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Abstract

We extend the basic results on mappings of exponentially inte-
grable distortion to the cases where the usual distortion function is
replaced by various weaker versions based on the minors of differen-
tial matrix.

1 Introduction

We consider mappings f ∈ W 1,1
loc (Ω, Rn), where Ω ⊂ R

n is a domain. Such a

mapping is said to have finite distortion if

1. f ∈ W 1,1
loc (Ω, Rn).

2. The Jacobian determinant J(x, f) of f is locally integrable.

3. There is a measurable function KO = KO(x) ≥ 1, finite almost every-

where, such that f satisfies the distortion inequality

|Df(x)|n ≤ KO(x)J(x, f) a.e. (1)
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Above we used the operator norm of the differential matrix. There are several

distortion functions that are each of considerable interest in geometric func-

tion theory [6]. The principal feature of those distortions is, roughly speaking,

that they provide some control on the lower order minors of the differential

matrix in terms of the determinant. Let
∧lf(x) denote the

(
n
l

)
×

(
n
l

)
- matrix

of all l × l-minors of Df(x), l = 1, 2, ..., n − 1. Inequality (1) yields

|
∧l

f(x)|n ≤ Kl(x)
[
J(x, f)

]l
a.e. (2)

where 1 ≤ Kl(x) ≤
[
KO(x)

]l
. Notice that K1(x) = KO(x). On the other

hand, notice that the assumptions f ∈ W 1,l(B, Rn), J(·, f) ∈ L1(B) and (2)

with some l ≥ 2 and Kl(x) ≥ 1, finite a.e., do not guarantee that f be a

mapping of finite distortion; consider e.g. f(x1, ..., xn) = (x1, 0, ..., 0). The

smallest Kl ≥ 1 for which (2) holds will be denoted by Kl(x, f) and called the

l-th distortion function. Of particular interest is the inner distortion function

KI(x, f) = Kn−1(x, f). In this case we denote by D	f(x) the n × n-matrix

of cofactors of Df . Thus (2) reads as

|D	f(x)| n
n−1 ≤ n−1

√
KI(x, f) J(x, f). (3)

In this paper we prove the following continuity estimate.

Theorem 1.1 Let n ≥ 2, l ∈ {1, ..., n− 1} and B = B(x0, R). Assume that

f ∈ W 1,l
loc(B, Rn) is a mapping of finite distortion such that

I =

∫
B

exp(λ l
√

Kl(x, f)) dx < ∞ (4)

for some λ > l2 − 1. Then f is continuous and we have the modulus of

continuity estimate

|f(x) − f(y)|n ≤ Cλ,K,R,n(ε)
∫

B
J(z, f) dz

logλ−l2+1−ε
(

nI
ωn−1|x−y|n

) (5)

for all x, y ∈ B(x0, (r/8)e[ nI
ωn−1

]
1−e

n ) and every small ε > 0.

If n ≥ 3, then the example f(x) = (u(x), 0, ..., 0), where u is a discontinuous

function in the Sobolev space W 1,n−1(B), shows that the assumption that f

2



be of finite distortion cannot be dropped from Theorem 1.1. We mean that

we cannot replace the distortion inequality (1) by the the weaker distortion

inequality (2), for any l ∈ {2, ..., n − 1}. We do not know if the bound

λ > l2 − 1 is necessary. For l = 1, our estimate is contained in [12] but

the case l ≥ 2 is new. If one tries to reduce the case l ≥ 2 to l = 1, one

is faced with the following obstacle. By pointwise estimates one can only

guarantee the integrability of exp(λK
1/l2

O ) which is, in general, too weak to

imply continuity [10]. Our proof is based on an improvement of our argument

in [12].

Theorem 1.1 leads to compactness results via the Ascoli’s Theorem and

our compactness result in [5].

Theorem 1.2 Fix l ∈ {1, ..., n − 1}, λ > l2 − 1 and A, B ≥ 0. Let F be the

family of mappings f : Ω → R
n of finite distortion for which∫
Ω

J(x, f) dx ≤ A (6)

and ∫
Ω

exp
(
λ l
√

Kl(x, f)
)

dx ≤ B. (7)

Fix x0 ∈ Ω and define F̃ = {g : g(x) = f(x) − f(x0) and f ∈ F}. Then

each sequence of mappings in F̃ contains a locally uniformly converging sub-

sequence, and the limit of any such a sequence belongs to F̃ .

Furthermore, by combining Theorem 1.1 with results by Kauhanen, Koskela

and Malý (cf. [8] and [9]), we can conclude topological properties, such as

openness and discretness and also an analytic property, the Lusin condition

(N). Openness means that f maps open sets to open sets and discretness

that the set of preimages of any point in R
n is finite in each compact subset

of Ω. The Lusin condition (N) means that f maps sets of measure zero to

sets of measure zero.

Theorem 1.3 Fix l ∈ {1, ..., n−1}, λ > l2−1. Assume that f ∈ W 1,l
loc(Ω, Rn)

is a mapping of finite distortion such that exp
(
λ l
√

Kl(x, f)
)
∈ L1

loc(Ω). Then

f satisfies the Lusin condition (N) and if f is non-constant, then it is also

open and discrete.
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2 Distortion Functions

Distortion functions are designed to control almost everywhere the minors of

the differential matrix of the mapping f : Ω → R
n by means of the Jacobian

determinant. We begin with the distortion functions of linear mappings, also

regarded as matrices. The space of all n × n matrices will be denoted by

R
n×n, and those with positive determinant by R

n×n
+ . It will be convenient

to include the zero matrix and denote such extended class of matrices by

R
n×n
+ ∪ {0}. The commonly used distortion functions on matrices A ∈ R

n×n
+

are:

The outer distortion

KO(A) = |A|n
det A

.

The inner distortion

KI(A) = KO(A−1) = |A�|n
(det A)n−1 .

The linear distortion

H(A) = n
√

KO(A) KI(A) = |A| |A−1|.

Note that the operator norm |A| = max
{
|A h| : |h| = 1

}
is being used

here, and A	 is the adjoint matrix, made of cofactors of A. In what follows

all distortion functions of the zero matrix are assumed to be equal to 1.

There are in fact many more distortion functions which are readily defined

in terms of the lower order subdeterminants of the matrix A. For each integer

1 ≤ l ≤ n we denote by
∧l A the

(
n
l

)
×

(
n
l

)
matrix of all l × l-minors of A.

This, of course, includes A as
∧1 A, A	 as

∧n−1 A, and det A as
∧n A. The

following distortion functions will be of interest to us:

Kl(A) =
|
∧l A|n

(det A)l
= Kn−l(A

−1) for l = 1, ..., n − 1. (8)

Having examined these distortion functions for matrices we set for orien-

tation preserving mappings (i.e. J(x, f) ≥ 0 a.e.) f ∈ W 1,1
loc (Ω, Rn):

∧l
f(x) =

∧l[
Df(x)

]
. (9)
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We define the pointwise distortion functions by setting

Kl(x, f) = Kl

[
Df(x)

]
=




|
∧lf(x)|n
J(x,f)l , J(x, f) > 0

1, |
∧lf(x)| = 0

∞, J(x, f) = 0 and |
∧lf(x)| �= 0.

(10)

These functions are coupled by the inequalities

n−1
√

KI(x, f) = n−1
√

Kn−1(x, f) ≤ ... ≤ l
√

Kl(x, f) ≤ K1(x, f) = KO(x, f).

(11)

Let us also note for later use the reverse estimate

KO(x, f) ≤ Kl
l(x, f) =

(
l

√
Kl(x, f)

)l2

(12)

that holds when J(x, f) > 0.

3 Monotonicity

A very powerful method when dealing with continuity properties of functions

is furnished by notion of monotonicity, which goes back to H. Lebesgue [13]

in 1907. Monotonicity for a continuous function u in a domain Ω simply

means that

osc(u, B) ≤ osc(u, ∂B) (13)

for every ball B ⊂⊂ Ω. It turns out that monotonicity can be defined without

the continuity assumption. The following definition is due to J. Manfredi [14].

Definition 3.1 A real valued function u ∈ W 1,1
loc (Ω) is said to be weakly

monotone if for every ball B ⊂⊂ Ω and all constants m ≤ M such that

(u − M)+ − (m − u)+ ∈ W 1,1
0 (B) (14)

we have

m ≤ u(x) ≤ M (15)

for almost every x ∈ B.
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The space W 1,1
0 (B) is the completion of C∞

0 (B) in W 1,1(B), as usually. The

following proposition states the weak monotonicity of a coordinate function

of f , under assumptions which are adapted to our situation. This is based on

the fact that J(·, f) coincides in this setting with the distributional Jacobian,

i.e. ∫
Ω

ϕ(x)J(x, f) dx = −
∫

Ω

fiJ(x, f1, ..., fi−1, ϕ, fi+1, ..., fn) (16)

for all test functions ϕ ∈ C∞
0 (Ω) and each index i = 1, 2, ..., n.

Proposition 3.2 Let f ∈ W 1,l
loc(Ω, Rn) be a mapping of finite distortion such

that exp(λ l
√

Kl(·, f)) ∈ L1
loc(Ω) for some λ > 0 and some l ∈ {1, ..., n −

1}. Then f ∈ W 1,p
loc (Ω, Rn), for all p ∈ [1, n), |D	f | n

n−1 log−1(e + |D	f |) ∈
L1

loc(Ω), the equation (16) holds, and the coordinates functions of f are weakly

monotone.

Proof. Fix p ∈ [1, n) and Ω′. Then by Hölder’s inequality we have(∫
Ω′
|Df |p

)n
p

≤
(∫

Ω′
K

p
n−p

O (x) dx

)n−p
p

∫
Ω′

J(x, f) dx. (17)

Using the power series presentation for the function exp(λK
1/l2

O ), inequality

(12) and inequality (17), we see that f ∈ W 1,p(Ω′, Rn). Recall here that Df

vanishes a.e. in the zero set of the Jacobian.

The point of special note is that our assumptions imply

|D	f(x)|n ≤ KI(x, f)J(x, f)n−1 (18)

with ∫
Ω′

exp(λ n−1
√

KI(x, f)) dx < ∞ (19)

(see our estimate (11)). Combining Hadamard’s inequality J(x, f) ≤ |D	f(x)| n
n−1

with (18) and with the elementary inequality ab ≤ a log(a + 1) + eb − 1 for

a, b ≥ 0, we have

n − 1

n

∫
Ω′

|D	f(x)| n
n−1 dx

log(e + |D	f(x)|) ≤
∫

Ω′

|D	f(x)| n
n−1 dx

log(e + |D	f(x)| n
n−1 )

≤ 1

λ

∫
Ω′

J(x, f) dx +

∫
Ω′

exp(λ n−1
√

KI(x, f)) dx

< ∞. (20)
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This and the fact f ∈ W 1,n−1
loc (Ω) imply, via recent results in [1, Theorem

1.3], that we can integrate by parts against the Jacobian, i.e∫
Ω

ϕ(x)J(x, f) dx = −
∫

Ω

fiJ(x, f1, ..., fi−1, ϕ, fi+1, ..., fn) (21)

for all test functions ϕ ∈ C∞
0 (Ω) and each index i = 1, 2, ..., n.

Next we follow the idea from [4, Section 4] to prove that the coordinates

functions of f are weakly monotone. Let B ⊂⊂ Ω and suppose that for some

coordinate function, say the first one, we have

v := (f1 − M)+ − (m − f1)
+ ∈ W 1,1

0 (B).

Then

∇v(x) =

{
0 if m ≤ f 1(x) ≤ M

∇f1(x), otherwise (say, on the set E ⊂ B).

Hence, in view of the distortion inequality (1), we can write∫
B

|∇v(x)|n
K(x)

dx ≤
∫

E

|Df(x)|n
K(x)

dx

≤
∫

E

J(x, f) dx ≤
∫

B

J(x, v, f2, ..., fn)dx = 0

by equation (16). Thus v ≡ 0 on B, which simply means that m ≤ f1(x) ≤ M

for almost every x ∈ B, as desired.

4 Proof of Theorem 1.1

We will split the proof of Theorem 1.1 to two parts, Lemma 4.1 and Lemma

4.3.

Lemma 4.1 Let f : Ω → R
n be a mapping in the Sobolev class W 1,n−1

loc (Ω, Rn)

such that J(·, f) ∈ L1
loc(Ω) and

|D	f(x)| n
n−1 ≤ n−1

√
KI(x)J(x, f) a.e. (22)
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with

I =

∫
B

exp
(
λ n−1

√
KI(x)

)
dx < ∞ (23)

for some λ > 0 and a ball B = B(x0, R) ⊂⊂ Ω. Then for every small ε > 0,

we have ∫
B(x0,r)

J(x, f) dx ≤ Cλ,K,R,n(ε)
∫

B
J(z, f) dz

logλ−ε
(

nI
ωn−1rn

) , (24)

whenever r ∈ (0, R/2).

The proof of Lemma 4.1 will be based on the following integral type

isoperimetric inequality, established in [16] (also see [4]).

Proposition 4.2 Suppose that the Jacobian of f ∈ W
n2

n+1

loc (Ω, Rn) is non-

negative a.e and the mapping f obeys the rule (16) of integration by parts.

Then, for every x0 ∈ Ω, we have

∫
B(x0,r)

J(x, f) dx ≤ (n n−1
√

ωn−1)
−1

(∫
∂B(x0,r)

|D	f |
) n

n−1

(25)

for almost every radius r ∈ (0, dist(x0, ∂Ω)).

The basic idea of the proof of Lemma 4.1 goes back to Morrey [15], we follow

the ideas from [12].

Proof. Using Proposition 3.2 we see that the assumptions of Proposition

4.2 are fulfilled, and so

∫
B(x0,s)

J(x, f) dx ≤ (n n−1
√

ωn−1)
−1

(∫
∂B(x0,s)

|D	f |
) n

n−1

(26)

for almost every 0 < s < R. Write Bs = B(x0, s). Fix ε ∈ (0, 1) and

i ∈ {1, 2, 3, ...}. We denote the interval (R2−εi, R2−ε(i−1)) by �i,ε and the

annulus BR2−ε(i−1) \ BR2−εi by Ai,ε. Using Fubini’s theorem we observe that

for every δ > 0 the set

Ei =

{
t ∈ �i,ε :

∫
∂Bt

∣∣D	f
∣∣ ≤ (1 + δ)

|�i,ε|

∫
Ai,ε

∣∣D	f(x)
∣∣ dx

}
(27)

8



has a positive measure.

Choosing r ∈ �i,ε so that r lies in the set Ei and so that inequality (26)

holds, we obtain the estimate

∫
BR2−εi

J(x, f) dx ≤
∫

Br

J(x, f) dx ≤ (n n−1
√

ωn−1)
−1

(∫
∂Br

|D	f |
) n

n−1

≤ (n n−1
√

ωn−1)
−1

(
1 + δ

|�i,ε|

) n
n−1

(∫
Ai,ε

∣∣D	f(x)
∣∣ dx

) n
n−1

We set tn(λ) =
(

n−2
λ

)n−1
and

K̃I(x) =


KI(x), KI(x) > tn(λ)

tn(λ), KI(x) ≤ tn(λ).
(28)

Combining the distortion inequality |D	f(x)| ≤ K̃
1
n
I (x)J(x, f)

n−1
n with Hölder’s

inequality, we find that

∫
BR2−εi

J(x, f) dx ≤ (n n−1
√

ωn−1)
−1

(
1 + δ

|�i,ε|

) n
n−1

(∫
Ai,ε

|K̃I |
) 1

n−1 ∫
Ai,ε

J(x, f) dx. (29)

Jensen’s inequality applied to the convex function (tn(λ),∞) → (0,∞) : τ →
exp

(
λτ 1/(n−1)

)
yields

∫
BR2−εi

J(x, f) dx ≤ (n n−1
√

ωn−1)
−1

(
1 + δ

|�i,ε|

) n
n−1 |Ai,ε|

1
n−1

λ

log

(
−
∫

Ai,ε

exp(λ n−1
√

KI)

)∫
Ai,ε

J(x, f) dx

and computations show that

∫
BR2−εi

J(x, f) dx ≤
(

1 + δ

n

) n
n−1

(
2εn − 1

2ε − 1

) 1
n−1

R2−εi |�i,ε|−1

log

(
exp(λ n−1

√
tn(λ))nI2εn

ωn−1Rn2−εn(i−1)(2εn − 1)

)∫
Ai,ε

J(x, f) dx
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Write Cλ(n) = exp(λ n−1
√

tn(λ))2n. Letting δ → 0, using the elementary

inequalities εa log 2 ≤ 2aε − 1 ≤ εa2aε log 2 for all ε, a ≥ 0, and the fact that

ε ≤ 1, we conclude that ∫
BR2−εi

J(x, f) dx ≤

2
nε

n−1

λn
R2−εi log

(
Cλ(n)nI

ωn−1Rn2−εn(i−1)ε

) ∫
Ai,ε

J(x, f) dx|�i,ε|−1. (30)

Next we introduce two auxiliary functions. We set

ui,ε(x) =

∫
BR2−εi

J(x, f) dx +
x − R2−εi

|�i,ε|

∫
Ai,ε

J(x, f) dx

and

uε =
∞∑
i=1

ui,ε(x)χ[R2−εi,R2−ε(i−1))(x)

for every x ∈ R. Using inequality (30), we see that

ui,ε(x) ≤
[2

nε
n−1

λn
R2−εi log

(
Cλ(n)nI

ωn−1Rn2−εn(i−1)ε

)
+ x − R2−εi

]
u′

i,ε(x) (31)

for all x ∈ �i,ε. Combining the inequality R2−ε(i−1) − R2−εi ≤ R2−εi2ε with

the fact that

log−1(
Cλ(n)nI

ωn−1Rn2−εn(i−1)ε
) ≤ log−1(

2εnCλ(n)nI

εωn−1Rn
) ≤ log−1(

2εnCλ(n)

ε
) ≤ C1(n, λ)

for all ε ∈ (0, 1), we conclude with

ui,ε(x) ≤
(

2
nε

n−1

λn
+ 2C1(n, λ)ε

)
x log

(
Cλ(n)nI

ωn−1xnε

)
u′

i,ε(x) (32)

for all x ∈ �i,ε.

We define

vε(x) = log

[
n

(
2

nε
n−1

λn
+2C1(n,λ)ε

)]−1 (
Cλ(n)nI

ωn−1xnε

)
(33)
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for all x ∈ (0, R]. Using inequality (32), we see that

d

dx
(vεuε)(x) = vε(x)

[
−

((
2

nε
n−1

λn
+ 2C1(n, λ)ε

)
x log

(
Cλ(n)nI

ωn−1xnε

))−1

uε(x) + u′
ε(x)

]
≥ 0 (34)

for all x ∈ ∪∞
i=1�i,ε, and so the continuous function vεuε is increasing on

(0, R). Let r ≤ R/2. Choosing ir ∈ N so that r ∈ [R2−εir , R2−ε(ir−1)), we

find that

vε(2
εr)

∫
B

R2−ε(ir−1)

J(x, f) dx ≤ 2vε(R)

∫
BR

J(x, f) dx. (35)

Since the Jacobian of f is non-negative almost everywhere and ε ≤ 1, we find

that ∫
Br

J(x, f) dx ≤ 2
vε(R)

vε(2r)

∫
BR

J(x, f) dx (36)

for all 0 < r < R/2. Using the fact that n(2
nε

n−1

λn
+2C1(n, λ)ε) → 1

λ
, as ε → 0,

we obtain the desired inequality (24).

Theorem 1.1 is proven in the case l = 1 in [12, Theorem 1.1]. So we will

assume that n > 2 and l ∈ {2, ..., n − 1}.

Lemma 4.3 Let n > 2 and l ∈ {2, ..., n − 1}. Assume that f : Ω → R
n is

a mapping of finite distortion such that (4) holds, for some λ > 0 and a ball

Br = B(x0, r) ⊂⊂ Ω. Then

|f̂(x) − f̂(y)|n ≤ Cλ,n,l logl2−1

(
nI

ωn−1rn

) ∫
Br

J(z, f) dz (37)

for all x, y ∈ B(x0, (r/2)e
[

nI
ωn−1

] 1−e
n ).

Here we used the representative f̂ for the mapping f , defined by setting

f̂ = (f̂1, ..., f̂n) and

f̂i(x) = lim
r→0

sup−
∫

B(x,r)

fi(z) dz (38)

for all i ∈ {1, ..., n}.
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Proof. Let p = n− 1
2

and write ϕ(r) = (r/2)e
[

nI
ωn−1

] 1−e
n . Combining Propo-

sition 3.2 with Lemma 7.2 in [4] we have

|f̂(x) − f̂(y)|n
C(p, n)tn

≤
(
−
∫

∂B(x0,t)

|Df |p
)n

p

(39)

for almost every t ∈ (ϕ(r), r) and all x, y ∈ B(x0, ϕ(r)). We would like to

point out here that the estimate (39) goes back to the oscillation lemma by

F. W. Gehring [2].

Write Bs = B(x0, s) for all s ∈ (0, R) and define

Gi =
{

t ∈ (2i−1ϕ(r), 2iϕ(r)) :

∫
∂Bt

exp(λK
1/l2

O ) ≤ 3

2i−1ϕ(r)

∫
Ai

exp(λK
1/l2

O )
}

for all i ∈ {1, 2, ..} ∩ [1, log2
r

ϕ(r)
] =: S. Here and also in what follows we

denote the set B2ire \ B2i−1re by Ai. Because I ≥ ωn−1

n
rn, we see that S �= ∅.

Using estimate (12) we remark that∫
Ai

exp(λK
1/l2

O ) ≤
∫

Ai

exp(λ l
√

Kl(x)) dx < ∞.

By Fubini’s theorem, we have

|Gi| ≥
2i−1ϕ(r)

2
.

Next we fix t0 = t0(p, n, l, λ) so that t
pl2

λ(n−p)

0 ≥ pl2

λ(n−p)
; then the function

t → exp(λt
n−p

pl2 ) is convex on (t0,∞). We set

K̃O(x) =


KO(x), KO(x) > t0

t0, KO(x) ≤ t0.
(40)

Combining the distortion inequality |Df(x)|n ≤ K̃O(x)J(x, f) and Hölder’s

inequality with inequality (39), we have

|f̂(x) − f̂(y)|n
C(p, n)tn

≤
(
−
∫

∂Bt

|K̃O(x)|
p

n−p

)n−p
p

−
∫

∂Bt

J(x, f) dx (41)
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for a.e. t ∈ (ϕ(r), r) and all x, y ∈ Bϕ(r). Jensen’s inequality applied to the

convex function (t0,∞) → (0,∞) : τ → exp(λτ
n−p

pl2 ) yields

|f̂(x) − f̂(y)|n
C(p, n)t

≤ λ
pl2

n−p logl2
(
−
∫

∂Bt

exp(λK̃
1/l2

O )

) ∫
∂Bt

J(x, f) dx

≤ λ
pl2

n−p logl2
(

exp(λt
1/l2

0 ) −
∫

∂Bt

exp(λK
1/l2

O )

) ∫
∂Bt

J(x, f) dx

(42)

for a.e. t ∈ (ϕ(r), r) and all x, y ∈ Bϕ(r). Fix i ∈ S. Integrating this estimate

over the set Gi with respect t, we have

|f̂(x) − f̂(y)|n
∫

Gi

dt

t logl2
(

6exp(λt
1/l2

0 ) n I

ωn−12i tn−1 ϕ(r)

) ≤ Cλ(p, n)

∫
Ai

J(z, f) dz (43)

for every x, y ∈ Bϕ(r). Here we also used the estimate∫
Ai

exp(λK
1
l2

O (x)) dx ≤
∫

BR

exp(λ l
√

Kl(x)) dx = I.

For every t ∈ Gi, we have t ≤ 2iϕ(r) and so

|f̂(x) − f̂(y)|n
∫

Gi

dt

t logl2
(

6exp(λt
1/l2

0 ) n I

ωn−1tn

) ≤ Cλ(p, n)

∫
Ai

J(z, f) dz (44)

for every x, y ∈ Bϕ(r). Replacing the constant 6exp(λt
1/l2

0 ) in (44) by the con-

stant Cλ(t0) = max{enl2 , 6exp(λt
1/l2

0 )} we see that the function t logl2
(

Cλ(t0)nI
tnωn−1

)
is increasing on (0, R) (Here we used the fact I ≥ ωn−1

n
rn). Combining this

with estimate (44) and the fact |Gi| ≥ 2i−1ϕ(r)
2

, we have

|f̂(x) − f̂(y)|n
∫ 2iϕ(r)

2i−23ϕ(r)

dt

t logl2
(

Cλ(t0)nI
ωn−1tn

) ≤ Cλ(p, n)

∫
Ai

J(z, f) dz (45)

for all x, y ∈ Bϕ(r). Because∫ 2iϕ(r)

2i−23ϕ(r)

dt

t logl2
(

Cλ(t0)nI
ωn−1tn

) ≥
∫ 2i−23ϕ(r)

2i−iϕ(r)

ds

(s + 2i−2ϕ(r)) logl2
(

Cλ(t0)nI
ωn−1(s+2i−2ϕ(r))n

)

≥ 1

3

∫ 2i−23ϕ(r)

2i−iϕ(r)

ds

s logl2
(

Cλ(t0)nI
ωn−1sn

) , (46)

13



we obtain

|f̂(x) − f̂(y)|n
∫ 2iϕ(r)

2i−1ϕ(r)

dt

t logl2
(

Cλ(t0)nI
ωn−1tn

) ≤ Cλ(p, n)

∫
Ai

J(z, f) dz (47)

for all x, y ∈ Bϕ(r). Summing over the set S, we have

|f̂(x) − f̂(y)|n
∫ r/2

ϕ(r)

dt

t logl2
(

Cλ(t0)nI
ωn−1tn

) ≤ Cλ(p, n)

∫
Br

J(z, f) dz (48)

for all x, y ∈ Bϕ(r). Because I ≥ ωn−1

n
rn, we see that nI

ωn−1tn
≥ 1, for all

t ∈ (0, r) and so

∫ r/2

ϕ(r)

dt

t logl2
(

Cλ(t0)nI
ωn−1tn

) ≥ C−l2

λ (t0)

∫ r/2

ϕ(r)

dt

t logl2
(

nI
ωn−1tn

)
=

C−l2

λ (t0)

(l2 − 1)n
(1 − e1−l2)

1

logl2−1
(

nI
ωn−1rn

) .

Finally recalling the fact p = n − 1
2

and t0 = t0(p, n, l, λ) we complete the

proof of Lemma 4.3.

Now we complete the proof of the whole theorem (in the case n > 2 and

l ∈ {2, .., n − 1}) as follows. Given x ∈ B(x0, (R/8)e[ nI
ωn−1

]
1−e

n ) we consider

the ball B(x0, r), r = [|x − x0|( nI
ωn−1

)
e−1

n ]
1
e . By Lemma 4.3, we have

|f̂(x) − f̂(y)|n ≤ Cλ,n,l logl2−1

(
nI

ωn−1rn

) ∫
B(x0,r)

J(z, f) dz. (49)

Using Lemma 4.1, we obtain

∫
B(x0,r)

J(x, f) dx ≤
Cλ,K,R,n(ε)

∫
B(x0,R)

J(z, f) dz

logλ−ε
(

nI
ωn−1rn

) . (50)

Combining the inequalities (49) and (50) with the assumptions λ > l2−1 and

nI
ωn−1rn =

(
nI

ωn−1|x−x0|n

) 1
e

we finally conclude the desired modulus of continuity

(5).

14



5 Proof of Theorem 1.2

In [5, Theorem 1.2], we proved the following result.

Theorem 5.1 Fix l ∈ {1, ..., n − 1}, λ > l − 1 and A, B ≥ 0. Let F be the

family of mappings f : Ω → R
n of finite distortion for which∫
Ω

J(x, f) dx ≤ A (51)

and ∫
Ω

exp
(
λ l
√

Kl(x, f)
)

dx ≤ B. (52)

Then F is closed under weak convergence in W 1,1
loc (Ω, Rn).

Combining this with Ascoli’s Theorem and the equicontinuity property of

the family F , obtained from Theorem 1.1, the claim follows.

6 Proof of Theorem 1.3

The proof of Theorem 1.3 will be based on the following result.

Theorem 6.1 Let f ∈ W 1,p
loc (Ω, Rn), p > n − 1 be a continuous mapping of

finite distortion KO ∈ Lq
loc(Ω), q > n − 1. Suppose that (16) holds, and the

equation∫
Ω

v(f(x))J(x, f1, .., fi−1, ϕ, fi+1, ..., fn) dx = −
∫

Ω

ϕ(x)
∂v

∂yi

(f(x))J(x, f) dx

(53)

is valid for all v ∈ C1(Rn, Rn), each ϕ ∈ C∞
0 (Ω) and every i ∈ {1, ..., n}.

Then f is either constant or both open and discrete, and f maps sets of

measure zero to sets of measure zero.

We refer to [8, Theorem 2.4 and Theorem 3.1] and [9, Theorem 3.2] for the

proof of Theorem 6.1. As we are going to appeal to Theorem 6.1, we first

observe that f ∈ W 1,p
loc (Ω, Rn), for all [1, n) and (16) holds, by Proposition 3.2.

Furthermore, using the power series presentation for the function exp(λK
1/l2

O )

and inequality (12), we see that KO ∈ Lq
loc(Ω), for all q ∈ (1,∞). Thus,

Theorem 1.3 is immediately from Theorem 6.1 once we verify equation (53).

15



Fix ϕ ∈ C∞
0 (Ω) and i ∈ {1, ..., n}. Pick a domain Ω′ so that sptϕ ⊂

Ω′ ⊂⊂ Ω and denote β = max{|∇v(x)| : x ∈ Ω
′}. We consider the mapping

Fi = (f1, ..., fi−1, βfi + v(f), fi+1, ..., fn).

By Proposition 3.2 we see that |D	f | n
n−1 log−1(e + |D	f |) ∈ L1

loc(Ω) and so

the same is true also to Fi. Since

J(x, Fi) =

(
β +

∂v

∂yi

(f(x))

)
J(x, f) ≥ 0

for almost every x ∈ Ω′, we can apply Theorem 1.3 in [1] to conclude that∫
Ω′

ϕ(x)J(x, Fi) dx = −
∫

Ω′
(βfi + v(f))J(x, f1, ..., fi−1, ϕ, fi+1, ..., fn) dx.

Furthermore, as (16) holds, we have∫
Ω′

ϕ(x)J(x, Fi) dx =

∫
Ω′

ϕ(x)
∂v

∂yi

(f(x))J(x, f) dx +

∫
Ω′

βϕ(x)J(x, f) dx

=

∫
Ω′

ϕ(x)
∂v

∂yi

(f(x))J(x, f) dx

−β

∫
Ω′

fiJ(x, f1, ..., fi−1, ϕ, fi+1, ..., fn)

and so (53) follows. All hypothesis of Theorem 6.1 are therefore fulfilled,

completing the proof of Theorem 1.3.
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