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Abstract

We establish a radius of injectivity for locally homeomorphic map-
pings of finite distortion in space, under minimal integrability assump-
tions on the distortion.

1 Introduction

We call a mapping f ∈ W 1,1
loc (Ω, Rn) a mapping of finite distortion if it

satisfies
|Df(x)|n ≤ K(x)J(x, f) a.e.,

where K(x) < ∞, and if also J(·, f) ∈ L1
loc(Ω). We further say that f

has bounded distortion if K ∈ L∞(Ω). Mappings of bounded distortion are
also called quasiregular mappings. This class of mappings can be thought
of as a generalization of analytic functions and they share many of the
nice properties of analytic functions. Recently it has been observed (cf.
[3], [4]) that topological conclusions such as discreteness and openness hold
even when the boundedness of the distortion is replaced with a suitable
integrability condition. Let us consider an increasing, differentiable function
Φ. The following conditions have turned out to be useful. We require that

(Φ-1)
∫ ∞

1

Φ′(t)
t

dt = ∞,

(Φ-2) lim
t→∞

t Φ′(t) = ∞,
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and assume that exp
(
Φ(K)

)
∈ L1(Ω).

In this note we establish a sharp result on the injectivity radius of a
locally homeomorphic mapping of finite, suitably integrable distortion. Let
us recall the ’classical’ results. Zorich proved in [10] that each locally home-
omorphic mapping f : R

n → R
n, n ≥ 3, of bounded distortion is in fact

globally injective and onto. Martio, Rickman and Väisälä [6] (also see [1])
improved this to a local statement: if f is locally homeomorphic in B(0, 1),
then f is injective in B(0, δ), where δ = δ(n, ||K||L∞) > 0. The assumption
n ≥ 3 is essential, as is seen by considering the (rescaling of) locally injective
analytic function f(z) = ez.

Theorem 1.1. Let n ≥ 3. Let f : B(0, 1) → R
n be a mapping of finite

distortion such that f is a local homeomorphism and

exp
(
Φ(K)

)
∈ L1(B(0, 1)),

where Φ satisfies (Φ-1) and (Φ-2). Then there exists a constant δ > 0 that
depends on n, Φ, || exp(Φ(K))||L1 such that f is injective in the ball B(0, δ).
Moreover, given any increasing, differentiable Φ for which the integral at
(Φ-1) converges, there is a constant M so that, for any δ > 0, there is a
locally homeomorphic mapping f : B(0, 1) → R

n of finite distortion that
satisfies ∫

B(0,1)
exp

(
Φ(K)

)
≤ M,

and that fails to be injective in the ball B(0, δ).

A simple rescaling argument and Theorem 1.1 show that, when f :
B(x, r) → R

n, we obtain injectivity in B(x, δr), where δ now depends on
the integral average |B(x, r)|−1

∫
B(x,r) exp

(
Φ(K)). Regarding the example

referred to above, Perović [7] has shown that a bound on the integral av-
erages of Kn−1 is not sufficient for a bound on the injectivity radius even
when K is bounded.

Our proof of Theorem 1.1 is based on the following ingredients. The
method we use is a modification of the original proof by Zorich [10] and its
improved version in [6]. We employ the recently established modulus in-
equalities (cf. [5]) as a substitute for the usual Poletsky inequality. Because
our distortion is not bounded, the Zorich argument needs to be adapted to
our situation and our adaptation in fact appears to be slightly simpler than
the proofs given in [1], [6], [8]. The example referred to in Theorem 1.1 is
obtained as follows. We first map B(0, 1) essentially to B(0, 2) so that the
image of B(0, δ) is B(0, 1). Let us call this mapping f1. Our actual mapping
will be f = f3 ◦ f2 ◦ f1, where f3 is the Zorich exponential mapping and f2

is a suitable quasiconformal mapping.
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2 Properties of local homeomorphisms

In this short section, we list, for the convenience of the reader, the known
properties of local homeomorphisms that we will need in the proof of our
main theorem.

Let A ⊆ R
n. Then A is relatively locally connected if for every x ∈

A there exist arbitrarily small neighborhoods U of x such that U ∩ A is
connected.

Lemma 2.1. [8, III 3.1] Let f : G → R
n be a local homeomorphism. Let

A ⊆ R
n be simply connected and locally pathwise connected, and let P be a

component of f{−1}A such that P ⊆ G. Then f maps P homeomorphically
onto A. If, in addition, A is relatively locally connected, then f maps P
homeomorphically onto A.

We will also employ the following two lemmas.

Lemma 2.2. [8, III 3.2] Let f : G → R
n be a local homeomorphism and let

F be a compact set in G such that f is injective in F . Then F is injective
in a neighborhood of F .

Lemma 2.3. [8, III 3.3] Let f : G → R
n be a local homeomorphism, let

A, B ⊆ G and let f be homeomorphic in both A and B. If A∩B �= ∅ and if
fA ∩ fB is connected, then f is homeomorphic in A ∪ B.

3 Proof of the main theorem

The following simple geometric result turns out to be valuable; for a related
argument see [9, Thm 11.7].

Lemma 3.1. Let n ≥ 1 and r > 0. Let a �= b, a, b ∈ Sn−1(0, r). Then there
exists a point p = p(a, b) ∈ B(0, r) such that for every t ∈

(
r
2 ,

√
3r
2

)
either

0, b ∈ B(p, t) and a /∈ B(p, t)

or
a, b ∈ B(p, t) and 0 /∈ B(p, t).

Proof. Write ∠(0, b
2 , a) for the angle at the point b/2 formed by the line

segments from 0 to b/2 and from b/2 to a. We have two cases.
1. ∠(0, b

2 , a) ∈ [0, π
2 ). Then, for every t > r

2 , 0 and b ∈ B( b
2 , t). Moreover,

for every t ≤
√

3r
2 , a /∈ B( b

2 , t).
2. ∠(0, b

2 , a) ∈ [π
2 , π). Then, for every t > |a−b|

2 , a and b ∈ B(a+b
2 , t).

Moreover, for every t < |a+b|
2 , 0 /∈ B(a+b

2 , t). On the other hand, |a−b|
2 ≤ r

2

and |a+b|
2 ≥

√
3r
2 .
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We will also employ two modulus estimates from [5]. The first one is a
substitute for the Poletsky inequality for quasiregular mappings.

Lemma 3.2. Let fbe as in Theorem 1.1. Let Γ be a path family in B(0, 1).
Then

M(fΓ) ≤ MKn−1(·,f)(Γ). (3.1)

Here M is the usual n-modulus defined by

M(Γ) = inf
{∫

Rn

ρn(x) dx : ρ : R
n → [0,∞) is a Borel function such that∫

γ
ρ ≥ 1 for each γ ∈ Γ

}

and MKn−1(·,f)(Γ) is defined by

MKn−1(·,f)(Γ) = inf
{∫

Rn

ρn(x)Kn−1(x) dx : ρ : R
n → [0,∞) is a Borel

function such that
∫

γ
ρ ≥ 1 for each γ ∈ Γ

}
.

Lemma 3.3. Suppose that I =
∫
B(0,1) exp(Φ(K)) < ∞. Let 0 < 4r < R < 1.

Then there exist C1, C2 > 0 depending on n, Φ and I such that

MKn−1(·,f)(Γ) ≤ C1

(∫ R/2

2r

ds

sΦ−1 (log(C2s−n))

)1−n

,

where Γ is the family of all curves connecting B(0, r) and R
n \ B(0, R).

Proof of Theorem 1.1. We may assume f(0) = 0. Let r0 = sup{r : U(0, r) ⊆
B(0, 1)} where U(0, r) is the 0-component of f{−1}B(0, r). Fix r < r0 and
set U = U(0, r),

l∗ = l∗(0, r) = inf{|z| : z ∈ ∂U}, and
L∗ = L∗(0, r) = sup{|z| : z ∈ ∂U}.

By Lemma 2.1, f maps U homeomorphically onto B(0, r). Thus f is injec-
tive in B(0, l∗) and it suffices to find a lower bound for l∗. Note that L∗ → 1
as r → r0.
Pick x and y ∈ ∂U such that |x| = L∗ and |y| = l∗. Note that, by the
definition of U , f(x), f(y) ∈ Sn−1(0, r). By Lemma 3.1 there exists a point
p ∈ B(0, r) such that, for every t ∈ ( r

2 ,
√

3r
2 ), f(x) ∈ B(p, t) and either 0 or

f(y) ∈ B(p, t) but not both. Fix such a t. Since f(B(0, l∗)) is connected,
there exists a point zt ∈ Sn−1(p, t)∩ f(B(0, l∗)). Let z∗t be the unique point
in f{−1}(zt)∩B(0, l∗). Let Ct(φ) ⊆ Sn−1(p, t) be the spherical cap with cen-
ter zt and opening angle φ. Let φt be the supremum of all φ:s for which the
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z∗t -component of f{−1}Ct(φ) gets mapped homeomorphically onto Ct(φ).
Let Ct = Ct(φt), and let C∗

t be the z∗t -component of f{−1}Ct. We claim
that C∗

t meets Sn−1(0, L∗). Suppose this is not true. Then C∗
t ⊆ B(0, L∗).

By Lemma 2.1, f maps C
∗
t homeomorphically onto Ct. By Lemma 2.2

f is injective in a neighborhood of C
∗
t . Thus φt = π, Ct = Sn−1(p, t)

and C∗
t is a topological (n − 1)-sphere. Now there is a unique point q in

f{−1}(p) ∩ U . Clearly f maps the q-component of R
n \ C∗

t onto B(p, t). By
Lemmas 2.3 and 2.1, f is injective in the union of this q-component and U .
But f(x) ∈ B(p, t), so the q-component must include a point of f{−1}(f(x)),
which contradicts the injectivity, because x ∈ U . Hence the claim is true.

Let k∗
t be a point in C∗

t ∩ Sn−1(0, L∗) and kt = f(k∗
t ). Let Γ′

t be the
family of all curves connecting kt and zt in Ct. Moreover, let Γ′ be the union
of the curve families Γ′

t, t ∈ ( r
2 ,

√
3r
2 ). Denote by ft the restriction of f to

C∗
t . Then ft maps C∗

t homeomorphically onto Ct. Furthermore, denote

Γ =
⋃

t∈( r
2
,
√

3r
2

)

{
f−1

t ◦ γ : γ ∈ Γ′
t

}
.

Since for every t ∈ ( r
2 ,

√
3r
2 ), z∗t ∈ B(0, l∗) and k∗

t ∈ Sn−1(0, L∗), Lemma 3.3
gives

MKn−1(·,f)(Γ) ≤ C1

(∫ L∗/2

2l∗

ds

sΦ−1 (log(C2s−n))

)1−n

.

On the other hand, by [9], Theorem 10.2,∫
Sn−1(p,t)

ρn(x) dmn−1(x) ≥ Cn

t

for every ρ for which
∫
γ ρ ≥ 1 for every γ ∈ Γ′

t. Thus integration over t
yields

M(Γ′) ≥ Cn.

So, using Lemma 3.2 and letting r tend to r0, we have

Cn ≤ C1

(∫ 1/2

2l∗

ds

sΦ−1 (log(C2s−n))

)1−n

. (3.2)

By change of variables and the condition (Φ-1), we have∫ 1/2

0

ds

sΦ−1 (log(C2s−n))
=

1
n

∫ ∞

C
1
n
2 exp( 1

n
Φ( 1

2
))

Φ′(t)
t

dt = ∞,

and hence the right hand side of (3.2) tends to zero as l∗ → 0. So there
is a δ = δ(n, Φ, I) > 0 such that l∗ > δ. This proves the first part of the
theorem.
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Suppose then that we are given a function Φ for which the integral at
(Φ-1) converges. Assume, without loss of generality, that Φ is unbounded.
Let 0 < δ < 1 be small. Set

f1(x) =
x

|x| ρ(|x|)

for x ∈ B(0, 1), where

ρ(r) = exp
(
λ

∫ ∞

Φ−1(log e
r
)

Φ′(s)
s

ds
)

when δ < r < 1 and

ρ(r) =
r

δ
exp

(
λ

∫ ∞

Φ−1(log e
δ
)

Φ′(s)
s

ds
)

when 0 ≤ r ≤ δ. Then f1 is a homeomorphic mapping of finite distortion
and, given M > 1, one can choose λ so that∫

B(0,1)
exp

(
Φ(MK1)

)
≤ I < ∞,

where K1 is the distortion of f1 and I is independent of δ; for this compu-
tation see [4]. Moreover, f1 maps B(0, 1) \ B(0, δ) onto an annular region
Aδ whose inner radius tends to 1 when δ tends to zero and whose outer
radius is fixed. Furthermore, f1(B(0, 1)) is a ball. Thus there is a univer-
sal constant K2 so that we can find a K2-quasiconformal mapping f2 so
that f2(f1(B(0, 1))) is an ellipsoid that does not contain any point whose
n − 1 first coordinates are integers and so that both (1/2, · · · , 1/2) and
(5/2, 1/2, · · · , 1/2) are contained in f2(f1(B(0, δ))). Let f3 be the Zorich
exponential map that is of bounded distortion K3, see [2], [8]. The branch
set of f3 then consists of those points whose n − 1 first coordinates are
integers. So f2(f1(B(0, 1))) does not contain any points of the branch
set of f3 and thus f = f3 ◦ f2 ◦ f1 is a local homeomorphism. Because
f3(1/2, · · · , 1/2) = f3(5/2, 1/2, · · · , 1/2), our mapping f is not injective in
B(0, δ). However, f is of finite distortion MK1, where M = K2K3, and the
claim follows.
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