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ABSTRACT. In this note, we prove a Radé type theorem for the solutions of the
so-called p-harmonic equation

div(|VulP~2Vu) =0

in any dimension. We show that a function » € C(Q) which is p-harmonic in
Q\ {z: u(z) = 0} is indeed p-harmonic in the whole domain Q. Our proof relies on
a viscosity solution characterization of p-harmonic functions obtained in [JLM].

The classical theorem of T. Radé says that, if the continuous complex func-
tion f(z) is analytic when f(2) # 0, then it is analytic in its whole domain of
definition. This result has been generalized in many ways. We are interested in
the corresponding phenomenon for solutions of partial differential equations. J.
Krél [Krl] obtained the following theorem for harmonic functions defined in a
domain 2 in R™.

Theorem (Kral). Let u € C*(Q). If the function u is harmonic in the set
Q\{z e R": u(z) =0},
then u is harmonic in the whole Q.

The same theorem holds with the Laplace equation replaced by any linear
elliptic equation of the second order with constant coefficients, cf. [Kr2]. The
objective of this note is to extend Kral’s theorem to the so-called p-harmonic
equation

(1) div(|Vu|P~2Vu) = 0,

where 1 < p < oo. This is the Euler-Lagrange equation for the variational
integral

2) / Vul? d.
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Notice that for p = 2 we have the Dirichlet integral and the Laplace equation.
The solutions of equation (1) are called p-harmonic functions and they will be
defined below. We will prove the following theorem.

3. Theorem. Let Q be a domain in R™ and suppose that u € C*(Q). Ifu is a
solution to the equation (1) in the open set Q\ {z € R™: u(xz) = 0}, then it is a
solution in the whole ().

This theorem was proved by T. Kilpeldinen [Ki] in the plane, where he could
use the fact that the complex gradient

ou .Ou

_———

or oy

of a p-harmonic function v is a quasiregular mapping. No such information
is available in space. The whole difficulty comes from the critical points: the
equation degenerates badly when Vu = 0. The crucial point is to establish the
following result.

4. Proposition. Let u € C*(Q). If u is p-harmonic in
O\ {z € R": Vu = 0},
then w is p-harmonic in the whole €.

Our way to deal with the critical points comes from a rather unexpected
direction: the theory of viscosity solutions. In [JLM], the p-harmonic functions,
originally defined as the continuous weak solutions in the distributive sense, were
characterized as viscosity solutions in such a way that the critical points can, to
a certain extent, be neglected. This is exactly what is needed to prove the above
proposition. In the plane case we provide an alternative to Kilpeldinen’s proof.
It is worth mentioning that our proof is, as it were, new even for the Laplace
equation.

Let us finally mention that the assumption about continuous differentiability
for the function cannot be weakened. Simple, essentially one-dimensional, exam-
ples show that mere Lipschitz continuity will not do. It is likely that our method
also applies to more general quasi-linear equations

div Ap(z,Vu) =0

where Ap(z,€) - £ = |£|P. However, here the dependence on z must be rather
restricted so that div A,(x, V) can be evaluated pointwise for a smooth ¢, at
least when Vi(z) # 0, cf. [J].

To be on the safe side we recall the definition of p-harmonic functions.

5. Definition Let u € C(Q) N Wlloc”(Q) We say that u is p-harmonic in the
open set 2, if

/ |VulP~2Vu - Vydz = 0
Q
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whenever 7 € C§° ().

It is known that the p-harmonic functions are of class Cllo’f(ﬂ), where o =
a(n,p). In order to prove the proposition, we need an equivalent definition.
In [JLM] we defined the viscosity p-supersolutions of the equation (1). For a

continuous function the definition takes the following simple form.

6. Definition We say that u € C(Q) is a viscosity p-supersolution if, whenever
To € Q and p € C%(Q) are such that

(1) u(o) = ¢ (xo),

(2) u(z) > ¢(x), when z # o,

(3) Ve(zo) # 0,
we have

div(|Vep(zo)[P~*Vip(20)) < 0.

Notice that the test-function ¢ touches u from below at the point zy. Notice
also the important fact that, if it so happens that Vi(x¢) = 0, then there is no
requirement at all. In this respect our definition is different from the conventional
one. The conventional definition (see e.g. [CIL]), valid for p > 2, makes no
exemption at the critical points. We take full advantage of the less demanding
requirements above. Now the viscosity p-subsolutions are defined in an analogous
way, see [JLM].

7. Theorem. Let u € C(Q). Then u is p-harmonic if and only if u is both a
viscosity p-supersolution and a viscosity p-subsolution.

Proof. This is Corollary 2.6 in [JLM].

Proof of the Proposition 4. In order to prove that the given function u € C1(Q)
is p-harmonic, we first prove that Definition 6 is satisfied. Let z¢o €  and
suppose that ¢ is a test-function, touching u from below at the point zo. By the
differential calculus,

V(zo) = Vu(zo).

Hence, if Vu(zo) = 0, there is nothing to prove. On the other hand, if Vu(zo) #
0, then it is already clear, according to Theorem 7 and the assumption, that
div(|Ve(z0)|P~2Vp(x0)) < 0. Thus u is a viscosity p-supersolution. Similarly,
u is seen to be a viscosity p-subsolution. Now Theorem 7 yields the desired
result. O

Since the solution concept is a local one, Theorem 3 follows from Proposition
4 and the lemma below.

8. Lemma. Suppose that u € C1(Q) is such that Vu # 0 in Q. If u is p-
harmonic in the set Q \ {z € R™: u(x) = 0}, then u is p-harmonic in the whole
Q.

Proof. This is Proposition 8 in [Ki]. For the convenience of the reader, we com-
ment on the proof. Since the problem is local one may assume that |Vu| > e > 0.
Then the set

S ={z: u(z) =0}
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is a regular hypersurface. Locally it can be mapped onto the hyperplane
H={(z1,...,2,) € R": 2, =0}

with the aid of a bi-Lipschitz diffeomorphism. This transforms the problem to
the corresponding problem for a certain equation

div Ap(z, Vu(z)) =0,

but now S has been replaced by the hyperplane H. That is, if v(z) = 0, then

xz € H. The proof is comparatively simple for a hyperplane and is given in Lemma

2.22 in [M]. The essential phenomenon in that proof is a cancellation effect.
This concludes the proof of Theorem 3. O
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