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Abstract. In this note we construct new examples of quasiconvex
functions defined on the set S

n×n of symmetric matrices. They are
built on the k-th elementary symmetric function of the eigenvalues,
k = 1, 2, ..., n. The idea is motivated by Šverák’s paper [S]. The
proof of our result relies on the theory of the so-called k-Hessian
equations, which have been intensively studied recently, see [CNS],
[T], [TW1], [TW2].

1. Introduction

The purpose of this note is to bring together the theory of k-Hessian
equations with that of quasiconvex functions and Gradient Young mea-
sures. Quasiconvexity has turned out to be the right notion to charac-
terize the lower semicontinuity of functionals in the vectorial calculus
of variations [M]. Unfortunately, it is very hard to check if a function is
quasiconvex or not from its definition, cf (2.1). In [B], Ball introduced
the notion of polyconvexity which in particular implies quasiconvexity.
However the reverse implication is not true and often polyconvexity is
too general. Therefore there is a pressing need for quasiconvex func-
tions which are not polyconvex.

In [S], Šverák constructed examples of quasiconvex functions re-
stricted to symmetric matrices by truncating the determinant. These
examples have turned out to be very useful in a number of different
problems where polyconvexity did not suffice , e.g [D], [DKMS], [K],
[MüS],[S].

Motivated by [S], we provide more quasiconvex functions by trun-
cating the sum of the k × k principal minors. To state the definition,
we briefly introduce the Hessian equations. Caffareli, Nirenberg and
Spruck considered in [CNS] a class of nonlinear second order elliptic
equations, and obtained the classical existence result. The operators
they considered are defined by certain smooth symmetric functions of
the eigenvalues of the Hessian matrices. A prime example of these
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operators is the so called k-Hessian operator, which has been exten-
sively studied recently, see [T], [TW1], [TW2], [TW3] and the refer-
ences therein. Let Ω ⊂ Rn be an open set. For k = 1, 2, ..., n and a
function u ∈ C2(Ω), the k-Hessian operator is defined by

Fk(u) = Sk(λ(D2u)),

where D2u denotes the Hessian matrix of the second derivatives of u,
λ(A) = (λ1, λ2, ..., λn) the vector of eigenvalues of an n × n matrix A
and Sk(λ) the k-th elementary symmetric function on Rn, given by

Sk(λ) =
∑

i1<...<ik

λi1 ...λik

Alternatively, we may write

Fk(u) = [D2u]k,

where [A]k denotes the sum of the k × k principal minors of an n ×
n matrix A ∈ M

n×n. We notice that F1(u) = ∆u is the Laplacian
operator and Fn(u) = det(D2u) the Monge-Ampére operator.

A function u ∈ C2(Ω) is k-convex in Ω if Fj(u) ≥ 0 in Ω for j =
1, 2, ..., k; that is, the eigenvalues λ(D2u) of the Hessian D2u of u lie in
the closed convex cone given by

(1.1) Γk = {λ ∈ Rn : Sj(λ) ≥ 0, j = 1, 2, ..., k},

see section 2 for the basic properties of Γk. Now we are ready to define
our functions. Let A ∈ S

n×n, the set of n× n symmetric matrices. We
define for k = 1, 2, ..., n

(1.2) Gk(A) =

{
[A]k, if λ(A) ∈ Γk,

0, otherwise.

Theorem 1.1. Let k = 1, 2, ..., n. The function Gk defined above is
quasiconvex on S

n×n.

We note that

G1(A) = max(F1(A), 0) = max(trace(A), 0).

Thus Theorem 1.1 is trivial when k = 1. The case k = n was treated
in [S].

Šverák used the Hodge decomposition to prove that Gradient Young
measures supported in the set of symmetric matrices satisfy Jensen’s
inequality for quasiconvex functions on the symmetric matrices [S,
Lemma 1]. This yields the following corollary of Theorem 1.1. For
the definition and usefulness of Gradient Young measures see for ex-
ample [Mü], [P] and the references therein.
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Corollary 1.2. Let {ν}x∈Ω be W 1,p-Gradient Young measure for p ≥ k.
Then for a.e. x ∈ Ω

(1.3) Gk

(∫
Sn×n

Adνx(A)

)
≤

∫
Sn×n

Gk(A)dνx(A).

The corollary yields immediately the following proposition.

Proposition 1.3. Let ν be an homogeneous W 1,p-Gradient Young mea-
sure for p ≥ k supported on the set {A ∈ S

n×n : [A]k ≥ ε} for some
ε > 0. Suppose further that the center of mass of ν belongs to Γk. Then
ν is supported in Γk.

Šverák’s proof of Theorem 1.1 in the case k = n is based on the fact
that we understand the meaning of the measure induced by Gn(D2u).
Briefly, for a Borel set E, Gn(D2u)(E) = |∇u(E∩Γu)|, where Γu is the
subset of Ω where u is convex. However the k-Hessian measures do not
have such a clear interpretation and thus it is not clear for us how to
extend Šverák proof to our case. Therefore, our approach is essentially
different and naturally it yields a new proof of Šverák’s result. Our
argument to deal with Theorem 1.1 relies on the theory of k-Hessian
equations. The outline of the proof is as follows. To show that Gk is
quasiconvex, we need to show that

(1.4)

∫
Ω

Gk(A)dx ≤
∫

Ω

Gk(A + D2ϕ)dx

for each A ∈ S
n×n and each ϕ ∈ C∞

0 (Ω). The critical point is to solve
the following k-Hessian equation

(1.5)

{
Fk(u) = Gk(A + D2ϕ) in Ω

u = 1
2
〈Ax, x〉 + ϕ on ∂Ω.

Actually, a modification of Gk(A + D2ϕ) on the right hand side is
needed so that the solution u is smooth. The existence of solution
is guaranteed by [CNS], see also [T]. Then the comparison principle
Lemma 2.3 shows that

u ≤ 1

2
〈Ax, x〉 + ϕ in Ω

Thus outside of the support of ϕ, the k-convex function u is below the
function v = 1

2
〈Ax, x〉, which can be assumed to be k-convex, since

otherwise (1.4) is trivial. Now Lemma 2.4 implies that∫
Ω

Fk(v)dx ≤
∫

Ω

Fk(u)dx,

which is exactly (1.4) because of (1.5) and hence the proof is concluded.
The details of the proof of Theorem 1.1 are given in section 3 after

some notation and preliminary results in section 2.
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2. Notations and preliminary results

Through this paper, Ω denotes a bounded open subset of Rn, M
n×n

the set of all n × n matrices and S
n×n ⊂ M

n×n the subspace of all
symmetric matrices. We recall that a continuous function f : M

n×n →
R is said to be quasiconvex if

(2.1)

∫
Ω

f(A)dx ≤
∫

Ω

f(A + Dϕ)dx.

for any matrix A ∈ M
n×n and any smooth ϕ : Ω → Rn compactly

supported in Ω.
A continuous function f : S

n×n → R is said to be quasiconvex if

(2.2)

∫
Ω

f(A) ≤
∫

Ω

f(A + D2ϕ)dx

for any A ∈ S
n×n and any smooth function ϕ : Ω → R compactly

supported in Ω. It turns out that the domain Ω plays no role in the
definition of quasiconvexity; if f satisfies condition (2.1) or (2.2) respect
to one smooth domain, it satisfies them for every smooth domain, see
[M].

The remaining of the section is devoted to present some basic prop-
erties of the k-th elementary symmetric function Sk and the cone Γk

and the results about k-Hessian equations, which are needed in the
next section.

Recall that the definition of Sk is

Sk(λ) =
∑

i1<...<ik

λi1 ...λik .

Let Γ+ = {η ∈ Rn : ηj ≥ 0, j = 1, ..., n}. Then, we have the following
alternative characterizations for the cone Γk.

Proposition 2.1.

Γk ={λ ∈ Rn : Sj(λ) ≥ 0 for j = 1, 2, ..., k}
={λ ∈ Rn : 0 ≤ Sk(λ) ≤ Sk(λ + η) for η ∈ Γ+}
={λ ∈ Rn : Sk(λ + η) ≥ 0 for η ∈ Γ+}
=The closure of the component of S−1

k (0,∞) containing Γ+.

We note here that Γn = Γ+. A fundamental property of Γk is that it

is convex. The function S
1
k
k is concave in Γk. See [CNS] or [TW2] for

the proof of these facts.
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Then if we consider the function [A]k = Sk(λ(A)), [A]
1
k
k is a concave

function on the convex set

Mk = {A ∈ S
n×n : λ(A) ∈ Γk}

This is not trivial. We refer to [B] or [CNS] for the proof.
Recall that a function u ∈ C2(Ω) is k-convex if λ(D2u) lies in Γk.

Denote the set of k-convex functions in Ω by Ψk(Ω). We refer to the
series of papers [TW1], [TW2], [TW3] for an extensive study of the
k-convex functions. The following fundamental theorems are needed
for our approach to work.

Theorem 2.2. [CNS, Theorem 2] Let Ω be a bounded, uniformly (k −
1)-convex domain in Rn with the boundary ∂Ω ∈ C∞ and ϕ, ψ be
functions in C∞(Ω) with infΩ ψ > 0. Then there exists a unique k-
convex function u ∈ C∞(Ω) solving the Dirichlet problem

(2.3)

{
Fk(u) = ψ in Ω

u = ϕ on ∂Ω

In addition we need the following comparison principle. The result
is a special case of Lemma 2.1 in [T]. Since the proof is simple in our
situation, we include it for the reader’s convenience.

Lemma 2.3. Let u, v ∈ C0(Ω) ∩ C2(Ω) satisfy that u ≤ v on ∂Ω and
that u is k-convex in Ω. Suppose moreover that whenever v − u is
k-convex,

[D2u]k > [D2v]k

Then u ≤ v in Ω.

Proof. Consider the function w = v − u. Since w ≥ 0 on ∂Ω,
if there exists a point inside Ω such that w < 0, the function has a
local minimum at a point x0 ∈ Ω. Therefore D2(w)(x0) is positive
semidefinite. In particular, the function w is k-convex at x0.

Consider the function f(A) = [A]
1
k
k . Then f(A) is homogeneous of

degree 1 and concave on the convex cone Mk, the set of matrices having
eigenvalues in Γk. Moreover, by the convexity of Mk, the sum of two
k-convex functions is always k-convex. Thus v = w + u is k-convex
at x0, since u is k-convex in Ω and w is also k-convex at x0. Now
1
2
v = 1

2
w + 1

2
u. Since f is concave,

f(D2 1

2
v(x0)) ≥

1

2
f(D2w(x0)) +

1

2
f(D2u(x0)).

Using the homogeneity of f and rearranging, we arrive at

f(D2w(x0)) ≤ f(D2v(x0)) − f(D2u(x0)) < 0,

by the assumption of the lemma. This yields a contradiction.
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Finally, we need the following monotonicity lemma, which is stated
in a weaker form in Lemma 2.1 of [TW1]. Our proof is based on theirs
but it seems we get rid of some of the technical parts.

Lemma 2.4. [TW1, Lemma 2.1] Let Ω ∈ Rn be a bounded smooth
domain. Suppose that u, v ∈ Ψ(Ω) ∩ C2(Ω) satisfy that u = v on ∂Ω
and that u ≥ v in Ωδ = {x ∈ Ω : dist(x, ∂Ω) ≤ δ} for some δ > 0.
Then

(2.4)

∫
Ω

Fk(u) ≤
∫

Ω

Fk(v)

For the proof, we need some notations and results. For a matrix
A ∈ S

n×n, (A)ij = aij, we use the notation

D([A]k) = A#
k ,

where (A#
k )ij = ∂aij[A]k. Let f ∈ C2(Ω,Rn). Then since [A]k is a

null-Lagrangian, we have that

(2.5) Div((Df(x))#
k ) = 0,

i.e ∂j((Df(x))#
k )ij = 0 ∀i = 1, ..., n, see [R] . On the other hand,

the k-Hessian operator is degenerate elliptic when acting on k-convex
functions. In turn this implies that A#

k ≥ 0 when A is a symmetric
matrix with λ(A) ∈ Γk, see [TW2].

Proof. In the proof we use 〈·, ·〉 to denote the inner product of both
Rn and M

n×n. Let γ denote the outer unit normal to ∂Ω and ∂ the
tangential gradient in ∂Ω. That is,

∂ = (I − γ ⊗ γ)∇.

From the hypotheses in the lemma, we have that on ∂Ω

(2.6) ∂(u − v) = 0, 〈γ,∇(u − v)〉 ≤ 0.

we write as in [TW1]∫
Ω

Fk(v) − Fk(u)) =

∫ 1

0

∫
Ω

〈(sD2u + (1 − s)D2v)#
k , D2(v − u)〉.

By (2.5) and the divergence theorem, the right side of the above equal-
ity equals to

(2.7)

∫ 1

0

∫
∂Ω

〈(sD2u + (1 − s)D2v)#
k γ,∇(v − u)〉.

Now we use our assumptions. Let A be any nonnegative symmetric
matrix. Then ∂(v − u) = 0 implies that

A(I − γ ⊗ γ)∇(v − u) = 0,

that is,

(2.8) A∇(v − u) = Aγ〈γ,∇(v − u)〉.
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Hence
〈Aγ,∇(v − u)〉 = 〈Aγ, γ〉〈γ,∇(v − u)〉 ≥ 0,

where we have used (2.6) and that A is nonnegative. Taking A to be

(sD2u + (1 − s)D2v)#
k in (2.7) and taking account of the k-convexity

of su + (1 − s)v, we conclude the proof.

3. Proof of Theorem 1.1

We need to prove that

(3.1)

∫
Ω

Gk(A)dx ≤
∫

Ω

Gk(A + D2ϕ)dx

for any A ∈ S
n×n and ϕ ∈ C∞

0 (Ω) where Gk is defined as in (1.2). Since
the definition of quasiconvexity is independent of the domain we can
assume that Ω is the unit Ball B1. We can also assume that λ(A) ∈ Γk,
since otherwise the inequality is trivial.

Let v = 1
2
〈Ax, x〉 + ϕ, where ϕ ∈ C∞

0 (B1). Let r < 1 be such that
supp(ϕ) ⊂ Br. We note that the regularization of the function Gk(D

2v)
with a mollifier ρ, (Gk(D

2v)h = ρh ∗ Gk(D
2v) converges uniformly to

Gk(D
2v) in B 1+r

2
as h → 0, since Gk(D

2v) is a continuous function in

B1. Then for any ε, there is 0 < h0 < R−r
4

such that for any h < h0,
we have

(3.2) ‖(Gk(D
2v))h − Gk(D

2v)‖C(B 1+r
2

) ≤
ε

2
.

By Theorem 2.2, the following Dirichlet problem

(3.3)

{
Fk(u) = (Gk(D

2v))h + ε in B 1+r
2

u = v on ∂B 1+r
2

has a unique solution u ∈ C∞(B 1+r
2

) ∩ Ψk(B 1+r
2

). Note that by (3.2),

(3.4) (Gk(D
2v))h + ε ≥ Gk(D

2v) +
ε

2
≥ ε

2
.

Now we want to apply Lemma 2.3. Suppose that v − u is k-convex at
a point x0. Then v = v − u + u is also k-convex at x0. Thus at x0,
Gk(D

2v) = Fk(v) by the definition of the function Gk. Therefore it
follows from (3.4) that

Fk(u) > Fk(v)

on the set where v − u is k-convex. Applying Lemma 2.3 to u and
v, we obtain that u ≤ v in B 1+r

2
. We explicitly remark here that v

coincides with the function 1
2
〈Ax, x〉 outside the ball Br. Now we are

in the position to use lemma 2.4 for the two smooth k-convex functions
u and 1

2
〈Ax, x〉 with Ω = B 1+r

2
. Then we have that∫

B 1+r
2

Gk(A)dx =

∫
B 1+r

2

Fk(
1

2
〈Ax, x〉)dx ≤

∫
B 1+r

2

Fk(u)dx =
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=

∫
B 1+r

2

(Gk(D
2v))h + ε dx

The proof is concluded by letting first h go to 0 and then ε to 0 and
finally r to 1.

Proof of Proposition 1.3. Following Šverák, we base the proof on the
fact that the function Rk(A) = max{ε+Gk(A)− [A]k, 0} is quasiconvex
on the space of symmetric matrices. Notice that Rk(A) is equal to ε
if λ(A) ∈ Γk and Rk(A) ≤ ε everywhere. Using Corollary 1.2 for the
measure ν we have that ν({A : λ(A) ∈ Γk}) = 1 and the proposition is
proved.

Proposition 1.3 and the related work of Šverák [S2] for convex func-
tions and the Monge-Ampére equation suggest the following conjecture
for k-convexity.

Conjecture. Let u be a W 2,∞(Ω) be such that [D2u]k ≥ ε and suppose
that the set {x ∈ Ω : λ(D2u) ∈ Γk} has positive measure. Then u is
k-convex.
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