. Let ψ be a conformal map taking D onto B with ψ(0) = 0. Applying the

Schwarz lemma to the map φ−1 ◦ ψ one sees that |φ−1(w)| ≤ |ψ−1(w)| for w ∈ B.

Moreover, since ψ is a Möbius transformation and dist(0, ∂B) ≥ 1
4 , it is not di�cult

to show that 1 − |ψ−1(w)| ≥ c′ dist(w, ∂B) where c′ > 0 is an absolute constant.

Thus 1− |φ−1(w)| ≥ c′ dist(w, ∂B) for w ∈ B, and the lemma follows from (3). �

We will next de�ne the maps φ1, φ2 we need for the proof of Theorems 1 and 2.

Let us �rst introduce for s ∈ [0, 1
4) and θ ∈ (−π

2 ,
π
2 ) the notation

A(θ, s) = B((1
4 − s)eiθ, 3

4),

so that A(θ, s) is an open disc contained in D with radius 3
4 . Its distance to ∂D

equals s, the nearest point on ∂D being eiθ. We also let

Ω1 = A(0, 0) ∪
∞⋃

k=2

A( 1
k ,

1
k9 ),

and

Ω2 = A(0, 0) ∪
∞⋃

k=2

A(− 1
k ,

1
k9 ).

It is now easy to check that Ω1 and Ω2 are simply connected Jordan domains (in fact,

they are starlike with respect to all points near origin as unions of domains having

the same property) and touch the unit circle only at the point 1. Moreover, they are

obtained from each other by re�ection with respect to the real axis. Finally we let

φi be the conformal map taking D onto Ωi and satisfying φi(0) = 0 and φi(1) = 1 for

i = 1, 2. Here and elsewhere we consider φi as extended to a homeomorphism from

D onto Ωi.

We start the analysis of the maps φ1 and φ2 by determining the singular parts of

the corresponding Aleksandrov measures.

Lemma 2. Let σi
α stand for the singular part of the Aleksandrov measure of φi at

the boundary point α ∈ ∂D for i = 1, 2. Then σ1
α = σ2

α = 0 for all α 6= 1 and

σ1
1 = σ2

1 = γδ1 with γ > 0. In particular, σ1
α = σ2

α for all α ∈ ∂D.

Proof. Observe �rst that σi
α = 0 for all α 6= 1 because Ωi ∩ ∂D = {1} and hence for

these values of α the function (1) is bounded on D. Moreover, σi
1 must be a multiple

of δ1 since in the case α = 1 the function (1) is continuous on D \ {1}. At this stage
the symmetry of φ1 and φ2 (observe that φ1(z) = φ2(z)) guarantees that σ1

1 = σ2
1.

That σ1
1 6= 0 can now be deduced from the fact that the composition operator Cφ1

is non-compact (which is a consequence of the next lemma). �

In the following we will work with the normalized reproducing kernel functions

fa ∈ H2, de�ned for a ∈ D by

fa(z) =

√
1− |a|2
1− az

.
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An easy computation with power series shows that ‖fa‖H2 = 1. The importance of

the functions fa to the compactness problem stems from the fact that fa → 0 weakly

in H2 as |a| → 1−.

Lemma 3. Let εk = 1
k9 and ak = (1−εk)ei/k for k = 2, 3, . . .. Then ‖Cφ1fak

‖H2 ≥ c1
for all k and some constant c1 > 0, whereas limk→∞‖Cφ2fak

‖H2 = 0.

Proof. We �rst apply Lemma 1 to estimate

‖Cφ1fak
‖2

H2 ≥ c

∫
A(1/k,εk)

|f ′ak
(w)|2 dist(w, ∂A( 1

k , εk)) dA(w)

= c

∫
A(0,εk)

|f ′rk
(w)|2 dist(w, ∂A(0, εk)) dA(w),

where rk = |ak| = 1 − εk. Write Gk = B(1 − 3εk, εk) ⊂ A(0, εk). Easy estimates

show that |1− rkw| ≤ 5εk and dist(w, ∂A(0, εk)) ≥ εk for w ∈ Gk. Consequently, for

w ∈ Gk,

|f ′rk
(w)|2 =

r2k(1− r2k)
|1− rkw|4

≥
r2k(1− r2k)

(5εk)4
≥ c′

ε3k
,

where c′ > 0 is a constant. Thus, by restricting the integration above over the set

Gk only, we obtain

‖Cφ1fak
‖2

H2 ≥ c
c′

ε3k
εkA(Gk) = cc′.

We next deduce from (3) the estimate

‖Cφ2fak
‖2

H2 ≤ |fak
(0)|2 + c

∫
Ω2

|f ′ak
(w)|2 dA(w).

Clearly |fak
(0)|2 = 1− |ak|2 → 0 as k →∞. To estimate the above integral, we �rst

observe that by the de�nition of the domain Ω2 one obtains

dist(1/ak, ∂Ω2) ≥ dist(ei/k, ∂A(0, 0)) = |ei/k − 1
4 | −

3
4 ≥

1
16k2

.

Hence, if w ∈ Ω2, we see that

|f ′ak
(w)|2 =

1− |ak|2

|ak|2|1/ak − w|4
≤ 2εk

(1
2)2(1/16k2)4

= 219k8εk = 219/k,

and it follows that
∫
Ω2
|f ′ak

|2 dA→ 0 as k →∞. This completes the proof. �

Proof of Theorem 1. Let φ1, φ2 and fak
be as in the above lemma. By Lemma 2

the singular parts of the Aleksandrov measures of φ1 and φ2 coincide at each point

of ∂D. We �rst show that Cφ1 − Cφ2 is non-compact on H2. For that end, observe

that the sequence (fak
) tends to zero weakly in H2 since |ak| → 1 as k →∞. Hence

it is enough to verify that the sequence (Cφ1fak
−Cφ2fak

) is not null in norm. This

is however an immediate consequence of Lemma 3. This yields the claim for p = 2.
In order to treat the other values of p we use interpolation. Note that we may

assume p > 1 since the case p = 1 is contained in Theorem 2. Assume �rst that

p ∈ (1, 2) and put T = Cφ1 − Cφ2 . Also assume, to reach a contradiction, that

T : Hp → Hp is compact. Recall that for q ∈ (1,∞) the Riesz projection, de�ned

in terms of Fourier coe�cients as Rf(z) =
∑∞

n=0 f̂(n)zn, yields a bounded linear

projection R : Lq → Hq, where Lq = Lq(∂D). Let us consider the map T̃ = TR,

and observe that T : Hq → Hq is compact if and only if T̃ : Lq → Lq is. In the

present situation T̃ : Lp → Lp is compact and T̃ : Lp′ → Lp′
is bounded when
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p′ = p/(p− 1) is the dual exponent. As p < 2 < p′, we obtain by interpolation (see

e.g. [BS, Theorem 2.9, Chapter 3]) that T̃ : L2 → L2 is compact, which contradicts

the �rst part of the proof and hence shows that T : Hp → Hp is non-compact. The

case p ∈ (2,∞) is analogous.

Proof of Theorem 2. Since H1 can be regarded as a subspace of L1 and M , it is

enough to show that Cφ1 − Cφ2 is not weakly compact as an operator on H1. For

this purpose we consider the functions gk = f2
ak

where ak are as in Lemma 3. Then

‖gk‖H1 = 1 for all k, and since ‖Cφ2gk‖H1 = ‖Cφ2fak
‖2

H2 → 0 as k → ∞, it is

enough to show that the set {Cφ1gk} is not relatively weakly compact in H1. By

the classical Dunford-Pettis theorem (see e.g. [W, III.C.12]) this amounts to showing

that this set is not uniformly integrable on ∂D.
For k ≥ 2 de�ne Bk = B(1/ak, 1/k4). A simple computation shows that the discs

Bk are disjoint, and for w /∈ Bk we also have the estimate

|gk(w)| = 1− |ak|2

|ak|2|1/ak − w|2
≤ 2/k9

(1
2)2(1/k4)2

=
8
k
.

Now let Sk = {ζ ∈ ∂D : φ1(ζ) ∈ Bk} and denote by m the normalized Lebesgue

measure on ∂D. The preceding estimate yields that∫
Sk

|Cφ1gk| dm = ‖Cφ1fak
‖2

H2 −
∫

∂D\Sk

|Cφ1gk| dm ≥ c21 − 8/k,

where c1 > 0 is the constant obtained in Lemma 3. Since the sets Sk are disjoint, it

follows that {Cφ1gk} is not uniformly integrable, and the proof is complete.
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