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Abstract. Let 
 be a bounded domain in IR2, let H be a 2 � 2 matrix with det (H) = 1. Let � > 0 and

consider the functional I� (u) :=
R


dist (Du (z) ; SO (2) [ SO (2)H) + �

�
�D2u (z)

�
� dL2z over the class BF of

Lipschitz functions from 
 satisfying aÆne boundary condition F . It can be shown by convex integration

that there exists F 62 SO (2) [ SO (2)H and u 2 BF with I0 (u) = 0. In this paper we begin the study of the

asymptotics of m� := infBF\W2;1 I� for such F . This is the simplest minimisation problem involving surface

energy in which we can hope to see the e�ects of convex integration solutions. The only known lower bounds

are lim inf�!0
m�

�
=1. In this paper we link the behavior of m� to the minimum of I0 over a suitable class

of piecewise aÆne functions. Let f�ig be a triangulation of 
 by triangles of diameter less than h and let Ah
F

denote the class of continuous functions that are piecewise aÆne on a triangulation f�ig. For function u 2 AF
let ~u 2 Ah

F
be the interpolant, i.e. the function we obtain by de�ning ~ub�i to be the aÆne interpolation of u

on the corners of �i. We show that if for some small � > 0 there exists u 2 BF \ C
2 \ Bilip with

I� (u)

�
� ���

then for h � �
p
� the interpolant ~u 2 Ah

F
satis�es I0 (~u) � h1�c

p
�.

Note that it is conjectured that inf
v2Ah

F
I0 (v) � h

1
3 and it is trivial that inf

v2Ah
F
I0 (v) � c0h so we

reduce the problem of non-trivial (scaling) lower bounds on infBF\C2\Bilip
I�

�
to the problem of non-trivial

lower bounds on inf
v2Ah

F
I0. This latter point will be addressed in a forthcoming paper.
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1. Introduction

In the 1980's from the work of Ball, James [1], [2] and Chipot, Kinderlehrer [5] a now well known model
for solid-solid phase transformations arose. In the model, microstructures observed in phase mixtures where
explained in terms of energy minimisation of deformations of the material.

Let u : 
! IR3 be a deformation of the material which occupies a reference con�guration 
, the total free
energy of this deformation is given by

I (u) =

Z



� (Du (x) ; �) dL3x (1)

where � (:; �) is the free energy per unit volume in 
 at temperature �. We �x � and we normalize � such that
infF � (F; �) = 0.

Formation of microstructure was shown to be closely related to the behavior of minimising sequences of I .
Many features of minimising sequences can be understood from the set fF : � (F ) = 0g. This set is known as
the energy wells of the functional I .

Certain natural assumptions on the behavior of �, in particular frame indi�erence, imply that K has to be
of the form

K = fSO (3)Ai : i = 1; 2; : : : ng (2)

where the Ai are symmetry related and depend on the action of the phase transition.
Given F 2Mn�n let BF denote the set of functions u : 
! IRn satisfying u (x) = F (x) for all x 2 @
. The

set of F for which infu2BF I = 0 turns out to agree with the quasiconvex hull Kqc (see [22] for the relevant
notions). For any F 2 int (Kqc) it is possible to lower the energy of functional I with a relatively simple
function u 2 BF that is built up from a simple (�nite) layering of regions on which Du is made to be aÆne,
these functions are known as laminates .

Mathematically speaking, the �rst real surprise in this theory is the existence of exact minimisers of func-
tional I . Formally; given F 2 Kqc there exists a function u 2 BF such that

Du (x) 2 K for a:e: x 2 
: (3)

Even though functional I is not quasiconvex (by the very existence of such exact solutions) and therefor not
lower semicontinuous with respect to weak convergence, absolute minimizers exist and can be constructed.

Following the work of Dacorogna and Marcellini [8], M�uller and �Sver�ak [18], and later by Sychev [24] and
Kirchheim [10] there now exist a wide variety of methods to prove the existence of such solutions.

The approach of M�uller, �Sver�ak was to apply the theory of convex integration developed by Gromov [12];
convex integration is a far reaching generalisation of the methods developed by Nash and Kuiper in their work
on isometric embeddings.

Dacorogna and Marcellini used Baire category methods that were introduced by Cellina [3] and developed
by DeBlasi and Pianigiani in the context of Cauchy problems for ordinary di�erential inclusions.

The method of M�uller, �Sver�ak is in some sense more constructive in that the functions u satisfying (3) are
the limit in the W 1;1 norm of a sequence of explicitly constructed functions. These functions are, roughly
speaking, \laminate like" in nature. Surprisingly, strong convergence in W 1;1 norm is achieved by making the
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functions oscillate faster and faster. The limiting function is a wild object. In fact it has been proved that
solutions to (3) must be such that Du 62 BV (
), see [7].

So exact minimisers of functional I are only possible due to the fact that I takes no account of the "cost"
of oscillations. This is physically unrealistic. Since oscillations in minimisers occur when the derivative of the
function jumps from one well, say SO (3)Ai, to another well SO (3)Aj , the "amount" of oscillation is related
to the total "surface area" of the regions in which the derivative of the minimizer lies in speci�c wells, this is
referred to as the surface energy . The bulk energy is the

R


� (�) dL2x part of the functional.

Functional I was designed to model situations for which the surface energy is small. From the mathematical
perspective the simplest adaption of the functional that takes account of surface energy is:

I� (u) =

Z



� (Du (x)) + �
��D2u (x)

�� dL2x (4)

This functional is minimised over functions u 2W 2;1 (
) \ BF .

1.1. The question: The e�ect of Surface Energy on Microstructure. The question of interest is
whether the unexpected existence of exact solutions to inclusion (3) having aÆne boundary condition has any
e�ect on the scaling of infW 2;1\BF I� as �! 0. In some sense this could be expected, in words; as �! 0 surface
energy becomes arbitrarily cheap, we can concern ourselves less and less with oscillations and just concentrate
on minimizing the bulk part of the functional. It may there for be reasonable to expect that minimisers for
suÆciently small � are something like slightly smoothed out solutions of (3).

This question is important because convex integration solutions are important. Recently, long standing
questions as to the regularity of systems of elliptic and parabolic equations have received surprising counter
examples via convex integration methods, [20], [21]. Speci�cally it has been proved there exist nowhere C1

solutions to the Euler Lagrange equations of a strictly quasiconvex functional. This is in contrast to the
well known result of Evans [9] that minimisers of strictly quasiconvex functions are C1;� on a dense open,
full measure subset of 
. In [21] a parabolic system that starts from smooth initial data and evolves into a
function that is nowhere C1 is exhibited.

Let K = SO (2) [ SO (2)H , F 2 intKqc. The di�erential inclusion

Du 2 K a:e: (5)

for function u 2 BF is the simplest convex integration result. And the minimisation problem

inf
u2BF\W 2;1

I� (u) (6)

is the simplest \physical" situation where we could hope to see the e�ects of convex integration. The question
of asymptotics of infBF

I�
�
is a simple case of the more fundamental question; how much do convex integration

solutions oscillate?
The only known lower bounds on (6) are infu2BF

I�(u)

�
! 1 which follows from the result of Dolzmann,

M�uller [7].

As a consequence of �Sver�ak's characterization of the wells K, [23] (namely that the quasiconvex hull is in
the second laminate convex hull) it is easy to see

inf
u2BF\W 2;1

I� (u)

�
< c��

2
3 :

If convex integration type solutions start having an e�ect on our functional for suÆciently small � then we

can expect to be able to "beat" the scaling c��
2
3 . Conversely if it could be shown that infAF\W 2;1

I�
�
� c0��

2
3

this would say that convex integration solutions do not a�ect functional I�.
Note that the only method by which non-trivial lower bounds on surface energy have previously been

obtained for simpli�ed (�nite well) versions of functional I� is to use the smallness of the bulk energy of
function u to show that u must lie close to the aÆne boundary condition. Since the aÆne boundary condition
is a non-trivial laminate convex combination of matrices in the wells, the only way u can remain close the
aÆne boundary is if the derivative of u, going up through region 
, jumps continuously from one well to
another. In this way lower bounds on surface energy can be easily harvested [17],[13].



4 LOWER BOUNDS FOR THE TWO WELL PROBLEM

In our case, by the very existence of convex integration solutions, functions even with zero bulk energy need
not behave anything like the aÆne boundary. Hence it is necessary to somehow use the smallness of surface
and bulk energies in combination to control the function.

The main contribution of this paper is to reduce the problem of (non-trivial) lower bounds for I�
�
to the

problem of (non-trivial) lower bounds for the �nite element approximation of I . In the follow up to this
paper [14] we will establish such bounds. Before stating our results we need to introduce the notation and
background to explain the scaling of the �nite element approximations of I.

2. Background and Notation

We let H denote a diagonal matrix of the form

H =

�
~� 0
0 ~��1

�
for some ~� 2 (0; 1). Let � = min

�
~�; 10000�1

	
and we assume throughout that � is radically smaller than any

small constant that might appear in the proof.
Let P (a; �1; �2; r) denote the parallelogram centered on a of side length equal to r with sides parallel to

�1 and �2. We will refer to this as a skewcube .
We let F (a; v1; v2) denote the parallelogram centered on a with one side parallel to v1 of length jv1j and

the other side parallel to v2 of length jv2j.
We will often be required to consider ODEs of the form

X (0) = x0 and
dX

dt
(t0) = D	(X (t0))

where 	 is some C2 scalar function. Informally when we use the expression \run X forward in time until

it hits ..\ we consider the set fX (t) : t > 0g and we �nd the smallest t1 > 0 such that X (t1) reaches the
boundary of some set. The expression \run X backward in time until it hits ..\ is de�ned similarly.

Let

D (�) :=

�
M 2M2�2 : sup

v2S
jMvj � 1

�2
and inf

v2S
jMvj � �2

�
:

and we let

AF (
) =
�
u 2 C2 (int (
)) : u (x) = F (x) for x 2 @
 and Du (x) 2 D (�) for any x 2 int (
)

	
:

We will be considering minimisers of functional I� over this function class. As we will be dealing with the
case det (H) = 1 a solution to the di�erential inclusion (5) is given by method of M�uller and �Sver�ak ([19]).
Their method yields easily the existence of a sequence uk 2 AF (
) such that uk ! u in W 1;1 (
) for some
Lipschitz function u that solves (5).

In this paper we will have to deal with many constants, all of them in one way or the other dependent on
the eigenvalues of H . We adopt the following convention; constants that carry through the whole proof from
lemma to lemma will be denoted c1; c2; : : : . Inside each lemma the \local" constant will be denoted c1; c2; : : : .
In each lemma \we start the clock back" and begin by numbering our local constants from c1. We also make
the convention that c1 � c2 � c3 : : : .

2.1. Finite Element Approximations. As is standard in �nite element approximations, we will say a
triangulation (denoted 4�) of 
 of size � is a collection of pairwise disjoint triangles f�ig all of diameter � such
that


 �
[

�i24�

�i:

Given a function u, we can approximate u uniformly by a function ~u that is piecewise aÆne on the triangles
of 4� by letting ~ub�i be the aÆne map we obtain from interpolating u on the corners of �i. We will call ~u
the F.E. approximation of u. When we replace the function class of a minimisation problem with respect to
functional J , with a the class of F.E. approximations to the functions in the function class, this is known as
the �nite element approximation to J .
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Finite element approximations of functionals such as I have received much interest, for example see [15],[17],
[4]. In this paper our interest in these approximations comes mainly from the fact that they provide a conve-
nient intermediary step for the study of surface energy problems: Given a triangulation for which the edges
of the triangles are not parallel to the rank-1 connections of the wells K, every time the F.E. approximation
to a function jumps from one well to another, there must be at least one triangle which is nowhere near the
wells. More informally; if for example we have an F.E. approximation to a laminate, every triangle that cuts
through an interface between the regions where the derivative of the laminate takes di�erent wells will be such
that the aÆne map we get from interpolating the laminate on the corners of the triangle will have its linear
part some distance from the wells.

In this way, F.E. approximations re
ect a competition between \surface energy" as given by the error con-
tributed from jumps in the derivative, and bulk energy which in the case of \laminate like" F.E. approximations
is basically the width of the interpolation layer.

F.E. approximations of a three well functional ~I of the form I , over a function class having aÆne boundary
condition in the second laminate convex hull of the wells have been studied by Chipot [4] and the author
[13]. If 4h denotes a triangulation of size h and AhF denotes the set of functions that are piecewise aÆne on

4h satisfying the aÆne boundary condition F . Chipot showed infu2Ah
F

~I (u) � Ch
1
3 and the lower bound of

infu2Ah
F

~I (u) � ch
1
3 was provided by the author. From �Sver�ak's characterization [23] we even know the exact

arrangement of rank-1 connections between the wells SO (2) [ SO (2)H and a matrix in the interior of the
quasiconvex hull. The �nite well functional studied in [13] precisely mimics these rank-1 connections. We feel
con�dent in conjecturing:

Conjecture 1. Let K := SO (2)[ SO (2)H, H =
�
� 0
0 ��1

�
. Let 4h be a triangulation of 
 of size h with the

edges of the triangles not in the set of rank-1 direction of K.

Let AhF denote the set of function with aÆne boundary condition F that are piecewise aÆne on the trian-

gulation 4h. Let d (�; B) denote the Euclidean distance away from set B. Let I (u) :=
R


d (Du (x) ;K) dL2x

then we have

inf
u2Ah

F

I (u) � ch
1
3

The contribution of this paper that is most recognizably relevant to the asymptotics of infu2AF

I�(u)

�
is to

reduce the proof of lower bounds of the form infu2AF

I�(u)

�
� ��� (for suÆciently small �) to lower bounds of

the form infv2Ah
F
I (v) � h1�c

p
� for h � �

p
� .

3. Statement of Results

Theorem 1. Given region 
 and triangulation 4� with triangulation size �. Let m1 � 2048. Let v 2 AF (
).
If we have for some small � Z




d (Dv (x) ; SO (2) [ SO (2)H) dL2x � �m1

and Z



��D2v (x)
�� dL2x � �

� 4096
m1

then the F.E. approximation ~v� of v on 4� satis�es

I (~v�) � c�
1� 8192

m1 :

This Theorem is basically a consequence of the following Theorem.

Theorem 2. Given region 
 and triangulation 4� with triangulation size �. Let m0 � 2048. Let v 2 AF (
)
and let skewcube S := P (a; �1; �2; c�) be such that N �

�2
(S) � 
. If for some small � > 0 we haveZ

S

d (Dv (x) ; SO (2) [ SO (2)H) dL2x � �
7m0
2

+8�2

then either
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� Z
S

��D2v (x)
�� dL2x � c0��

� or given triangle �i 2 4� containing a, if Li denotes the linear part of the aÆne map obtain from

interpolating v on the corners of �i then

d (Li; SO (2) [ SO (2)H) < �
m0
1024 :

Theorem 1 has as an easy corollary

Corrolary 1. Given region 
 and triangulation 4h with triangulation size h. Let m1 � 2048. If v 2 AF (
)
is such that

I� (v)

�
� �

� 2048

m2
1

then for h := �

m2
1�2048

m3
1 , the F.E. approximation ~vh of v on 4h satis�es

I (~vh) � h
1� 8192

m1 :

The bulk of this paper will be devoted to proving Theorem 2.

Acknowledgments: I am greatly indebted to Bernd Kirchheim for the many useful conversations and
suggestions that facilitated my entry into this subject. Thanks to Bob Jerrard for many suggestions, expla-
nations and for great generosity with his time during our stay at the MPI, similar thanks to Micheal Sychev.
Thanks also to Stefan M�uller for improvements to the introductory sections. This work was carried out with
the support of an EPDI fellowship, mostly during the author's stay at the MPI in Leipzig and completed
during the winter at the Mathematics Department of the University of Jy�askyl�a, the hospitality of both these
institutes is gratefully acknowledged.
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4. Plan of Proof

The proof is long, but essentially made up of only four basic ideas. We explain them in chronological order
(which is not the order they appear in the proof) because this still seems the best way to explain how the
proof builds up.

4.1. The pull back idea. To begin with note that there are two linearly independent vectors �1 and �2 such
that jH�ij = 1 for i = 1; 2. See for example Fig. 14. Every unit vector between �1 and �2 (denoted by �2)
will be mapped by H to a vector of size strictly less than 1. Similarly every vector between ��1 and ��2
(denoted by �1) will by shrunk by H . For this reason �1 [ �2 will be called the shrink directions.

Now the most basic example of a function satisfying the aÆne boundary condition that minimizes bulk
energy is a laminate . In the reference con�guration this can be seen as a function de�ned on a collection of
strips running parallel to either �1 or �2 for which the derivative of the laminate alternates from one strip
to the next from being in SO (2) to being in SO (2)H . For simplicity, let us suppose for the time being the
strips are parallel to �1 and let us denote the laminate by u. Now if all our strips are of width w, by Fubini
and the fact that det (H) = 1 and jH�1j = 1 we know that the images of our strips under the action of u will
be to send them to strips of width w, as shown Fig. 1.

φ 1

φ 2
Ξ

Ξ

Q
R

TS

P

1

2

Figure 1

Now if we want a path that travels through the strips in the image in the quickest way possible (i.e. a
path that goes from one strip to the next with the minimum length possible) then clearly such a path would
traverse at right angles to the strips in the image, as shown in Fig. 1. Let P denote this path. Now we consider
the pull back of P in the image. Let t (z) denote the tangent to the path u�1 (P ) at point z, so we have the
following formula: H1 (P ) =

R
u�1(P )

jDu (x) t (x)j dH1x. Let Q denote a subsegment of the path that is given

by the path intersected with one strip in the image (denoted S, see Fig. 1) for which Dubu�1(S) 2 SO (2). Now

H1 (Q) = w and as u�1 (Q) connects the edges of u�1 (S), so H1
�
u�1 (Q)

�
� w. Since Dubu�1(S) 2 SO (2)

we have

w = H1 (Q) =

Z
u�1(Q)

jDu (x) t (x)j dH1x = H1
�
u�1 (Q)

�
:

Thus u�1 (Q) must be a straight line going through S perpendicular to �1. Now let R denote the subsegment
of the path given by the path intersected with a strip in the image (denoted by T ) for which the Dubu�1(T ) 2
SO (2)H . It should be obvious that u�1 (R) is not going to be a line perpendicular to �1, since if our laminate
pulled back two linearly independent straight lines to straight lines it would be aÆne. On the other hand, by
the same argument as for Q, if u�1 (R) isn't perpendicular to �1 and so H1

�
u�1 (R)

�
> w, then (by the fact

that u is a laminate and so u�1 (R) is a straight line) all the points x 2 u�1 (R) must be such that t (x) 2 �1,
i.e. t (x) must be in the shrink directions. We examine the situation more closely, see Fig. 2.

Now u�1 (Q) needs to connect the edges of u�1 (T ) (which are of course distance w apart) whilst keeping
the integral

R
u�1(Q)

jDu (x) t (x)j dH1x small. As can be seen from Fig. 14, the vector that shrinks most under

the action of H is right in the middle of ��1, ��2. We denote this vector by  0
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φ 1

φ 2

Ξ

w

<>1

u (T)−1

Ξ

1

2

Figure 2

Let W be the straight line connecting the edges of u�1 (T ), which minimizes
R
W
jHt (x)j dH1x. In deciding

the angle of W there is a compromise between having W close to parallel with  0 and trying to keep the
length of W not too much bigger than w. Its an exercise to calculate the optimal direction , we will denote it
�1.

Now u�1 (Q) connects the edges of u�1 (T ) and w = H1 (Q) =
R
u�1(Q)

jHt (x)j dH1x. So since w minimizes

we must have that
R
W
jHt (x)j dH1x � w. If the inequality was strictly less, then as u (W ) connects the edges

of T , so we would have

w >

Z
W

jHt (x)j dH1x = H1 (u (W )) � w;

contradiction. So u�1 (Q) is the minimiser and hence u�1 (Q) must be parallel to �1.
So we know exactly what the pull back of p looks like; in strips in the reference with derivative in SO (2)

it is forms a line perpendicular to �1. And in strips in the reference with derivative in SO (2)H it is forms a
line parallel to �1. As shown on Fig. 1.

Now we wish to apply what we have learned to a general function v : 
! IR2 with small bulk energy (i.e.R


d (Dv (x) ; SO (2) [ SO (2)H) dL2x < �L2 (
)). We take lines through the reference going in direction �1

going through 
 and consider their image under v, as shown in Fig. 3.

φ 1

φ 2
Ξ

l
l

v(l ) v(l )

<w

12

2
1

2

Figure 3
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Suppose for two lines l1, l2 we have that v (l1), v (l2) are distance less than w apart at some point, as shown.
Let l be the line of length less than w joining v (l1) to v (l2). We consider the pull back v�1 (l). Let n1 denote
the anticlockwise normal to �1. Now as we have an L1 bound we know that most of the points x 2 v�1 (l) are
close to the wells, if x 2 v�1 (l) such that Du (x) 2 Np

� (SO (2)) it doesn't matter which direction the tangent

t (x) is in. On the other hand for those x 2 v�1 (l) such that Dv (x) 2 Np
� (SO (2)H) the worst thing that

can happen is that t (x) = �1. But even in this case (as we know from the example we studied) l will \�ll up"
according to how far in direction n1 path v

�1 (l) travels. So we have

H1 (l) =

Z
v�1(l)

jDv (x) t (x)j dH1x � (1�
p
�)L1

�
P�?1

�
v�1 (l)

��
=
�
1�

p
�
�
w:

So this implies the images of lines l1 and l2 must be (by at least (1�
p
�)w) \pushed over" from one another.

This is our �rst restriction on the geometry of the function we want to study, just coming from smallness of
bulk energy.

4.2. ODE method. We consider the same picture as before but from a di�erent perspective. So l1; l2; : : : are
lines in direction �1 going through 
 and we consider the images v (l1) ; v (l2) ; : : : . Now supposing we were
on a point x 2 v (l1) and we wanted to get to v (l2) via a path of the shortest length.

φ 1

φ 2
Ξ

v(l )v(l )2 1 ll 12

x
ψ(  )x1

2

Figure 4

The most natural way to do it would be to consider the vector �eld given by the derivative of the function
	1 : v (
) ! IR2 de�ned by 	1 (x) := v�1 (x) � n1. If we \follow" the vector �eld from point x it will indeed
take us along the optimal path to v (l2). But \following" a vector �eld is exactly �nding an integral curve for
a vector �eld, which means solving the following ODE

X (0) = x
dX

dt
(t1) = D	1 (X (t1)) :

Now if point y 2 fX (t) : t > 0g is such that Dv
�
v�1 (y)

�
2 Np

� (SO (2) [ SO (2)H) we calculate that

D	1 (y) = Dv�T (y) � n1. Letting R
�
v�1 (y)

�
S
�
v�1 (y)

�
:= Dv

�
v�1 (y)

�
be the polar decomposition of

Dv
�
v�1 (y)

�
(i.e. R

�
v�1 (y)

�
2 SO (2) and S

�
v�1 (y)

�
2M sym) we haveDv�T (y)n1 = R

�
v�1 (y)

�
S�1

�
v�1 (y)

�
n1

and as S
�
v�1 (y)

�
2 Np

� (fId;Hg) so either S
�
v�1 (y)

�
2 Np

� (Id) and so
��S �v�1 (y)�n1�� � 1 or S

�
v�1 (y)

�
2

Np
� (H) and so

��S �v�1 (y)�n1�� � ��H�1n1
�� = 1 (see Fig. 14). So assuming the path of the vector �eld is such

that Dv stays close to the wells, if � is a connected subset of the set fX (t) : t > 0g with end points e 2 v (l2),
s 2 v (l1) and with the property

R
�
d
�
Dv
�
v�1 (x)

�
; SO (2) [ SO (2)H

�
dH1x < �H1 (�) then

j	1 (e)�	1 (s)j =
���v�1 (e)� v�1 (s)

�
� n1
�� � H1 (�) :

The precise statement of this is given by Lemma 3. So on Fig. 4, if v�1 (s) 2 l1 and v�1 (e) 2 l2 then
H1 (�) � w, however if � is a wavy line, then je� sj < H1 (�) and so we have e 2 v (l2) is distance less than
w away from s 2 v (l1). This contradicts the \pull back" idea. And so � must form a nearly straight line.
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4.3. The Coarea Alternative. From the \pull back idea" and the \ODE method" it seems we are able to
gain quite a lot of control of our function v just by using bulk energy. The catch is that whilst it is not hard
(by Fubini and the Area Formula) to �nd lines in the image for which Dv

�
v�1 (�)

�
stays close to the wells, its

much harder to �nd integral curves to the vector �eld D	1 with this property. We require a kind of curvilinear
version of Fubini and this of course is nothing other than the Coarea formula.

To invoke the Coarea formula we need to de�ne a function �1 : v (
)! IR such that the level sets ��1
1 (t)

form integral curves of D	1. By smoothness of u and hence of D	1 and so by uniqueness of ODE solutions, its
easy to see that such a function exists. Let a be the center of 
, in its crudest possible manifestation we de�ne
�1 in the following way: For any x 2 v (
) we run the ODE that forms the integral curve of D	1 containing x
until we reach v ((a+ h�1i) \ 
) (for easy reasons the integral curve must intersect this 1-set at only one point)
we de�ne p (x) to be the point of v ((a+ h�1i) \
) that we reach, then we de�ne �1 (x) := v�1 (p (x)) � �1.
Let J (x) := d

�
Dv
�
v�1 (x)

�
; SO (2) [ SO (2)H

�
, the coarea formula tells usZ




J (x) jD�1 (x)j dL2x =
Z
IR

Z
�
�1
1 (t)

J (x) dH1xdL1t:

So assuming the expression on the left hand side is small we are guaranteed the existence of many integral
curves with small bulk energy. However by the existence of an abundance of functions with arbitrarily small
bulk energy that are nothing like close to being aÆne, smallness of

R


J (x) jD�1 (x)j dL2x is obvious a non-

trivial issue. It is here that we �nally have to use the information we have about the surface energy of
v.

If
R
v(
)

J (x) jD�1 (x)j dL2x is large, then we must (by an application of the coarea formula with re-

spect to the lines v ((z + h�1i) \ 
) using jD	1j as the Jacobian) be able to �nd a point z 2 
 such thatR
v((z+h�1i)\
)

J (x) dH1x is very small butZ
v((z+h�1i)\
)

J (x) jD�1 (x)j dL2x is big: (7)

So there must exist a set B � v ((z + h�1i) \ 
) of quite small H1 measure such that
R
B
jD�1 (x)j dH1x is

big. Now considering the pull back of the integral curves into the reference con�guration gives us Figure 5.

φ 1

φ 2
Ξ

a1

b
d1

c

1

1

z

a

2

Figure 5

We arrive at this diagram in the following way: Firstly its an exercise to see that lines of the form v (h�1i+ z)
form integral curves to D�1. So we can �nd a collection of intervals [ak; bk] � (h�1i+ z) such thatZ

S
k
v([ak;bk])

jD�1 (x)j dH1x =
X
k2IN

�1 (bk)��1 (ak) is big:

On the other hand by de�nition of �1 this means the integral curves running from the endpoints of each
interval [ak; bk] must be splayed out as is shown. We let ck denote the point in a + h�1i reached from ak by
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the pullback of the integral curve that goes through v (ak) and let dk be the point in a+ h�1i reached from bk
by the pullback of the integral curve that goes through v (bk), as shown on Fig. 5.

Recall by polar decomposition of the derivative; Dv (x) =: R (x)S (x) we have R (x) 2 SO (2), S (x) 2
M sym. Its a calculation to see that if t (x) denotes the tangent to pull back of the integral curve at x, then

t (x) := S�1 (x)S�1 (x)n1: (8)

Now we know from the fundamental theorem of calculus that the integral of the di�erence of the tangents

to the pull backs of the integral curves starting at ak; bk must be bigger than
jck�dkj

2
. From (8) the di�erence

in tangents from one curve to the next is a lower bound for the di�erence in Dv between these two curves, so
we have an inequality of the following form.Z




��D2v (x)
�� dL2x �X

k

jck � dkj
2

� 1

2

Z
B

jD�1 (x)j dH1x � c0

Z
v(z+h�1i)

J (x) jD�1 (x)j dH1x:

So we have the \Coarea alternative" eitherZ



��D2v (x)
�� dL2x is not small

or Z
v(
)

J (x) jD�1 (x)j dL2x is small

and we can �nd many integral curves with small bulk energy. The most basic form of the coarea alternative
is given by Lemma 10.

4.4. Finite element reduction. If we have region � such that
R
v(�)

J (x) jD�i (x)j dL2x is small for i = 1; 2,

by the pull back idea and the ODE method we know that we can �nd many integral curves of the form ��1
1 (t)

and ��1
2 (t) (where �i denotes the level set function for 	i) which form approximate straight lines. We know

from our analysis of the laminate example in section 4.1, exactly what the pull back of straight lines look
like. Since Dv stays close to the wells along our integral curves ��1

i (t), by the same arguments we end up

being able to show that the pull back of ��1
1 (t) and ��1

2 (t) have very much the same form. Informally; our

control of the integral curves
�
��1
1 (t) : t 2 R

	
says that our function v has to be something like a laminate

with strips parallel to �1. And our control of integral curves
�
��1
2 (t) : t 2 R

	
says that v has to be something

like a laminate with strips parallel to �2. The only way v can be both these things is if Dvb� � R1H for some
R1 2 SO (2) or Dvb� � R2 for some R2 2 SO (2).

So the natural idea is to cut 
 into triangular subregions (i.e. take a triangulation of 
) of roughly �xed
size. Denote these regions as f�ig. For each �i, by the \coarea alternative" and what we have shown, eitherZ

�i

��D2v (x)
�� dL2x is not small

or
Dvb�i � RS

for some R 2 SO (2) and some S 2 fId;Hg. So if we let ~v be the function we obtain by interpolating v on
the corners of each �i (i.e. for each �i the aÆne function we obtain from interpolating v on the corners of �i
is given by ~vb�i), then we can expect I (~v) to be quite small, assuming the bulk and surfaces energies of v are
small enough.

This is how we reduce the problem to the problem of lower bounds for the �nite element approximation of
I .

In truth, the \coarea alternative" we apply to each �i is considerably more subtle than the argument de-
scribed here, but the basic ideas are the same. When needed we will preface the proof of the more intricate
lemmas with a preproof to indicate how the argument goes.



12 LOWER BOUNDS FOR THE TWO WELL PROBLEM

5. Preliminary Lemmas

5.1. The vector �eld D	i.

5.1.1. Traveling in Cones.

Here we set up one of the basic lemmas about integral curves to the vector �eld D	i. Quite simply this lemma

says that when we pull back with v�1 one such integral curve, the resulting curve will be a Lipschitz graph over

the line �?i . More informally, the pull back of the integral curve will always travel in cones. The proof is just

a calculation.

Lemma 1. Let v 2 AF (
). Let �1; �2 2 S1 be the rank-1 directions of H, let ni 2 S1 be the counterclockwise
normal to �i for i = 1; 2. Let

X+ (x; v; �) :=
�
z 2 IR2 :

��(z � x) � v?
�� � � (z � x) � v; (z � x) � v > 0

	
:

be the standard one sided cone. For i 2 f1; 2g given function v 2 AF (
) we can de�ne a function 	i : v (
)!
IR in the following way:

	i (x) = v�1 (x) � ni:
By smoothness of v the vector �eld

D	i : v (
)! IR2

is smooth. For any x0 2 IR2
if we solve the ODE

dX

dt
(t) = D	(X (t))

X(0) = x0;

then the path X has the property

v�1 (X (t)) 2 X+

�
v�1 (x0) ; ni;

1

�6

�
8 t 2 IR+ \ ft : X (t) 2 v (
)g

and

v�1 (X (t)) 2 X+

�
v�1 (x0) ;�ni;

1

�6

�
8 t 2 IR� \ ft : X (t) 2 v (
)g

Proof. Let i 2 f1; 2g and let

	i (x) = v�1 (x) � ni:
Given x0 2 IR2 and let X : IR+ ! IR2 be a solution of the ode; X (0) = x0,

dX

dt
(t0) = D	i (X (t0)) :

Let z0 = X (t0) for some t0 > 0, so
dX

dt
(t0) = D	i (z0)

and note

D	i (z0) = D
�
v�1 (z0) � ni

�
= Dv�T

�
v�1 (z0)

�
ni: (9)

Since det (Dv (x)) > �2 for every x 2 IR2, we have the following decomposition;

Dv (x) = R (x)S (x) (10)

for some R (x) 2 SO (2) and some positive de�nite symmetric matrix S (x). So

Dv�T
�
v�1 (z0)

�
= R

�
v�1 (z0)

�
S�1

�
v�1 (z0)

�
: (11)

Hence
dX

dt
(t0) = R

�
v�1 (X (t0))

�
S�1

�
v�1 (X (t0))

�
ni: (12)

Let Y : IR+ ! IR2 be the path de�ned by

Y (t) := v�1 (X (t)) ;
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so for any t0 > 0 let vt0 be the (non-normalised) tangent to path Y at point Y (t0), so

vt0 =
dY

dt
(t0) = Dv�1 (X (t0))

dX

dt
(t0) ; (13)

and as Dv�1 (X (t0)) =
�
Dv
�
v�1 (X (t0))

���1
putting (10), (12) and (13) together

[Dv (Y (t0))] vt0
(10)
= [R (Y (t0))S (Y (t0))] vt0
(13)
=

dX

dt
(t0)

(12)
=

�
R (Y (t0))S

�1 (Y (t0))
�
ni:

This gives;
vt0 =

�
S�1 (Y (t0))S

�1 (Y (t0))
�
ni: (14)

Now its easy to see that S�1 (�)S�1 (�) is symmetric. If we let �2 > 0 and �2 > 0 denote the eigenvalues of
S�1 then the eigenvalues S�1 (�)S�1 (�) will be �22 > 0 and �22 > 0 and in particular there exits a unitary
matrix U such that UTS�1 (�)S�1 (�)U = D where D is a diagonal matrix with entries �22 and �

2
2. So for any

m =
�
m1
m2

�
2 S1, letting ~m = UTm we have

m � S�1 (�)S�1 (�)m = ~m �D ~m = �21m
2
1 + �22m

2
2 > �2

and so we have
dY

dt
(t0) � ni � �2: (15)

Now from (13) and (14) we have����dYdt (t0)

����2 = ���S�1 (Y (t0)) � S�1 (Y (t0))
�
� ni
��2 � 1

�4
: (16)

Note from (15), (16) we have

Y (t) 2 X+

�
v�1 (x0) ; ni;

1

�6

�
(17)

for all t > 0.
In exactly the same way, if we solve the ode X (0) = x0 and

dX

dt
(t0) = �D	i (X (t0))

we can show that if Y (t0) = v�1 (X (t0)) then

Y (t) 2 X+

�
v�1 (x0) ;�ni;

1

�6

�
; (18)

and this completes the proof. �

5.1.2. The level set function.

As noted in the introduction (section 4.3), we will need to integrate up our integral curves with with the coarea

formula. To do this we require a function whose level sets form the integral curves. Here such a function is

de�ned and its basic properties are proved.

Lemma 2. Let v 2 AF (
) and let S = P (a; �1; �2; �) be such that N �

�9
(S) � 
. Let i 2 f1; 2g and let

	i (x) := v�1 (x) � ni.
Take q 2 S. We de�ne �q := (q + h�1i) \
. We can de�ne function

�i
q : v (S)! IR

such that for any x0 2 v (S), the path de�ned by the ODE

X(0) = x0

dX

dt
(t) = D	i (X (t))

(19)
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is such that there exists a unique t0 2 IR for which

X (t0) 2 v
�
�i
q

�
;

fX (t) : t 2 IRg = �i �1
q

�
�i
q (X (t0))

�
:

and

sup
x2v(S)

���i
q (x)

�� < 2�

�2
: (20)

Proof. To start, we note that for any x0 2 v (S) by smoothness of v on 
0 we can uniquely solve the ode

X(0) = x0

dX

dt
(t) = D	i (X (t)) :

(21)

Let s (x0) be the �rst point of @v (
) to be hit by the path X going backwards in time from x0. And let
e (x0) be the �rst point of @v (
) to be hit by the path X going forwards in time from x0. Let �1 2 IR be the
unique number such that X (�1) = s (x0) and let �2 2 IR be the unique number such that X (�2) = e (x0). By
de�nition; for any t 2 [�1; �2] we have v (t) 2 v (
). Let I (t0) := fX (t) : t 2 [�1; �2]g. Let T (x0) := [�1; �2].

Now I (x0) is the continuous image of a connected interval, so is connected.
By Lemma 1 we know�

v�1 (X (t)) : t 2 IR+ \ T (x0)
	
� X+

�
v�1 (x0) ; ni;

1

�6

�
�
v�1 (X (t)) : t 2 IR� \ T (x0)

	
� X+

�
v�1 (x0) ;�ni;

1

�6

�
:

(22)

So from (22) we have that for any x 2 Phn?
i
i
�
v�1 (I (x0))

�
we have P�1

hn?i i
(x) \ v�1 (I (x0)) consists of one

point.
So since Phn?1 i

�
v�1 (I (x0))

�
is a connected set, if v�1 (I (x0))\�i

q = ; it can only be because path X has

run out of region v (
) before crossing v
�
�i
a

�
. However since any point x0 2 S is at least distance �

�7
away

from @
 by (22) this can not happen. So the exists a unique point t0 2 IR such that X (t0) 2 v
�
�i
q

�
.

Now we de�ne �i
q : v (S)! IR as follows; For any x0 2 v (S) let X be the solution of

X(0) = v (x0)

dX

dt
(t) = D	i (X (t)) :

Let t (x0) 2 IR be the unique real number such that v�1 (X (t (x0))) \�q 6= ;. We de�ne

�i
q (x0) := v�1 (X (t (x0))) � �i;

by uniqueness of t (x0), �
i
q (x0) is well de�ned and its clear that �i �1

q

�
�i
q (x0)

�
= fX (t) : t 2 IRg. �
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5.1.3. Integrating along integral curves.

As mentioned in the introduction, section 4.2, one of the main observations in this proof is that for integral

curves for which the derivative Dv
�
v�1 (�)

�
stays close the wells, we have that jD	i (�)j � 1. So for a subseg-

ment U of such an integral curve of D	i with end points s and e, the H1 (U) is approximately j	i (e)�	i (s)j.
This is the contents of the statement of Lemma 3, the proof is just a calculation.

Lemma 3. Let v 2 AF (
). Let S := P (a; �1; �2; �) � 
 and let i 2 f1; 2g. Suppose we have for some t0 2 IR
we have a connected subset U � �i �1

a (t0) \ v (S) such thatZ
U

J (x) dH1x � �H1 (U) : (23)

If we let s; e be the endpoints of U then we have�
1� c1�

�4

�
j	i (e)�	i (s)j � H1 (U) �

�
1 +

c1�

�4

�
j	i (e)�	i (s)j :

Proof. For each x 2 U since K is compact we can �nd P (x) 2 K such that

d
�
Dv
�
v�1 (x)

�
;K
�
=
��Dv �v�1 (x)�� P (x)

�� :
Let E (x) = Dv

�
v�1 (x)

�
� P (x).

Let B =
�
x 2 U : d

�
Dv
�
v�1 (x)

�
; SO (2)

�
= d

�
Dv
�
v�1 (x)

�
; SO (2)H

�	
this is a closed set and since we

have (23) we know

H1 (B) < c1�H
1 (U) : (24)

Let
R =

�
x 2 U : d

�
Dv
�
v�1 (x)

�
; SO (2)

�
< d

�
Dv
�
v�1 (x)

�
; SO (2)H

�	
:

And let

S =
�
x 2 U : d

�
Dv
�
v�1 (x)

�
; SO (2)H

�
< d

�
Dv
�
v�1 (x)

�
; SO (2)

�	
:

Now S and R are open in ��1
a (q) and so

R = [nKn and S = [nIn
where In and Kn are open connected sets in U .

Let sn be the starting point of segment In (the point coming from the right) and let en be the endpoint.
For each x 2 In let tx 2 S1 denote the tangent to the curve In at point x. We will showZ

In

D	i (x) tx �
3 jE (x)j
�4

dH1x < H1 (In) <

Z
In

D	i (x) tx +
3 jE (x)j
�4

dH1x: (25)

To begin with note Z
In

D	i (x) tx dH
1x = 	i (en)�	i (sn) :

Recall,

R (�)S (�) = Dv (�) (26)

is the polar decomposition of of Dv (�).
We have already calculated that D	i (x) = R

�
v�1 (x)

�
S�1

�
v�1 (x)

�
ni. We let X : IR! IR2 be a solution

of

X(0) = sn

dX

dt
(t) = D	i (X (t)) :

(27)

Let Y (s) = v�1 (X (s)). We also have calculated that

dY

dt
(s) = S�1 (Y (s))S�1 (Y (s))ni; (28)

for s > 0. Let x0 2 In and let s0 > 0 be such that X (s0) = x0. So as v (Y (s0)) = X (s0) we have

dX

dt
(s0) = Dv (Y (s0))

dY

dt
(s0) ; (29)
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and as Dv (Y (s0)) = R (Y (s0))S (Y (s0)) so by (26), (28) and (29) we have

D	i (x0) =
dX

dt
(s0)

(28);(29)
= R (Y (s0))S (Y (s0))S

�1 (Y (s0))S
�1 (Y (s0))ni

= R (Y (s0))S
�1 (Y (s0))ni: (30)

So to estimate the length of D	i (x0) we need only know S�1 (Y (s0))ni however as we know Dv (Y (s0)) =:
P (Y (s0)) +E (Y (s0)) for some P (Y (s0)) 2 SO (2)H we have

S (Y (s0))
2

= Dv (Y (s0))
T
Dv (Y (s0))

= (P (Y (s0)) +E (Y (s0)))
T
(P (Y (s0)) +E (Y (s0)))

= P (Y (s0))P (Y (s0))
T
+E (Y (s0))

T
P (Y (s0)) +E (Y (s0))P (Y (s0))

T

+E (Y (s0))E (Y (s0))
T
; (31)

and recall P (Y (s0)) = ~RH for some ~R 2 SO (2) and so P (Y (s0))
T
P (Y (s0)) = HTRTRH = HTH . So

S (Y (s0))
2 2 N 3jE(x)j

�2

�
H2
�
and so

S�1 (Y (s0)) 2 N 3jE(x)j
�4

�
H�1� : (32)

And we claim for i = 1; 2; ��H�1ni
�� = 1: (33)

First we have to calculate �1, �2 and subsequently n1, n2. So we require����� ~� 0
0 1

~�

��
a

b

����� = (~�a)
2
+

�
b

~�

�2
= 1;

for vector ����� a

b

����� = 1:

To simplify expression we let � = 1
~�
.

So a2 = 1� b2 and inserting this into the �rst equation we have

~�2
�
1� b2

�
+ �2b2 = ~�2 +

�
�2 � ~�2

�
b2 = 1:

Hence

b2 =
1� ~�2

�2 � ~�2
;

a2 = 1� b2 =

�
�2 � ~�2

�
�
�
1� ~�2

�
�2 � ~�2

=
�2 � 1

�2 � ~�2
:

Thus

�1 =

0@ q
�2�1
�2�~�2q
1�~�2
�2�~�2

1A �2 =

0@ q
�2�1
�2�~�2

�
q

1�~�2
�2�~�2

1A : (34)

And hence

n1 =

0@ �
q

1�~�2
�2�~�2q

�2�1
�2�~�2

1A n2 =

0@ q
1�~�2
�2�~�2q
�2�1
�2�~�2

1A : (35)
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Thus

��H�1ni
�� =

������
�
� 0
0 ~�

�0@ �
q

1�~�2
�2�~�2q

�2�1
�2�~�2

1A������
=

������
0@ ��

q
1�~�2
�2�~�2

~�
q

�2�1
�2�~�2

1A������
= �2

�
1� ~�2

�
(�2 � ~�2)

+ ~�2
�
�2 � 1

�
(�2 � ~�2)

=
�2 � ~�2

�2 � ~�2

= 1: (36)

So we have proved (33).
Thus from (32), (30) and (33) we have that

jD	i (x0)j 2
�
1� 3 jE (x)j

�4
; 1 +

3 jE (x)j
�4

�
: (37)

Let

� (x0) := jD	i (x0)j =
����dXdt (s0)

���� : (38)

Now as X is a solution of (27) we have

tx0 =
dX
dt

(s0)��dX
dt

(s0)
�� = D	i (x0)

� (x0)
: (39)

and so from (39)

D	i (x0) � tx0 = � (x0) tx0 � tx0
= � (x0) :

And so from (37) and (38)Z
In

D	i (x) tx dH
1x 2

�
H1 (In)�

Z
In

3 jE (x)j
�4

dH1x;H1 (In) +

Z
In

3 jE (x)j
�4

dH1x

�
which implies (25).

Now we argue a similar inequality for the fKng. So let en; sn be endpoints of segment Kn. From (31) we
see that S

�
v�1 (x)

�
2 N 3jE(x)j

�4

(I) for any x 2 Kn so again we haveZ
Kn

D	i (x) tx �
3 jE (x)j
�4

dH1x � H1 (Kn) �
Z
Kn

D	i (x) tx +
3 jE (x)j
�4

dH1x: (40)

Now from (25) we haveX
n

Z
In

D	i (x) tx �
3 jE (x)j
�4

dH1x �
X
n

H1 (In) �
X
n

Z
In

D	i (x) tx +
3 jE (x)j
�4

dH1x

(41)

and from (40) we haveX
n

Z
Kn

D	i (x) tx �
3 jE (x)j
�4

dH1x �
X
n

H1 (Kn) �
X
n

Z
Kn

D	i (x) tx +
3 jE (x)j
�4

dH1x:

(42)
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Since for any subsegment I � U where I has endpoint a and b we haveZ
I

D	i (x) txdH
1x = 	i (b)�	i (a) = Ph�?

i
i
�
v�1 (I)

�
:

Let $ =
R
�
�1
a (t)\v(S)

3jE(x)j
�4

dH1x, note that by assumption we know $ < 3�
�4
H1 (U). Putting together (41)

and (42) we have thatX
n

L1
�
Ph�?1 i

�
v�1 (Kn) [ v�1 (In)

��
�$ �

X
n

H1 (Kn) +H1 (In)

�
X
n

L1
�
Ph�?1 i

�
v�1 (Kn) [ v�1 (In)

��
+$: (43)

Since we know from (24)

H1

 
Un
 [

n

(Kn [ In)
!!

� c1�H
1 (U)

so

H1

 
v�1

 
Un
 [

n

(Kn [ In)
!!!

� c1�H
1 (U)

�2
(44)

and thus we have from (43) and (44)

H1 (U) �
 X

n

H1 (Kn) +H1 (In)

!
+ c1�H

1 (U)

�
X
n2IN

L1
�
Ph�?1 i

�
v�1 (Kn) [ v�1 (In)

��
+$ + c1�H

1 (U)

� L1
�
Ph�?1 i

�
v�1 (U)

��
+

�
3

�4
+
2c1
�2

�
�H1 (U) : (45)

and similarly

L1
�
Ph�?1 i

�
v�1 (U)

��
�
�

3

�4
+
2c1
�2

�
�H1 (U) �

X
n2IN

H1 (Kn) +H1 (In)

� H1 (U)

and this establishes our claim.
�

5.2. The pullback idea.

This next lemma is a formalization of what has been described in section 4.1 of introduction as the pull back

idea. Essentially what it means is that for a function v of small bulk energy, lines of the form v (h�1i+ z1),
v (h�1i+ z2) are pushed over from one another. A better explanation can be obtained from section 4.1 of the

introduction.

Lemma 4. Given function v 2 AF (
). Let S = P (a; �1; �2; �) be such that S � 
. Let i 2 f1; 2g. For any

b; e 2 v (S), let � := [b; e] if we have Z
�

J (z) dH1z < � jb� ej

then

je� bj >
�
1� 2��2

p
�
�
j	i (e)�	i (b)j :
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Proof. Now letting tx 2 S1 denote the tangent to the curve v�1 (�) at point x.Z
�

J (z) dH1z =

Z
v�1(�)

jDv (x) txj J (v (x)) dH1x

� �2
Z
v�1(�)

J (v (x)) dH1x;

so we have

��2� jb� ej �
Z
v�1(�)

J (v (x)) dH1x:

Now v�1 (�) connects v�1 (b) to v�1 (e). Let

T =
�
x 2 v�1 (�) : J (v (x)) <

p
�
	
;

so we know that

H1
�
v�1 (�) nT

�
� ��2

p
� jb� ej : (46)

Now T is the countable union of connected segments In � v�1 (�). Now let an, bn be the end points of the
segment In. For i 2 f1; 2g we will show

jv (an)� v (bn)j � L1
�
Ph�?

i
i (In)

�
�
p
�H1 (In) (47)

Now recall we calculated ni at (35) (where � := ~��1)

n1 =

0B@ �
q

1�~�2
1

~�2
�~�2r

1

~�2
�1

1

~�2
�~�2

1CA =

0@ �
q

~�2(1�~�2)
(1�~�2)(1+~�2)q
1�~�2

(1�~�2)(1+~�2)

1A =

0@ � ~�p
(1+~�2)
1p

(1+~�2)

1A ; n2 =

0@ ~�p
(1+~�2)
1p

(1+~�2)

1A
now as a �rst step to proving equation (47) we will prove the following:
We �rstly we de�ne the shrink directions. Let �2 be the subset of vectors of S

1 between �1 and �2 and let �1 be
the subset of vectors of S1 between ��1 and ��2. Its easy to see that for any v 2 S1, jHvj � 1, v 2 �1 [�2
hence the name shrink directions.

Claim Let i 2 f1; 2g. We will show that there exists vector �i 2 �i such that for any  2 �i

jH j �  � ni +
c2 (ang ( ;�i))

2

4
: (48)

First we consider the inequality

jH j �  � n2 +
c2 (ang ( ;�2))

2

4
: (49)

Let

 =

�
cosa
sin a

�
; (50)

so equation (49) is equivalent tos
~�2 cos2 a+

sin2 a

~�2
� ~� cosap

~�2 + 1
+

sin ap
~�2 + 1

+
c2 (ang ( ;�2))

2

4
: (51)

and we will prove (51) in due course. Firstly we will show why inequality (48) for i = 1 follows from inequality
(49). Give  2 S1 of the form (50) we de�ne

� =

�
� cosa
sin a

�
: (52)

When we calculate �1 and �2 it will turn out that ��1 = �2, see (247) in the Appendix.
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Hence (see �g 6) if we have (49) then��� eH���� =
��� eH ��

���
� �� � n2 +

c2
�
ang

�
��;�2

��2
4

= � � n1 +
c2 (ang (�;�1))

2

4
;

so all that remains is to establish (49) which as we noted is equivalent to (51).
The proof of inequality (51) is quite involved, partly due to the fact its sharp. Let

f (a) := ~�2 cos2 a+
sin2 a

~�2
� ~�2 cos2 a

~�2 + 1
� sin2 a

~�2 + 1
� 2~� cosa sin a

~�2 + 1
;

so

f (a) = ~�2 cos2 a

�
1� 1

~�2 + 1

�
+ sin2 a

�
1

~�2
� 1

~�2 + 1

�
� 2~� cosa sin a

~�2 + 1�
~�2 + 1

�
f (a) = ~�4 cos2 a+ sin2 a

�
~�2 + 1

~�2
� 1

�
� 2~� cosa sina

~�2
�
~�2 + 1

�
f (a) = ~�6 cos2 a+ sin2 a� 2~�3 cosa sin a;

now using standard trigonometric identities we have

~�2
�
~�2 + 1

�
f (a) = ~�6

�
1 + cos 2a

2

�
+
1� cos 2a

2
� ~�3 sin 2a

2~�2
�
~�2 + 1

�
f (a) =

�
~�6 � 1

�
cos 2a� 2~�3 sin 2a+ ~�6 + 1:

Now

2~�2
�
~�2 + 1

�
f 0 (a) = �2

�
~�6 � 1

�
sin 2a� 4~�3 cos 2a

So

f 0 (~a) = 0 , �2 sin 2~a
�
~�6 � 1

�
� 4~�3 cos 2~a = 0

, �2 sin 2~a
�
~�6 � 1

�
= 4~�3 cos 2~a

, tan 2~a =
2~�3

(1� ~�6)
: (53)

Now as ~a is chosen from an interval of length less than �, there is only one ~a for which (53) is true. Let

�2 :=
�
cos ~a
sin ~a

�
: (54)

Let p =

r�
4~�6 + (1� ~�6)

2
�
=
�
1 + ~�6

�
, so sin 2~a = 2~�3

p
and cos 2~a =

(1�~�6)
p

. Now

2~�
�
~�2 + 1

�
f (~a) =

�
~�6 � 1

�
cos 2~a� 2~�3 sin 2~a+ ~�6 + 1

= �
�
~�6 � 1

�2
p

� 4~�6

p
+ ~�6 + 1

= �

�
4~�6 +

�
~�6 � 1

�2�
p

+ ~�6 + 1

= �
�
~�6 + 1

�
+ ~�6 + 1

= 0:

Now note

2~�2
�
~�2 + 1

�
f 00 (a) = �4

�
~�6 � 1

�
cos 2a+ 8~�2 sin 2a: (55)

Before continuing we need to estimate the lenght of �i. Observe �g 6.
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φ

φ1

2−φ

−φ1

2

<><>

p 0

21

1Ξ Ξ2

Figure 6

We let p0 =
�
�1 + �?1

�
\ fx : x � e2 = 0g. Its clear from �g 6 that H1 (�2) � 2 j�1 � p0j. So we have to �nd

point p0. From (34) we see that p0 is given by the following formula

p0 := �1 + �0

0BB@
r�

1�~�2
~��2�~�2

�
�
r�

~��2�1
~��2�~�2

�
1CCA

where �0 > 0 is some number such that

e2 �

0BB@�1 + �0

0BB@
r�

1�~�2
~��2�~�2

�
�
r�

~��2�1
~��2�~�2

�
1CCA
1CCA = 0: (56)

Now by (34), (56) is equivilant to

s�
1� ~�2

~��2 � ~�2

�
= �0

s�
~��2 � 1

~��2 � ~�2

�
, �0 =

r�
1�~�2
~��2�~�2

�
r�

~��2�1
~��2�~�2

� =

s�
1� ~�2

~��2 � 1

�
= ~�:

So

j�1 � p0j =

���������0
0BB@
r�

1�~�2
~��2�~�2

�
�
r�

~��2�1
~��2�~�2

�
1CCA
�������� = ~�:

Thus we have the estimate we want;

H1 (�2) = H1 (�1) � 2~�:

Now we will use this together with (55) to get a lower bound on f 00 for those a � such that
�
cos a
sin a

�
2 �2:

Since a 2 [0; ~�] � [0; 1) so from (55)

2~�2
�
~�2 + 1

�
f 00 (a) � min

�
4
�
1� ~�6

�
; 8~�2

	
(cos 2a+ sin 2a)

� min
�
4
�
1� ~�6

�
; 8~�2

	
(cos 2 + sin 2)

>
min

�
4
�
1� ~�6

�
; 8~�2

	
4

:

And so

f 00 (a) � min
�
4
�
1� ~�6

�
; 8~�2

	
8~�2 (~�2 + 1)

: (57)



22 LOWER BOUNDS FOR THE TWO WELL PROBLEM

Now note that for a < 0 such that
�
cos a
sin a

�
2 �2, since jaj < ~� < 1 we know that cosa > 0 and sin a < 0 so

we have thats�
~�2 cos2 a+

sin2 a

~�2

�
� ~� cosap

~�2 + 1
� sin ap

~�2 + 1
> ~� cosa� ~� cosap

~�2 + 1
� sinap

~�2 + 1

= ~�

�
1� 1p

~�2 + 1

�
cosa+

jsin ajp
~�2 + 1

> min

�
~�

�
1� 1p

~�2 + 1

�
;

1p
~�2 + 1

�
(jcosaj+ jsin aj)

>
1

4
min

�
~�

�
1� 1p

~�2 + 1

�
;

1p
~�2 + 1

�
(58)

From (57) and (58) we let

c2 := min

( �
1� ~�6

�
32~�2 (~�2 + 1)

;
1

16 (~�2 + 1)
;
~�

64

�
1� 1p

1 + ~�2

�
;

1

64
p
1 + ~�2

)
and we de�ne t (x) := 8c2 (x� ~a). We have

� f 0 (~a) = t (~a) = 0.
� By (57), for all a 2 [0; ~�] we have f 00 (a) � t0 (a) � 0 and hence for any a 2 [max f~a; ~�g ; 0] we have
f 0 (a)� t (a) � 0 and for any a 2 [0;max f~a; 0g] we have f 0 (a)� t (a) � 0.

So for any a 2 [0; ~�] we haveZ a

~a

f 0 (x)� t (x) dL1x = f (a)� 8c2 (a� ~a)
2 � 0:

which is equivalent to

~�2 cos2 a+
sin2 a

~�2
� ~�2 cos2 a+ sin2 a+ 2~� cosa sina

~�2 + 1
+ 8c2 (a� ~a)

2
(59)

.
Now in order to understand (59) note that 

~� cosa+ sinap
(~�2 + 1)

!2

+ 8c2 (a� ~a)
2 � 1

(~�2 + 1)
+ ~�2 < 2

if we let g (x) :=
p
x, we note that g0 is greater than 1p

2
on the interval [0; 2] and so by considering the integral

of g0 between

�
~� cos a+sin ap

(~�2+1)

�2
and

�
~� cos a+sin ap

(~�2+1)

�2
+ 8c2 (a� ~a)

2
.

We get vuut � ~� cosa+ sin ap
~�2 + 1

�2
+ 8c2 (a� ~a)

2

!
�
�
~� cosa+ sinap

~�2 + 1

�
� 8c2p

2
(a� ~a)

2
:

So putting this together with (59)s�
~�2 cos2 a+

sin2 a

~�2

�
� ~� cosa+ sinap

(~�2 + 1)
+
8c2p
2
(a� ~a)

2

and this establishes the claim for a 2 [0; ~�].
Now we need to deal with the case a 2 [�~�; 0]. Since ~� 2 (0; 1) from (58) we haves�

~�2 cos2 a+
sin2 a

~�2

�
� ~� cosap

~�2 + 1
� sin ap

~�2 + 1
� 8c2p

2
(a� ~a)

2
;

as (ang ( ;�2))
2 � 10 (a� ~a)

2
this completes the proof of (51).
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So for each x 2 In we know that for some G (x) 2 SO (2) [ SO (2)H and some E (x) 2 M2�2 with
kE (x) k < p

� we have

Dv (x) = G (x) +E (x) :

Now from (48)

j[Dv (x)] j > j(G (x) +E (x)) j
� jG (x) j � jE (x) j
>  � ni �

p
�:

So

H1 (v (In)) =

Z
In

jDv (x) � txj dH1x

�
Z
In

tx � ni �
p
�dH1x

= (an � bn) � ni �
p
�H1 (In) :

Now (an � bn) �ni = L1
�
Ph�?

i
i (In)

�
and as v (In) is a straight line, so H

1 (v (In)) = jv (an)� v (bn)j and thus
we have established inequality (47). Now by the fact that the line segments connecting v (an) and v (bn) are
subsets of � and by using (47) we have,

je� bj = H1 (�)

�
1X
k=1

jv (an)� v (bn)j

�
 

1X
k=1

L1
�
Ph�?

i
i (In)

�!
�
p
�

 
1X
k=1

H1 (In)

!
: (60)

Now from (46)

L1
�
Ph�?

i
i
�
v�1 (�) n ([nIn)

��
< ~�2

p
� jb� ej ;

and thus

L1
�
Ph�?

i
i ([nIn)

�
> L1

�
Ph�?

i
i
�
v�1 (�)

��
� ~�2

p
� jb� ej :

So inserting this into equation (60) we have

je� bj = L1
�
Ph�?

i
i
�
v�1 (�)

��
� ~�2

p
� jb� ej �

p
�H1

�
v�1 (�)

�
� j	i (e)�	i (s)j � 2~�2

p
� jb� ej :

�

5.2.1. Forcing integral curves into straight lines.

This coming lemma is elementary. If we have the conditions to invoke both Lemma 3 and Lemma 4 then (as

indicated in section 4.2 of the introduction) we get suÆciently strict bounds from above on the length of the

curves and bounds from below on the distance between the end points that we are able to force the integral

curves to run in straight lines.

Lemma 5. Let v 2 AF (
).
Given skew rectangular region R = F (a; w�2; r�1) where

w
r
< �2. We assume N w

�2
(R) � 
.

De�ne �a
i : R! IR as in Lemma 2.

Suppose for some t 2 (a+ h�ii) \ R we haveZ
�
a �1
i

(t)

J (x) dH1x � �w (61)
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then let s be the �rst point of �a �1
i (t) (going backwards in time) to hit @R and e be the �rst point (going

forwards) to hit @R. Let U denote the connected component of �a �1
i (t) between s and e, then �rstly by Lemma

3 �
1� c1�

�4

�
j	i (e)�	i (s)j � H1 (U) �

�
1 +

c1�

�4

�
j	i (e)�	i (s)j :

If in addition we have Z
N w

�2
(R)

T (x) dL2x � �3w2 (62)

then

�a �1
i (t) \ R 2 N

c3

p
�w (lt)

for lt := t+ l, l 2 G (1; 2).

Proof. So U is the connected component of �i �1
a (t0)\ v (S) between s and e. We will show U has to lie very

close to [s; e].

Let w0 := sup
n���P(e�s)? (e� z)

��� : z 2 Uo and let $ 2 U be the point such that���P(e�s)? (e�$)
��� = w0:

From �gure 7, it should be clear that H1 (U) �
r�

je� sj2 + w20

�
.

s

e

Θ  (   )
i−1

t 0

w 0

nv(S)

v(a)

ϖ

Figure 7

Now from (61), by Lemma 3 we have

H1 (U) � j	i (e)�	i (s)j
�
1 +

c1�

�4

�
: (63)

By Fubini we know that for some p 2
�
s+ h(e� s)

?i
�
\ B�w (s) we haveZ

(p+hs�ei)\v(S)
J (x) dH1x � ��2�2w:

So let q 2 (p+ hs� ei) \B�w (e). By Lemma 4 we have

jp� qj � j	i (p)�	i (q)j
�
1� 2��6�

�
:

and by bilipshitness and the fact that je� sj > c1w this gives

js� ej � j	i (s)�	i (e)j
�
1� 4��6�

�
: (64)
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So by (63) and (64) we have

w20 +
�
j	i (s)�	i (e)j

�
1� 4��6�

��2
� je� sj2 + w20

�
�
H1 (U)

�2
�
�
j	i (s)�	i (e)j

�
1 +

c1�

�4

��2
� j	i (s)�	i (e)j2 + 2

c1�

�4
� j	i (s)�	i (e)j2 +

�
c1�

�4
j	i (s)�	i (e)j

�2
:

So
8c1�

�12
j	i (e)�	i (s)j2 � w20 :

Thus
w0 � c3

p
�w: (65)

So let �0 := t0 + hs� ei, (65) implies
U � N

c3

p
�w (�0) (66)

and this concludes the proof of the Lemma.
�



26 LOWER BOUNDS FOR THE TWO WELL PROBLEM

6. Fundamental Lemmas

6.1. Precise control on the pullbacks of integral curves that form straight lines.

This coming Lemma is fundamental. We know from Lemma 5 that when we have the conditions to invoke

Lemma 3 and Lemma 4 the integral curves are forced into something like straight lines. In this lemma we

obtain very precise information about the pull back of such integral curves, we show that they are in e�ect,

very much like the pullback of straight lines in the image of laminates. The proof is heuristically quite similar

to the way we analyzed the the pullback of the straightline in the laminate in section 4.1 of the introduction.

Lemma 6. Let v 2 AF (
). Let i 2 f1; 2g.
Given skew rectangular region R := F (a; w�2; r�1) where

w
r
< �2. We assume N w

�2
(R) � 
. Let a be the

central point of R and de�ne �a
i : R! IR as in Lemma 2. Let � > 0 be a suÆciently small number.

Suppose for some t 2 (a+ h�ii) \ B w

�4
(a) we haveZ
�
a �1
i

(t)\R
J (x) dH1x � �w: (67)

And we have the bulk energy estimateZ
P(a;�1;�2; w

�2
)
d (Dv (x) ; SO (2) [ SO (2)H) dL2x � �3w2 (68)

then let s be the �rst point of �a �1
i (t) (going backwards in time) to hit @R and e be the �rst point (going

forwards) to hit @R. Let U denote the connected component of �a �1
i (t) between s and e, then the following

statement holds true.

Firstly recall by Lemma 5 and Lemma 3 we have

� �
1� c1�

�4

�
j	i (s)�	i (e)j � H1 (U) �

�
1 +

c1�

�4

�
j	i (s)�	i (e)j : (69)

� For some lt := l+ v (t), l 2 G (1; 2) we have

U 2 N
c3

p
�w (lt) : (70)

We de�ne the clockwise normal wt, to lt as follows. If we let # 2 lt \Bp�w (e) and � 2 lt \Bp�w (s) then
we de�ne wt to be the clockwise normal to vector

#��
j#��j .

We will prove that.

Given A t := Np
�w (lt) \R. There exists a set B t � A t with the following properties; L2 (A tnB t ) � ~c4�

5
8w2

and for any x 2 B t we have ��Dv �v�1 (x)��1 � wt
�� < c4

p
� (71)

Proof. So to begin with, as noted in the statement, the �rst part is just from Lemma 5 and Lemma 3. Now
by Fubini, the area formula and assumption (68) we can �nd the existence of a set

C �
�
l? + v (t)

�
\ Bp�w (t) with L1 (C) >

�
1� ��2

p
�
�
2
p
�w (72)

and the property that for any s 2 C we haveZ
(l+s)\v(R)

J (x) dH1x < �w: (73)

Now as �a �1
i (s)\v (R) is connected (by Lemma 1) if we let � denote the connected component of (l + s)\

v (R) containing s, we will show that the endpoints of � must be within c3�
�4p�w of the endpoints of

�a �1
i (s) \ R. Formally; let ~s denote the endpoint of � closest to s, and let ~e denote the endpoint closest to

e. We will show

~e 2 N
c3��4

p
�w (e) and ~s 2 N

c3��4
p
�w (s) : (74)

To see this �rstly note by bilipschitzness from (70) and by the fact that ~e; ~s 2 v (@R) we have
v�1 (~s) 2 N c3

p
�

�2

�
v�1

�
�a �1
i (s)

��
\ @R and v�1 (~e) 2 N c3

p
�

�2

�
v�1

�
�a �1
i (s)

��
\ @R: (75)
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v (s)
−1 ~

v (e)−1 ~

Figure 8

By Lemma 1 we know v�1
�
�a �1
i (s)

�
only passes through each side of R once, so as is shown on �g 8, the end

points of v�1
�
�a �1
i (s)

�
\R are given by v�1 (e), v�1 (s). Formally v�1

�
�a �1
i (s)

�
\@R =

�
v�1 (e) ; v�1 (s)

	
and so by (75) and the fact that s, ~s are the (say) rightmost endpoints of �a �1

i (s), � respectively, e, ~e are
the (say) leftmost endpoints; by bilipschitzness we have (74).

Note that from (74) and (69) we have that

j~e� ~sj � H1 (U) + 4c3�
�4p�w

�
�
1 + 8c3�

�4p�
�
j	i (~e)�	i (~s)j : (76)

And in the same way
j~e� ~sj �

�
1� 8c3�

�4p�
�
j	i (~e)�	i (~s)j : (77)

It is also not hard to see that

L1 ((ls + v (s)) \ v (R) n�) � c1
p
�w: (78)

v(t)t
v (     (t))Θ

a −1 Θ (t)
a −1

Figure 9

This essentially follows from �g 9. The reader who is already convinced is invited to skip the next paragraph.
By Lemma 1 we know that v�1

�
�a �1
i (s)

�
must go through v (R) at a de�nite angle. And so the line

l + v (s) must cut through the boundary of v (R) quite cleanly. Formally, if we let L denote the right hand
side boundary of R then diam (v (L) \ (l + v (t))) � c1

p
�w since otherwise by (70) we would be able to

�nd points y1; y2 2 �a �1
i (s) with jy1 � y2j > c1

2

p
�w and d (y1; v (L)) <

p
�w, d (y2; v (L)) <

p
�w and by

bilipschitzness, assuming constant c1 is chosen big enough this contradicts Lemma 1.
Let

K :=
�
x 2 � : d

�
Dv
�
v�1 (x)

�
; SO (2)

�
< d

�
Dv
�
v�1 (x)

�
; SO (2)H

�	
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let

L :=
�
x 2 � : d

�
Dv
�
v�1 (x)

�
; SO (2)H

�
< d

�
Dv
�
v�1 (x)

�
; SO (2)

�	
and let

E :=
�
x 2 � : d

�
Dv
�
v�1 (x)

�
; SO (2)H

�
= d

�
Dv
�
v�1 (x)

�
; SO (2)

�	
:

Now for some constant c2 := c (�) we have

c2L
1 (E) �

Z
�

d (Dv (x) ; SO (2) [ SO (2)H) dL1x

�
p
�w: (79)

Which implies L1 (E) � c�12
p
�w.

Now K is the countable union of connected subintervals fKng, ie. K =
S
n2INKn and similarly L =S

n2IN Ln.
Let

A0 =

�
n 2 IN :

Z
Kn

d
�
Dv
�
v�1 (x)

�
; SO (2)

�
dL1x �

p
�H1 (Kn)

�
and let

B0 =

�
n 2 IN :

Z
Ln

d
�
Dv
�
v�1 (x)

�
; SO (2)H

�
dL1x �

p
�H1 (Ln)

�
:

As v is C2 on the compact set 
 we know A0 and B0 are �nite. We also knowX
n2Ac0

p
�L1 (Kn) +

X
n2Bc

0

p
�L1 (Ln) �

X
n2Ac0

Z
Kn

d
�
Dv
�
v�1 (x)

�
; SO (2)

�
dL1x

+
X
n2Bc

0

Z
Ln

d
�
Dv
�
v�1 (x)

�
; SO (2)H

�
dL1x

�
Z
(ls+s)\v(R)

J (x) dH1x

� �w:

So X
n2Ac0

L1 (Kn) +
X
n2Bc

0

L1 (Ln) �
p
�w: (80)

We point out that from Lemma 3 we have�
1� ��4c1

p
�
�
L1
�
P�?

i
(Ik)

�
� L1 (v (Ik)) �

�
1 + ��4c1

p
�
�
L1
�
P�?

i
(Ik)

�
: (81)

Let n1 = Card (A0) andm1 = Card (B0). Let fIk : k = 1; : : : n1 +m1g be a reordering of the set fKj : j 2 A0g[
fLk : k 2 B0g so that I1 is the rightmost interval. I2 the second rightmost interval, ectra.

Note from from the fact that � = K [ L [ E , (80), (79) and bilipschitzness we have

H1

 
v�1 (�) n

n1+m1[
k=1

Ik

!
� 2c�12 ��2

p
�w: (82)

Let m2 := m1 + n1. Now we consider point v�1 (~s) to be the start of the path v�1 (�) and point v�1 (~e) to
be the end. So going from right to left in this way; we denote the �rst point of segment Ik by �k and the last
point �k. Let dk = �k � �k for k = 1; 2 : : :m2. See �gure 10.

Let e0 = �1 � v�1 (~s) and em2
= v�1 (~e) � �m2

. Also let ek = �k+1 � �k for k 2 f1; 2; : : :m2 � 1g. So we
have

v�1 (~e)� v�1 (~s) =

m2X
k=1

dk +

m2X
j=0

ej : (83)
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ξ1

2ξ
φ1

φ2

n

R  (e)
−1

0

η

−1

α

v (   )−1

v ( )s
−1

1d

e1

d2

e2

3d
3e

d4

e 4

e0

1

v (e)~

~

~

Figure 10

Let Ek be the subsegment of v�1 (�) between �k and �k+1 for k = 1; 2 : : :m2 � 1. Let E0 be the subsegment
between v�1 (~s) and �1 and let Em2

be the subsegment between �m2
and v�1 (~e). So we know

m2[
j=1

Ij [
m2[
j=0

Ej = v�1 (�) (84)

and thus from (82) and (84) we have

m2X
j=0

jej j �
m2X
j=0

H1 (Ej)

� 2c�12 ��2
p
�w: (85)

Now let K1 = fk 2 f1; : : :m2g : d (Dv (x) ; SO (2)H) < d (Dv (x) ; SO (2)) 8 x 2 Ikg and let K2 = f1; : : :m2g nK1.
For subsegment Ik for k 2 K1 we have thatZ

Ik

jDv (z) � tzj dH1z �
Z
Ik

(1� 2d (Dv (x) ; SO (2)H)) jHtzj dH1z

� jHdkj � 2��2
p
�H1 (Ik)

�
�
1� 2��4

p
�
�
jHdkj : (86)

And for subsegment Ik with k 2 K2 we haveZ
Ik

jDv (z) � tzj dH1z �
�
1� 2��4

p
�
�
jdkj : (87)

So let ~d =
P

k2K2
dk and ~u =

P
k2K1

dk, so since f1; 2; : : :m2g = K1 [ K2 and from (85) and (83) we have����v�1 (~e)� v�1 (~s)
�
�
�
~d+ ~u

���� � 2c�12 ��2
p
�w: (88)
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So from (86) and (87) we also have

j~e� ~sj =

Z
v�1(�)

jDv (z) tzj dH1z

�
m2X
k=1

Z
Ik

jDv (z) tzj dH1z

�
X
k2K2

�
1� 2��4

p
�
�
jdkj+

X
k2K1

�
1� 2��4

p
�
�
jHdkj

�
�
1� 2��4

p
�
� ���� ~d���+ jH~uj

�
: (89)

Letting ~e =
Pm2

j=0 ej from (83) we have v�1 (~e)�v�1 (~s) = ~d+~u+~e and so by (88) we know j~ej � 2c�12 ��2
p
�w.

Step 1

The �rst thing we will show is that vector ~u points in direction �1 and vector ~d points in direction n1.
Strictly speaking this is not necessary for the proof however as it will be of great physiological comfort to

know that where ~u and ~d point and as it will serve as an introduction to the ideas we will use repeatedly we
give the details.

Formally; we will show

ang

�
~u

j~uj ;�i
�
< c4�

1
8 (90)

and

ang

0@ ~d��� ~d��� ; ni
1A < c4�

1
8 : (91)

Now from (49) Lemma 4 we have that

jH j �  � ni +
c2

4
(ang ( ;�i))

2

for all  2 �i.

v (  )e
−1

v (  )
−1

s

ξ

Ξ

Ξ

~ d

1φ

φ2

α
~

~

|(v (e)−v (s)).n |
−1−1 ~ ~

1

φ1
n

1<>

u~ 

1

2

Figure 11

Its easy to see from �g 3 that ~u
j~uj 2 �1 since otherwise either ~u is very small or��� ~d���+ jH~uj >

��� ~d���+ j~uj >>
��v�1 (~e)� v�1 (~s)

��
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however by (89) this implies j~e� ~sj >>
��v�1 (~e)� v�1 (~s)

�� and this contradicts (76).
So

jH~uj = j~uj
����H ~u

j~uj

���� > j~uj
 
~u � ni
j~uj +

c2

4

�
ang

�
~u

j~uj ;�i
��2!

:

As can be easily seen from �gure 11 we have��� ~d��� � �v�1 (~e)� �v�1 (~s) + ~u
��
� ni � 2c�12 ��2

p
�w: (92)

So

jH~uj+
��� ~d��� � ~u � ni +

c2 j~uj
4

�
ang

�
~u

j~uj ;�i
��2

+
�
v�1 (~e)� v�1 (~s)

�
� ni � ~u � ni � 2c�12 ��2

p
�w

=
�
v�1 (~e)� v�1 (~s)

�
� ni +

c2 j~uj
4

�
ang

�
~u

j~uj ;�i
��2

� 2c�12 ��2
p
�w: (93)

Hence by (76), (89), (93) we have

8��4c3
p
�w +

�
v�1 (~e)� v�1 (~s)

�
� ni � H1 (�)

�
�
1� 2��4

p
�
� ���� ~d���+ jH~uj

�
�

���v�1 (~e)� v�1 (~s)
�
� ni
��+ c2 j~uj

4

�
ang

�
~u

j~uj ;�i
��2

� 4c�12 ��2
p
�w:

Thus
j~uj
4

�
ang

�
~u

j~uj ;�i
��2

� c3
p
�w:

So either j~uj < �
1
4w or we have

c3
p
�w � �

1
4w

4

�
ang

�
~u

j~uj ;�i
��2

() 4c3�
1
4 �

�
ang

�
~u

j~uj ;�i
��2

() 2
p
c3�

1
8 � ang

�
~u

j~uj ;�i
�

and so we have established (90).
Now we establish (91). To start, we know

jH~uj � j~u � nij (94)

from (48), Lemma 4. Now by (88)

~d � ni + ~u � ni �
�
v�1 (~e)� v�1 (~s)

�
� ni � 2c�12 ��2

p
�w (95)

and
��� ~d��� =r��� ~d � ni���2 + ��� ~d � �i���2 as we have seen before, since

��� ~d��� < 1 we haver��� ~d � ni���2 + ��� ~d � �i���2 �r��� ~d � ni���2 =

Z j ~d�nij2+j ~d��ij2
j ~d�nij2

x�
1
2

2
dL1x

�

��� ~d � �i���2
2

: (96)

so putting (94), (95), (96) we get

��� ~d���+ jH~uj
(94);(96)

�
��� ~d � ni���+ j~u � nij+

��� ~d � �i���2
2

(95)

�
�
v�1 (~e)� v�1 (~s)

�
� ni +

��� ~d � �i���2
2

� 2c�12 ��2
p
�w: (97)
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So putting (97) together with (76) (recall ~s,~e are the endpoints of �), (89) and (88) we get�
1 + 8c3�

�4p�
� ���(v�1 (~e)� v�1 (~s)

�
� ni
�� � H1 (�)

�
�
1� 2��4

p
�
� ���� ~d���+ jH~uj

�
�

�
1� 2��4

p
�
� ��

v�1 (~e)� v�1 (~s)
�
� ni � 2c�12 ��2

p
�w
�
+

��� ~d � �i���2
4

:

So

2c�12 ��2
p
�w + 10c3�

�4p�
���v�1 (~e)� v�1 (~s)

�
� ni
�� �

��� ~d � �i���2
4

;

thus

~c4
p
�w �

��� ~d � �i���2
4

=

��� ~d���2
4

������
~d��� ~d��� � �i

������
2

:

So p
~c4�

1
4

p
w �

��� ~d���
2

������
~d��� ~d��� � �i

������
assuming

��� ~d��� � �
1
8

p
w we have

p
~c4�

�2�
1
8 �

������
~d��� ~d��� � �i

������
which establishes (91).

Step 2

Now we use similar arguments to establish that most of the subsegments fIk : k 2 K2g lie roughly parallel
to ni and most of the subsegments fIk : k 2 K1g lie roughly parallel to �i.

Let P2 :=
n
k 2 K2 : ang

�
dk
jdkj

; ni

�
> �

1
16

o
and P1 :=

n
k 2 K1 : ang

�
dk
jdkj

;�i

�
> �

1
16

o
. Firstly we will show

that for any k 2 P1 [ P2 we have

L1 (v (Ik)) �
 
1 +

c2�
1
8

16

!
L1
�
Ph�?

i
i (Ik)

�
: (98)

Look at case k 2 P2, see �g 12. Firstly, we know from Lemma 1 that ang
�

dk
jdkj

; ni

�
� �. So

kI

|dk |ang(dk/      ,n )i

d k

φ1

φ2

1n

φ1
perpP<     >(I  )k

Figure 12

jdkj2 �
�
L1
�
P�?

i
(Ik)

��2
+

�
sin ang

�
dk

jdkj
; ni

�
L1
�
P�?

i
(Ik)

��2
�

�
L1
�
P�?

i
(Ik)

��2�
1 +

�
sin�

1
16

�2�
: (99)
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Now as we have seen before, by considering the integral
R 1+�sin� 1

16

�2
1

x
� 1
2

2
dL1x

L1
�
P�?

i
(Ik)

�s�
1 +

�
sin�

1
16

�2�
� L1

�
P�?

i
(Ik)

�0B@1 +
�
sin�

1
16

�2
4

1CA (100)

And since jsinx� xj �
�P1

n=3
1
n!

�
x3, assuming � > 0 is small enough (in the applications of this lemma,

� will be some power of � or � and so will indeed be small enough) we have
�
sin�

1
16

�2
� �

1
8

2
.

So putting this together with (99) and (100) we have

jdkj � L1
�
P�?

i
(Ik)

� 
1 +

�
1
8

8

!
: (101)

Now as Z
v(Ik)

d
�
Dv
�
v�1 (x)

�
; SO (2)

�
dL1x �

p
�L1 (v (Ik)) ;

we have that Z
Ik

d (Dv (z) ; SO (2)) dH1z � ��2
p
�L1 (v (Ik))

� ��4
p
�H1 (Ik) : (102)

For each z 2 Ik let R (z) 2 SO (2) be such that jDv (x)�R (z)j = d (Dv (z) ; SO (2)). So by (101) and
(102) we have

L1 (v (Ik)) =

Z
Ik

jDv (z) t (z)j dH1z

�
Z
Ik

jR (z) t (z)j dH1z �
Z
Ik

d (Dv (z) ; SO (2)) dH1z

� H1 (Ik)
�
1� ��4

p
�
�

� jdkj
�
1� ��4

p
�
�

� L1
�
P�?1

(Ik)
� 

1 +
�

1
8

8

!�
1� ��4

p
�
�

� L1
�
P�?1

(Ik)
� 

1 +
�

1
8

16

!
for � small enough. This establishes the claim in the case k 2 P1.

Let k 2 P2. Observe the �g 13.

kI

φ

φ1

2

1<>

Figure 13
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As before letting T (z) 2 SO (2)H be such that jDv (z)� T (z)j = d (Dv (z) ; SO (2)H) we have from (102)

L1 (v (Ik)) =

Z
Ik

jDv (z) t (z)j dH1z

�
Z
Ik

jT (z) t (z)j dH1z �
Z
Ik

d (Dv (z) ; SO (2)H) dH1z

�
Z
Ik

jT (z) t (z)j dH1z � ��4
p
�H1 (Ik) : (103)

And we know Z
Ik

jT (z) t (z)j dH1z =

Z
Ik

jHt (z)j dH1z

� jdkj
����H dk

jdkj

���� : (104)

Now by (48) Lemma 4 we know

����H dk

jdkj

���� � dk

jdkj
� ni +

c2

4

�
ang

�
dk

jdkj
;�i

��2
� dk

jdkj
� ni +

c2�
1
8

4
: (105)

Putting together (103),(104) and (105) gives

L1 (v (Ik)) � dk � ni +
c2 jdkj
4

�
1
8 � ��4

p
�H1 (Ik)

Now dk�ni = L1
�
P�?

i
(Ik)

�
and so jdkj � L1

�
P�?

i
(Ik)

�
and by Lemma 1 we haveH1 (Ik) � ��4L1

�
P�?

i
(Ik)

�
.

So

L1 (v (Ik)) � L1
�
P�?

i
(Ik)

� 
1 +

c2�
1
8

4

!
� ��4

p
�H1 (Ik)

� L1
�
P�?

i
(Ik)

� 
1 +

c2�
1
8

8

!

for small enough �, hence we have established (98).
Step 3 In this step we bound the cardinality of P1 and P2.

Recall by (76) and (77)

j~s� ~ej 2
�
L1
�
P�?

i

�
v�1 ([~s; ~e])

�� �
1� 8c3�

�4p�
�
; L1

�
P�?

i

�
v�1 ([~s; ~e])

�� �
1 + 8c3�

�4p�
��

(106)

and from (82)

L1

 
[~s; ~e] n

[
k2K1[K2

v (Ik)

!
� 2c�12 ��4

p
� j~s� ~ej : (107)
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Now using (106), (81) and (98) we have�
1 + 8c3�

�4p�
�
L1
�
P�?

i

�
v�1 ([~s; ~e])

��
� j~s� ~ej

�
X

k2K1[K2

L1 (v (Ik))

�
X

k2P1[P2

L1 (v (Ik)) +
X

k2(K1[K2)n(P1[P2)

L1 (v (Ik))

�
 
1 +

c2�
1
8

16

! X
k2P1[P2

L1
�
P�?

i
(Ik)

�
+
�
1� ��4c1

p
�
� X
k2(K1[K2)n(P1[P2)

L1
�
P�?

i
(Ik)

�

�
X

k2K1[K2

L1
�
P�?

i
(Ik)

�
+

X
k2P1[P2

c2�
1
8

16
L1
�
P�?

i
(Ik)

�
���4c1

p
� j~s� ~ej : (108)

Now from (82) we have

L1

 
P�?

i

 
v�1 ([~s; ~e]) n

[
k2K1[K2

Ik

!!
� 4c�12 ��2

p
� j~s� ~ej : (109)

Putting this together with (108) we get�
1 + 8c3�

�4p�
�
L1
�
P�?

i

�
v�1 ([~s; ~e])

��
� L1

�
P�?

i

�
v�1 ([~s; ~e])

��
� 4c�12 ��2

p
� j~s� ~ej

+
X

k2P1[P2

c2�
1
8

8
L1
�
P�?

i
(Ik)

�
� ��4

p
� j~s� ~ej :

Which implies X
k2P1[P2

�
1
8L1

�
P�?

i
(Ik)

�
� c5

p
� j~s� ~ej :

So by bilipschitzness and Lemma 1 we have

��2c5�
3
8L1

�
P�?

i

�
v�1 ([~s; ~e])

��
� c5�

3
8 j~s� ~ej

�
X

k2P1[P2

L1
�
P�?

i
(Ik)

�
� �2

X
k2P1[P2

H1 (Ik) : (110)

By Lemma 1 this gives us a bound on the cardinality of P1 [ P2 of the following form

��6c5�
3
8H1

�
v�1 ([~s; ~e])

�
�

X
k2P1[P2

H1 (Ik) : (111)

As a consequence by (82) we have

H1

0@v�1 ([~s; ~e]) n [
k2K1[K2n(P1[P2)

Ik

1A � H1

 
v�1 ([~s; ~e]) n

[
k2K1[K2

Ik

!
+H1

 [
k2P1[P2

Ik

!

� 2c5�
�6�

3
8H1

�
v�1 ([~s; ~e])

�
: (112)

Step 4
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Now let

O2 :=

(
k 2 K2nP2 : 9 Jk � Ik with H1 (Jk) �

�
1� �

1
8

�
H1 (Ik)

and for each z 2 Jk; ang (t (z) ; ni) > �
1
32

)
(113)

and let

O1 :=

(
k 2 K1nP1 : 9 Jk � Ik with H1 (Jk) �

�
1� �

1
8

�
H1 (Ik)

and for each z 2 Jk; ang (t (z) ;�i) > �
1
32

)
(114)

We will show that for k 2 O1 [ O2

L1 (v (Ik)) �
 
1 +

c2�
1
16

8

!
L1
�
P�?

i
(Ik)

�
: (115)

First we consider the case k 2 O1 because its more intricate.
As before letting t (z) be the tangent to Ik at z and letting U (z) 2 SO (2)H be such that d (Dv (z) ; SO (2)H) =

jDv (z)� U (z)j we have by de�nition of the set fIk : k = 1; : : :m0g that

Z
Ik

d (Dv (z) ; SO (2)H) dH1z �
p
�H1 (Ik) :

Now using again (48) from Lemma 4 and for the �nal inequality using Lemma 1 we have

L1 (v (Ik)) =

Z
Ik

jDv (z) t (z)j dH1z

�
Z
Ik

jHt (z)j dH1z �
p
�H1 (Ik)

�
Z
Jk

jHt (z)j dH1z +

Z
IknJk

jHt (z)j dH1z �
p
�H1 (Ik)

� L1
�
P�?

i
(Jk)

� 
1 +

c2�
1
16

4

!
�
p
�H1 (Ik)

� L1
�
P�?

i
(Ik)

� 
1 +

c2�
1
16

4

!
� 4�

1
8H1 (Ik)

� L1
�
P�?

i
(Ik)

� 
1 +

c2�
1
16

8

!
: (116)

The case where k 2 O1 can be argued with a simple Pythagoras type argument. We do not go into the
details.

Step 5
Now in the same way as we showed the cardinality of P1 and P2 are bounded, we will show the cardinality

of O1 and O2 are bounded. The reader who is already convinced is invited to skip to Step 6.
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Using (81), (112), (106) and (115) we have�
1 + 8c3�

�4p�
�
L1
�
P�?

i

�
v�1 ([~s; ~e])

�� (106)

� j~s� ~ej

�
X

k2(K1[K2n(P1[P2[O1[O2))

L1 (v (Ik)) +
X

k2O1[O2

L1 (v (Ik))

(81);(115)

�
�
1� ��4c1

p
�
� X
k2(K1[K2n(P1[P2[O1[O2))

L1
�
P�?

i
(Ik)

�

+

 
1 +

c2�
1
16

8

! X
k2O1[O2

L1
�
P�?

i
(Ik)

�
=

X
k2(K1[K2)n(P1[P2)

L1
�
P�?

i
(Ik)

�
+
c2�

1
16

8

X
k2O1[O2

L1
�
P�?

i
(Ik)

�
���4c1

p
�L1

�
P�?

i

�
v�1 ([~s; ~e])

��
(112)

� L1
�
P�?

i

�
v�1 ([~s; ~e])

��
+
c2�

1
16

8

X
k2O1[O2

L1
�
P�?

i
(Ik)

�
�
�
c1
p
���4 � 2c5�

�6�
3
8

�
L1
�
P�?

i

�
v�1 ([~s; ~e])

��
:

Putting things together we have

c2�
1
16

8

X
k2O1[O2

L1
�
P�?

i
(Ik)

�
� c6�

3
8L1

�
P�?

i

�
v�1 ([~s; ~e])

��
so by Lemma 1 X

k2O1[O2

H1 (Ik) � ��2
X

k2O1[O2

L1
�
P�?

i
(Ik)

�
� 8��2c�12 c6�

1
4L1

�
P�?

i

�
v�1 ([~s; ~e])

��
: (117)

Step 6

Claim 1. We will show the existence of a set Y � [~s; ~e] with L1 ([~s; ~e] nY ) �
�
1� c7�

1
8

�
j~s� ~ej for which if we

let R� be the clockwise rotation by �
2
and let wt := R�

�
~e�~s
j~e�~sj

�
for any z 2 Y we have

Dv
�
v�1 (x)

�
�i 2 Nc8

p
� (wt) : (118)

Proof of Claim:

Let D := (K1n (P1 [O1)) [ (K2n (P2 [ O2)). For any k 2 D \ K1 (by de�nition (114)) we have

H1
�n
x 2 Ik : ang (t (z) ;�i) > �

1
32

o�
� �

1
8H1 (Ik)

so Wk :=
n
x 2 Ik : ang (t (z) ;�i) � �

1
32

o
is such that H1 (Wk) �

�
1� �

1
8

�
H1 (Ik).

Similarly, for any k 2 D \ K2 (by de�nition (113)), Wk :=
n
x 2 Ik : ang (t (z) ; ni) � �

1
32

o
is such that

H1 (Wk) �
�
1� �

1
8

�
H1 (Ik) :

So from (111) and (117) we haveX
k2P1[P2[O1[O2

H1 (Ik) � 9��6c�12 c6�
1
4L1

�
P�?

i

�
v�1 ([~s; ~e])

��
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so from the de�nition of D and by (82) and Lemma 1 we have

H1

 
v�1 ([~s; ~e]) n

[
k2D

Ik

!
� 11��6c�12 c�12 c6�

1
4H1

�
v�1 ([~s; ~e])

�
: (119)

Note from (73) we have Z
v�1(�)

d (Dv (z) ; SO (2) [ SO (2)H) dH1x � ��2�2w:

Take z 2
�S

k2DWk

�
\
n
z 2 v�1 (�) : d (Dv (z) ; SO (2) [ SO (2)H) < �

1
2

o
. We have that either z 2

S
k2D\K1

Wk

or z 2
S
k2D\K2

Wk. Supposing the later, then

ang (t (z) ; ni) � �
1
32 : (120)

Now as we have already calculated (Lemma 1, (14)) t (z) :=
�
S�1 (z)S�1 (z)

�
ni where Dv (z) := R (z)S (z)

is the polar decomposition of the matrix Dv (z). So S (z) 2 Np
� (fH; Idg).

Its a lengthy calculation to see that

H�1H�1ni = �i (121)

for i = 1; 2. The proof is relegated to the Appendix 1.
So we know that Dv (z) 2 Np

� (SO (2)) or Dv (z) 2 Np
� (SO (2)H) and we can not have the latter case

because that would imply t (z) :=
�
S�1 (z)S�1 (z)

�
ni 2 Nc9

p
� (�i) which contradicts (120) and so we must

have S (z) 2 Bp� (Id).
Let R1 2 SO (2) be the rotation such that

R1ni =
~e� ~s

j~e� ~sj : (122)

Let t (z) denote the (non-normalised) tangent to the curve v�1 (�); formally t (z) := [Dv (z)]
�1 ~e�~s

j~e�~sj , as

already noted, since Dv (z) 2 Np
� (SO (2)) we know

S (x) 2 Bp� (Id) (123)

as this (by the fact that t (z) :=
�
S�1 (z)S�1 (z)

�
ni) implies jt (z)� nij < c7

p
� and using (122) we have

jDv (z)ni �R1nij � jDv (z) t (z)�Dv (z)nij+ jDv (z) t (z)�R1nij
� ��2 jt (z)� nij
� ��2c7

p
�:

So letting R� be the clockwise rotation by �
2
we have by (123) and (122)

��2c7
p
� � jDv (z)ni �R1nij

=

����R (z)R��1�i �
~e� ~s

j~e� ~sj

�����p�
=

����Dv (z)�i �R�
�

~e� ~s

j~e� ~sj

������ 2
p
�: (124)

Now in the case z 2
S
k2D\K1

Wk, from (121) we can see S (z) 2 Bp� (H). Let R2 2 SO (2) be the rotation

such that R2H
�1ni =

~e�~s
j~e�~sj .

Observe �gure 14.
As can be seen from �gure 14 letting R� again denote the clockwise rotation by �

2
, R� �1�i = ni and

R� �1H�i = H�1ni. Now

Dv (z) t (z) = R (z)S (z)
�
S�1 (z)S�1 (z)

�
ni = R (z)S�1 (z)ni;

so ��Dv (z) t (z)�R (z)H�1ni
�� � ��S�1 (z)�H�1

�� � c8
p
�:
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Figure 14

Again as Dv (z) t (z) = ~e�~s
j~e�~sj so (as R

�H�1ni = H�i) by multiplying through on the right by R� this gives����R�� ~e� ~s

j~e� ~sj

�
�R (z)H�i

���� � c8
p
�

so as S (z) 2 Bp� (H) ����R�� ~e� ~s

j~e� ~sj

�
�Dv (z)�i

���� � 2c8
p
�: (125)

And as ~e�~s
j~e�~sj =

#��
j#��j this gives ����R�� #� �

j#� �j

�
�Dv (z)�i

���� < 2c8
p
�:

So let Y = v
�S

k2DWk

�
\ fz 2 Ik : d (Dv (z) ; SO (2) [ SO (2)H) <

p
�g. Now as H1

�S
k2D IknWk

�
�

�
1
8

P
k2D H

1 (Ik) � �
1
8 j~s� ~ej so by bilipschitzness H1

�S
k2D v (Ik) nv (Wk)

�
� ��2�

1
8 j~s� ~ej. So by (119)

and (73) we have

H1 ([~s; ~e] nY ) � c9�
1
8 j~s� ~ej (126)

and for any x 2 Y , by (124), (125), letting wt := R�
�

#��
j#��j

�
we have��Dv �v�1 (x)��i � wt
�� < 2c8

p
�: (127)

and this establishes claim 1. }
Now recall we chose � as a subset of (ls + v (s))\ v (R) when s was an arbitrary point in the set C (see 72).

So � and hence Y depend implicitly on s, now it will be convenient to make the dependence explicit. So let
�s := � and Ys := Y .

Let B t :=
S
s2C Ys. And recall A t := Np

�w (lt) \ v (R). Now from (78) and (126) we have for every s 2 C

L1 (ls \ v (R) nYs) � 2c9�
1
8 j~s� ~ej

and from (72) we have

L2 (A tnB t ) �
Z
(l?+t)\Bp�w(t)

L1 (ls \ v (R) nYs) dL1s

� 2c9�
1
8 je� sjL1 (C) + je� sjL1

��
l? + t

�
\ Bp�w (t) nC

�
� 4c9�

5
8w2:

And by (127) and point x 2 Bt satis�es (71) and the proof is complete.
�
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7. The Coarea alternative: Part I

In section 4.3 we described the \coarea alternative", roughly speaking, this was that for a function v on a

region S (diameter � say) with small bulk energy and small \coarea integral" with respect to the level set

functions �1
and �2

, function v on S must behave very much like an aÆne map whose linear part is in

SO (2) [ SO (2)H. And for a function v with small bulk energy and not small \coarea integral", v must

oscillate by a not small amount in S. If we argue in the simplest way, for a function with small bulk energy

(say
R
S
d (Dv (x) ; SO (2) [ SO (2)H) dL2x � �m0�, for some large integer m0) then

R
S

��D2v (x)
��2 dL2x � ��

implies
R
v(S)

J (x)
��D�i (x)

�� dL2x � ��2 for i 2 f1; 2g and from this we can show that the linear part (denoted

by L) of the aÆne map obtained form interpolating v on the corners of a triangle inside S is such that.

d (L; SO (2) [ SO (2)H) < �
1
8 (128)

So we take a triangulation f�ig of 
 (with triangulation size �), by the \alternative", for all triangles �i with

small bulk energy, either: (1); the linear part Li of the interpolation of v on �i is such that Li is less than �
1
8

away from the wells. Or, (2);
R
�i

��D2v (x)
�� dL2x > ��. If we want to apply this to �nite element approximations

we end up having to argue as follows: We can for simplicity assume all triangles �i have very low bulk

energy. Let � = �� for some � > 0 we decide on later. Let B1 :=
�
�i : d (Li; SO (2) [ SO (2)H) > �

�
8

	
. IfR




��D2v (x)
�� dL2x � ��� then Card (B1) � ������1. So if ~v denotes the function obtained by taking the aÆne

interpolation of v on the triangulation f�ig then we have.Z



d (D~v (x) ; SO (2) [ SO (2)H) dL2x �
X
�i2B1

��2�2 + �
�
8

� ��2�1���� + �
�
8 : (129)

Now matter how small � is or how we chose � as we expect
R


d (D~v (x) ; SO (2) [ SO (2)H) dL2x � �

1
3 we

do not get any kind of contradiction from this!

φ 1

φ 2

Figure 15

Hence we need a much more subtle invocation of the coarea alternative. What we failed to do, is to exploit the

extremely good control we have on bulk energy. Recall, we bounded the coarea integral
R
v(S)

J (x)
��D�i (x)

�� dL2x
for i = 1; 2 from above by the surface energy. We did this by considering the pullbacks of the integral curves

and we obtained a picture like �g 5. The point being somehow that if the bulk energy is suÆciently small

we can chose the line (z + h�1i) for which
R
v(z+h�1i)

J (x) dH1x is small but
R
v(z+h�1i)

J (x)
��D�1 (x)

�� dH1x

is not small, to be very close to the line (a+ h�1i). So all the oscillation we pick up from the argument is

concentrated in a thin strip around (a+ h�1i). This leads us naturally to the idea of considering the coarea

integral in a thin strips parallel to �i running though S. As shown in �g 15.
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Let
�
Ci
k

	
denote the set of strips, width �m0� going through S in direction �i and let �i

k denote the level set

function de�ned in each strip, then we have
P

k (��)
�1 R

v(Ci
k)
J (x)

��D�i
k (x)

�� dL2x � ��. So \on average"

we can except to have (��)
�1 R

v(Ci
k)
J (x)

��D�i
k (x)

�� dL2x � �m0��. Thus we can �nd many integral curves in

v (Ck) with. Z
�i�1
k

(t)\v(Ck)
J (x) dH1x � �

m0
2 �m0�: (130)

This gives us very good control over the short length of our little integral curves. Note we get better and better

control by taking more and columns and the only thing we need to take more columns is lower bulk energy.

This is how we exploit our control on bulk energy. So for any subskewcube Sk;l � C1
l \ C2

l we have many

integral curves with respect to both �1
k and �2

k for which (130) is true.

Now we argue as indicated in the introduction. Lemma 6 says that the pullback of the integral curves with

respect to �i
k must look very much like laminates whose interfaces (in the reference con�guration) are parallel

to �i for i = 1; 2. So vbS must look very much like a laminate with respect to both �1 and �2 and the only

way this can happen is if vbS � R1H for some R1 2 SO (2) or vbS � R2 for some R2 2 SO (2). So we have

very good control on a large number of subskewcubes inside our subcube S, by using this in combination with

smallness of bulk and surface energy, we will in Lemma 9 show that for a triangle � contained in S, the linear

part of the aÆne interpolation of v on � (denoted by L) will be such that d (L; SO (2) [ SO (2)H) < �
m0
1024 �

where m0 is some large integer depending on bulk energy. By inserting this \strengthened" \coarea alternative"

into the calculation (129) we see that we obtain unrealistic upper bounds on the scaling of the �nite element

approximation. This is how the coarea alternative works.

Proposition 1. Given skewcube S := P (a; �1; �2;~c�) � 
.
Assume we have;

� Z
S

d (Dv (x) ;K) dL2x � �
7m0
2

+8�2: (131)

� Let

n
C
(p)

k : k 2 f1; : : : [�m0 ] + 1g
o
denote the set of columns width �m0� going through S, parallel to

�p.

Let a
(p)

k denote the center point in C
(p)

k . Let �
(p)

k denote the level set function de�ned with respect

to the line

n
a
(p)

k + h�ki
o
. Let E

(p)

k = Nc5�
m0�

�
C
(p)

k

�
\ S for k = 1; 2; : : : ; [��m0 ] + 1.

From (131), for each p 2 f1; 2g we can �nd a distinct set of numbers

n
k
p
1 ; : : : k

p

Q
p

0

o
� f1; : : : [��m0 ]g

with Q
p
0 �

�
1� �

m0
2

�
[��m0 ] andZ

v

�
E
(p)

k
p
j

� J (x) dL2x � �3m0+7�2

for each j 2 f1; : : :Qp
0g.

We assume we have the following inequalities

Q0X
j=1

Z
v

�
E
(p)

k
p
j

� J (x)
���D�(p)

k
p

j

��� dL2x � �m0+1�2 (132)

for p = 1 and p = 2.
� Z

S

��D2v (x)
�� dL2x < ��:

then we following statement holds true:

Let �
Li;j := P (ai;j ; �1; �2; �

m0�) : i; j 2
�
1; 2; : : :

�
��m0

�
+ 1
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be a set of pairwise disjoint skewcubes such that S � [i;i2f1;:::[��m0 ]+1gLi;j . Let

Si;j := P (ai;j ; �1; �2; c8�
m0�)

for some constant c8 > 1 we will decide on later.

There exists a set G0 � fSi;j : i; j 2 f1; : : : [��m0 ] + 1gg such that

�
L2
�n
x 2 Si;j : d (Dv (x) ; Ri;jTi;j) > �

m0
16

o�
< 20��8~c4c

2
7�

m0
64 (��m0)

2

for some Ri;j 2 SO (2), Ti;j 2 fId;Hg
�

Card (G0) �
1� 16��2�

m0
8

�2m0

Before proving this we need to prove a number of elementary Lemmas �rst.

7.1. Integral curves in a controlled subskewcube must run parallel.

This lemma is the essential step in showing that a controlled subskewcube (ie. a subskewcube Sk1;k2 � C1
k1
\C2

k2

for columns C1
k1
, C2

k2
such that

R
v

�
Ci
ki

� J (x) ��D�i
k (x)

�� dL2x is small for i = 1; 2) is such that vbSk1 ;k2 is very

much like a laminate with respect to both rank-1 directions. Essentially what we show is that integral curves

given by level sets of the form �i �1
ki

(t1) and �i �1
ki

(t2) are roughly parallel. The proof is more or less a

calculation. We know that if we consider the pullback of an integral curve then (by Lemma 6) for most points

x 2 v�1
�
�i
ki
(t)
�
, Dv (x)�i points in the clockwise normal direction to �i

ki
(t) (recall �i

ki
(t) is very much close

to being a line). Let a denote the center of the skewcube. We chose t1; t2 2 fa+ h�1ig and t3 2 fa+ h�2ig
such that �2

k2
(t3) crosses �

1
k1
(t1), �

1
k1
(t2). If it happens that the intersection points v�1

�
�2
k2
(t3) \�1

k1
(t1)

�
and v�1

�
�2
k2
(t3) \�1

k1
(t2)
�
are such that Dv (�) at these points lie close to di�erent components of the wells

(ie. Dv
�
v�1

�
�2
k2
(t3) \�1

k1
(t1)

��
� SO (2) and Dv

�
v�1

�
�2
k2
(t3) \�1

k1
(t2)
��
� SO (2)H or vice versa) by

the fact that the angle between the normals to the lines �2
k2
(t3) and �1

k1
(t1) is roughly the same as the angle

between Dv (�)�1 and Dv (�)�2 at this intersection point, and this is in turn prescribed by which component

of the wells Dv (�) is in, so the intersection points belonging to di�erent components means that the angle of

the lines �2
k2
(t3) and �1

k1
(t3) at their intersection point will be radically di�erent from the angle of the lines

�2
k2
(t3) and �1

k1
(t2) at their intersection point. Hence the lines �1

k1
(t1) and �1

k2
(t2) will be so radically

non-parallel that (assuming we chose t1, t2 close enough to a) �1
k1
(t1) \�1

k2
(t2) 6= ;. This is a contradiction

and so the intersection points must be near the same component of the wells. Given this fact, almost exactly

the same argument implies that the angle between the lines �2
k2
(t3), �

1
k1
(t1) is very close to the angle between

the lines �2
k2
(t3) and �1

k1
(t2) and this means �1

k2
(t1) is almost parallel to �1

k1
(t2).

Lemma 7. Let v 2 AF (
). Given skew cube S := P (a; �1; �2; c6w) with the following properties:

� S is contain in a skew rectangles R1 := F (a; c7w�0; r1�2) � 
 and R2 := F (a; r2�0; c7w�2) � 
 with
w
ri
< �2 for i = 1; 2 and c7 is some constant bigger than c6.

� We have a level set function �a
i : Ri ! IR for i = 1; 2 such that if we let

Gi :=

(
t 2 (a+ h�ii) \B w

�2
(a) :

Z
�
a �1
i

(t)\Ri
J (x) dH1x � �w

)
we have

L1
�
(a+ h�ii) \ B w

�4
(a) nGi

�
� �w for i 2 f1; 2g : (133)

� Z
N w

�2
(S)

d (Dv (x) ; SO (2) [ SO (2)H) dL2x � �3w2: (134)

The following holds true:



LOWER BOUNDS FOR THE TWO WELL PROBLEM 43

� Firstly recall by Lemma 5 we have that for each t 2 Gi, let et be the �rst point (going forward in time)

to hit @R and st be the �rst point (going backward in time) to hit @R. Let Ut be the connected subset

subset of �a �1
i (t) between et and st then we have for some lt 2 G (1; 2)

Ut � N
c3

p
�w (lt + v (t)) :

� Let D t := N
�

1
16 w
4

(lt + v (t)) \ R. As before, we de�ne the clockwise normal to lt by wt := R� ~et� ~st
j ~et� ~stj

where ~et 2 (lt + v (t)) \Bp�w (et), ~st 2 (lt + v (t)) \ Bp�w (st) and R� is a clockwise rotation by
�
2
.

There exists a set C t � D t such that

L2 (D tnC t ) � ��6~c4�
3
16w2

and for any x 2 C t we have��Dv �v�1 (x)��i � wt
�� � 128c4�

�5�
1
16 :

Secondly for any two points t1; t2 2 G1\B
�
a; w

�

�
and t3 2 G2\B

�
a; w

�

�
if we let �1 2 �a �1

1 (t1)\�a �1
2 (t3)

and �2 2 �a �1
1 (t2) \�a �1

2 (t3) then we can �nd S 2 fH; Ig such that

�
L2
��

x 2 B
�

1
16 w
4

(�i) : Dv (z) 62 Np
� (SO (2)S)

��
� 4��6~c4�

3
16w2:

for i = 1; 2.
� For any two points t1; t2 2 Gi \ B

�
a; w

�

�
we have

jwt1 � wt2 j � 2048c4�
�6�

1
16 :

Proof. To begin with we assume c6 > ��7 so we have B��5w (v (a)) � v (S). This gives us some room to work
in.

Step 1.

For k 2 f1; 2g, let

C k :=

�
y 2 N

�
1
16 w
4

(v (tk) + ltk ) \ B w

4�5
(v (a)) :

��Dv �v�1 (y)��i � wtk
�� < 128��5c4�

1
16

�
;

we will show that

L2
�
N

�2�
1
16 w
4

(v (tk) + ltk) nC k
�
� ��6c4�

3
16w2:

First by (133) we can pick a chain of points�
zkn : n = 1; 2; : : :N0

	
� G1 \ B

�
1
16 w

�2

(a)

such that

B
�

1
16 w

�2

(a) \ fa+ h�1ig �
N0[
n=1

B�4
p
�w

�
zkn
�
\ fa+ h�1ig :

Note N0 � �
1
16 w

�6�
1
2w

= ��6��
7
16 . By Lipschitzness for v, in particular the fact that Lip (v) � ��2 we have

B
�

1
16 w

(v (a)) \ v (fa+ h�1ig) � v

 
B

�
1
16 w

�2

(a) \ fa+ h�1ig
!

�
N0[
n=1

v
�
Bp��4w

�
zkn
�
\ fa+ h�1ig

�
�

N0[
n=1

Bp��2w
�
v
�
zkn
��
\ v (fa+ h�1ig) :

Now as B w

�5
(v (a)) � v

�
P
�
a; �1; �2;

w
�7

��
� v (S) we consider the integral curves given by
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α1/32 w/σ

Figure 16

n
�a �1
1

�
zkn
�
\ B w

�5
(v (a)) : n = 1; 2; : : :N0

o
:

We know that this set is disjoint by uniqueness of solutions of ODE and of course by Lemma 5 we have

�a �1
1

�
zkn
�
\ B w

�5
(v (a)) � N

c3

p
�w

�
v
�
zkn
�
+ lzkn

�
: (135)

Now as can be seen from �g 17.

v(t)

N0v(z   )

1
kv(z   )

w/σ2

k

Figure 17

�n
v
�
zkN0

�
+ lzk

N0

o
\ B w

2�5
(v (a))

�
\
�n
v
�
zk1
�
+ lzk1

o
\ B w

2�5
(v (a))

�
= ;; (136)

since otherwise by (135) and the fact that
��v �zk1�� v

�
zkN0

��� > �2�
1
16w we have

�
�k �1
1

�
zk1
�
\ B w

�5
(v (a))

�
\
�
�k �1
1

�
zkN0

�
\ B w

�5
(v (a))

�
= ; (137)

and this is a contradiction.
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Now since we have (136), as can be seen from �g 17, for any point y 2
n
v
�
zk1
�
+ lzk1

o
\ B w

4�5
(v (a)) we

have

�
1
16w

2
<

��v �zk1 �� v
�
zkN0

���
2

< d
�
y;
n
v
�
zkN0

�
+ lzk

N0

o
\ B w

4�5
(v (a))

�
< 2

��v �zk1�� v
�
zkN0

���
<

4�
1
16w

�4
: (138)

Now in the same way as (136), since
��v �zkm�� v

�
zkm+1

��� � p
��2w, for m 2 f1; 2; : : :N0 � 1g and for any

y 2
n
v
�
zkm+1

�
+ lzk

m+1

o
\ B w

4�5
(v (a)) we have

d
�
y;
�
v
�
zkm
�
+ lzkm

	
\ B w

2�5
(v (a))

�
< ��2

��v �zkm�� v
�
zkm+1

���
<

p
�w; (139)

since otherwise we will have that�
�k �1
1

�
zkm
�
\ B w

2�5
(v (a))

�
\
�
�k �1
1

�
zkm+1

�
\ B w

2�5
(v (a))

�
6= ;:

And again in the same way as (136) for any y 2
�
v
�
zkm
�
+ lzkm

	
[
n
v
�
zkN0

�
+ lzk

N0

o
\ B w

4�5
(v (a)) we have

�
1
16w

4
<

1

2
min

���v �zk1�� v (a)
�� ; ��v �zkN1

�
� v (a)

��	 j < d
�
y; fv (t) + ltg \B w

4�5
(v (a))

�
:

Thus the set N
�

1
16 w
4

(v (t) + lt) \ B w

4�5
(a) is contained in the region of B w

4�5
(a) between the two lines�

v
�
zk1
�
+ lzk1

�
\B w

4�5
(a) and

�
v
�
zkN0

�
+ lzk

N0

�
\ B w

4�5
(a).

Now (139) implies that for any m 2 f1; 2; : : :N0 � 1g we have�
v
�
zkm+1

�
+ lzk

m+1

�
\ B w

4�5
(v (a)) � Np

�w

�
v
�
zkm
�
+ lzkm

�
\B w

4�5
(v (a)) : (140)

As any point z 2 N
�

1
16 w
4

(v (t) + lt) \ B w

4�5
(v (a)) is either on line

�
v
�
zkm
�
+ lzkm

�
\ B w

4�5
(v (a)) for k =

1; : : :N0 or lies between two such lines. So from (140) we have

N
�

1
16 w
4

(v (t) + lt) \ B w

4�5
(v (a)) �

N0[
m=1

Np
�w

�
v
�
zkm
�
+ lzkm

�
\ B

�
a;

w

4�5

�
: (141)

For eachm 2 f1; 2; : : :N0g let wm := w
�
zkm
�
be the clockwise normal to lzkm . Let Am := Np

�w

�
v
�
zkm
�
+ lzkm

�
\

R. By Lemma 6 we know that there exists a set Bm � Am such that L2 (AmnBm ) � ~c4�
5
8w2 and for any

x 2 Bm we have
��Dv �v�1 (x)��i � wm

�� � c4
p
�

Now we can see from the �g 18.

w(z  )km

w/4σ 5

α1/16
/4

w

Figure 18

The di�erence in angle between wm1
and wm2

for anym1;m2 2 f1; 2; : : :N0g is less than 2 tan�1
�
16��5�

1
16

�
so we must have jwm1

� wm2
j � 64��5�

1
16 .
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So by (141) if we let C k :=

�
y 2 N

�
1
16 w
4

(v (tk) + ltk ) \ B w

4�5
(v (a)) :

��Dv �v�1 (y)��i � wk
�� � 128c4�

�5�
1
16

�
we see

N
�

1
16 w
4

(v (tk) + ltk) nC k �
N0[
m=1

AmnBm :

Thus

L2
�
N

�
1
16 w
4

(v (tk) + ltk) nC k
�

� N0~c4�
5
8w2

� ��6~c4�
3
16w2: (142)

Step 2.

Firstly we note that from the fact we established in Lemma 6, namely that path v�1
�
�a �1
i (t)

�
\ R has

its tangents mostly in directions ni and �i. We can see from the �gure 19, for t1; t2 2 G1 \B w

�2
(a) and point

t3 2 G2 \B w

�2
(a) the points given by

�1 2 �a �1
1 (t1) \�a �1

2 (t3) and �2 2 �a �1
1 (t2) \�a �1

2 (t3)

are such that v�1 (�1) ; v
�1 (�1) 2 B w

�3
(a).

φ2

a

t 2

t 1

t 3

<>

φ1

1

2<>

Figure 19

So by Lipschitzness we have

�1; �2 2 B w

�5
(v (a)) : (143)

Observe the �gure 20.

v(t )

v(t )

v(t )

1

2

3

θ

θ

1

2

l

l

l

t 1

t 3

t 2

Figure 20
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Now as �1 2 Np
�w (lt1 + v (t1)) \Np

�w (lt3 + v (t3)) and as the angle between lines lt1 and lt3 can not be

too sharp (by 143) if we let ~�1 := (v (t1) + lt1) \ (v (t3) + lt3) then we have
����1 � ~�1

��� < c1
p
�w.

Similarly if we let ~�2 := (v (t3) + lt3) \ (v (t2) + lt2) we have
����2 � ~�2

��� < c1
p
�w. So

B
�

1
16 w
4

�
~�1

�
�
�
N

�
1
16 w
4

(lt1 + v (t1)) \ B w

4�5
(a)

�
\
�
N

�
1
16 w
4

(lt3 + v (t3)) \ B w

4�5
(a)

�
and

B
�

1
16 w
4

�
~�2

�
�
�
N

�
1
16 w
4

(lt2 + v (t2)) \ B w

4�5
(a)

�
\
�
N

�
1
16 w
4

(lt3 + v (t3)) \ B w

4�5
(a)

�
:

So by (142) we have

L2
�
B

�
1
4 w
16

�
~�1

�
n (C 1 [ C 3 )

�
� 2��6~c4�

3
16w2

and

L2
�
B

�
1
16 w
4

�
~�2

�
n (C 2 [ C 3 )

�
� 2��6~c4�

3
16w2:

Now by assumption (134) we can �nd sets; F1 � B
�

1
16 w
4

(�1) \ C 1 \ C 3 such that

L2 (F1) �
�

2

 
�

1
16w

4

!2 �
1� 64��6~c4�

1
16

�
and for any z 2 F1 we have Dv

�
v�1 (z)

�
2 Np

� (SO (2) [ SO (2)H). In the same way we can �nd

F2 � B
�

1
16 w
4

(�1) \ C 2 \ C 3 such that L2 (F2) � �
2

�
�

1
16 w
4

�2 �
1� 64��6~c4�

1
16

�
and for any z 2 F2 we

have Dv
�
v�1 (z)

�
2 Np

� (SO (2) [ SO (2)H).

We will show if we have a point z1 2 F1 such that Dv
�
v�1 (z1)

�
2 Np

� (SO (2)) and z2 2 F2 such that

Dv
�
v�1 (z2)

�
2 Np

� (SO (2)H) we get a contradiction from the fact that wt1 and wt2 (the orientations of lt1
and lt2 respectively) must point in the same direction.

Formally; we will show that for some S 2 fH; Idg we have�
Dv
�
v�1 (z)

�
: z 2 F1 [ F2

	
� Np

� (SO (2)S) : (144)

Before we do so we will have to establish some things about wt1 (the clockwise normal of line lt1) and wt2
(the clockwise normal to line lt2).

Step 3 We will show wt1 � wt2 2
�
4
5
; 1
�
.

Firstly we note that since we can run the ODE all the way to the boundary of S, as jt1 � t2j < w
�
and�

�a �1
1 (t1) \ v (S)

�
\
�
�a �1
1 (t2) \ v (S)

�
= ;

assuming the constant c6 has been chosen big enough, the lines lt1 and lt2 must be roughly parallel, see �g 21.

v(S)

l

l

t1

t2

t1

t 2

Figure 21

Now we consider the pullback of lines lt1 , lt2 in the reference. See �gure 22. By bilipschitzness we know
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a

t

t

2

y

v(   )

1

t1

t2v(   )

Figure 22

N
�2�

1
16 w
4

�
v�1 (v (tk) + ltk )

�
\ B w

�3
(a) � v�1 (C k ) \ B w

�3
(a) for k = 1; 2:

And by Step 1 or (142)

L2
��

z 2 N
�2�

1
16 w
4

�
v�1 (v (tk) + ltk )

�
\B w

�3
(a) : jDv (y)�1 � wtk j > 128c4�

�5�
1
16

��
� ��8~c4�

3
16w2:

So we can �nd a point y0 2
�
a+ �?1

	
\ B

�
1
16 w

(a) such that

L1
��

z 2 N
�2�

1
16 w
4

�
v�1 (v (tk) + ltk) \B w

�3
(a)
�
\ (y0 + h�1i) : jDv (y)�1 � wtk j > 128c4�

�5�
1
16

��
� ��8~c4�

1
8w

for k = 1; 2.
Let

�k := N
�2�

1
16

4

�
v�1 (ltk) \B w

�3
(a)
�
\ (y0 + h�1i)

for k = 1; 2 and let e�k :=
n
y 2 �k : jDv (y)�i � wtk j < 128c4�

�5�
1
16

o
for k = 1; 2. In words; for any z1 2 e�1 we know that wt1 is (approximately) equal to Dv (z1)�1 and for any

z2 2 �2 we have that wt2 is (approximately) equal to Dv (z2)�1. And L
1
�
�kne�k

�
� ��8�

1
8w.

So as lt1 and lt2 are roughly parallel we have (for big enough constant c1) we have wt1 � wt2 2
�
4
5
; 1
�
or

wt1 � wt2 2
�
�1;� 4

5

�
. Recall we want to show wt1 � wt2 2

�
4
5
; 1
�
. Suppose not; so wt1 � wt2 2

�
�1;� 4

5

�
.

As Dv (z)�1 is the tangent to the line v (fy0 + h�1ig \ S) at point v (z) we have that v (�k) (which is a
connected segment of v (fy0 + h�1ig \ S)) has for most of its points, a tangent pointing roughly in direction
wt2 .

Formally, we can prove (just by considering the integral v (z) � v (y0) =
R z
y0
Dv (x) �idL

1x) that if we let

�k := v�1 (ltk ) \ fy0 + h�1ig then

H

 
v (�k) ;

"
v (�k)�

�2�
1
16w

4
wt2 ; v (�k) +

�2�
1
16w

4
wt2

#!
� c2�

1
16w: (145)
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More important however is that for z1 2 e�1 and z2 2 e�2 we have that Dv (z1)�1 and Dv (z2)�1 point
in roughly opposite directions. The only way this can happen is if v ((a+ h�ii) \ S) \turns around" by � as
shown on �g 23.

1z

z2

l t1

l t2

(2)

(2)
1

2

v(e   )

v(e   )

Σ
Υ

Υ

Dv(z )φ2 1

Dv(z )φ21

1

1

2v(z  )

v(z  )

2

1

φ1

Figure 23

Now let e
(2)
1 and e

(2)
2 be the endpoints of �2 as shown, from (145) we have that Np

�w (lt2) passes in between

v
�
e
(2)
1

�
and v

�
e
(2)
2

�
. Let � := v

�h
e
(2)
1 ; t1

i�
. Its easy to see that

Pl?t2

�h
v
�
e
(2)
1

�
; v
�
e
(2)
2

�i�
� Pl?t2

(�)

and so its clear that Np
�w (lt2) must pass through both v (�k) and � which implies

�a �1 (t2) \ B
�
a;
w

�5

�
\ v (�k) 6= ;

and

�a �1 (t2) \ B
�
a;
w

�5

�
\ � 6= ;:

By Lemma 1 �a �1 (t2) can only pass through v (fy0 + h�1ig) once so this is a contradiction. Thus we have
�nally established that wt1 � wt2 2

�
4
5
; 1
�
.

Before continuing on our mission to establish (144) we note the following. If �1 denotes the angle between
�1 and �2 then the angle between H�1 and H�2 is given by � � �1. This can be seen either by direction
calculation or by noting that since detH = 1 and jH�1j = jH�2j = 1 a parallelogram with sides parallel to
�1, �2 must be sent to parallelogram with the same volume and same side length and hence the same pair of
internal angles.

Now we can proceed with the proof of (144). See �g 24.
We start with point z1. Now we know Dv

�
v�1 (z1)

�
� R0 for some R0 2 SO (2). Since z1 2 C 1 we

know Dv
�
v�1 (z)

�
�1 � R0�1 points (roughly) in the direction to wt1 as shown. Similarly since z 2 C 3 ,

Dv
�
v�1 (z)

�
�2 � R0�2 points (roughly) in the direction wt3 . So the angle between lines lt1 and lt3 at the

intersection point is approximately the angle between �1 and �2.
Now we go to point z2. We have Dv

�
v�1 (z2)

�
� R1H for some R1 2 SO (2). As z2 2 C 3 we have

Dv
�
v�1 (z2)

�
�2 � R2H�2 points in the direction wt3 as shown. And as z2 2 C 2 we should have that
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Figure 24

Dv
�
v�1 (z2)

�
�1 � H�1 should point in the direction wt2 however as the action of H on �1 and �2 is to

stretch them apart so that H�1 and H�2 meet at angle of �� �1, as we can see from the diagram H�1 points
in the opposite direction to wt2 so this is a contradiction.

In an identical way we get a contradiction from the possibility that z1 2 F1 withDv
�
v�1 (z1)

�
2 Np

� (SO (2)H)

and z2 2 F2 with Dv
�
v�1 (z2)

�
2 Np

� (SO (2)). So there exists S 2 fId;Hg such that

Dv
�
v�1 (z)

�
2 SO (2)S for each z 2 F1 [ F2:

This completes the proof of the �rst part of the lemma.
Now we establish the second part of the lemma. See �g 25.

θ

Dv(v (z ))

φ

φ

1 1

1 2

−1

−1

Dv(v (z ))

z1

z2
v(t  )

v(t  )1

2

v(t  )3

w

w

wt2

t3

t4

θ

Dv(v (z ))φ22−1

Dv(v (z ))φ1−1 2

2

1 l

lt 2

lt 3

t 1

Figure 25

By the �rst part of the lemma Dv
�
v�1 (z1)

�
2 Bp� (R0) for some R0 2 SO (2) and Dv

�
v�1 (z2)

�
2

Bp� (R1) for some R1 2 SO (2).



LOWER BOUNDS FOR THE TWO WELL PROBLEM 51

Similarly to as before. As z1 2 C 1 \ C 3 we have��Dv �v�1 (z1)��1 � wt1
�� � 128c4�

�5�
1
128

and ��Dv �v�1 (z1)��2 � wt3
�� � 128c4�

�5�
1
128 :

And so the angle between wt1 and wt3 is within 512c4�
�5�

1
16 of the angle between �1 and �2.

Formally; let �1 be the angle between wt1 and wt3 and let �2 be the angle between wt2 and wt3 . So we have

jwt1 � wt3 � �1 � �2j � jwt1 � (wt3 �R0�2)j+ jR0�2 � (wt1 �R0�1)j
�

��wt3 �Dv
�
v�1 (z1)

�
�2
��+ ��Dv �v�1 (z1)��2 �R0�2

��+ ��wt1 �Dv
�
v�1 (z1)

�
�1
��

+
��Dv �v�1 (z1)��1 �R0�1

��
� 512c4�

�6�
1
16 : (146)

In exactly the same way we can see

jwt2 � wt3 � �1 � �2j � 512c4�
�6�

1
16

and so putting things together we get

j(wt1 � wt2) � wt3 j � 1024c4�
�6�

1
16 : (147)

Let R� be a rotation by �
2
in the clockwise direction, we have

jwt1 �R�wt3 � �1 �R��2j � jwt1 � (R�wt3 �R�R0�2)j+ jR�R0�2 � (wt1 �R0�1)j
�

��wt3 �Dv
�
v�1 (z1)

�
�2
��+ ��Dv �v�1 (z1)��2 �R0�2

��+ ��wt1 �Dv
�
v�1 (z1)

�
�1
��

+
��Dv �v�1 (z1)��1 �R0�1

��
� 512c4�

�6�
1
16 : (148)

And in the same way we can see jwt2 �R�wt3 � �1 � R��2j � 512c4�
�6�

1
16 so j(wt1 � wt2) �R�wt3 j �

1024c4�
�6�

1
16 . Together with (147) this implies jwt1 � wt2 j � 2048c4�

�6�
1
16 .

�
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7.2. Controlled subskewcubes have derivative mostly in one well.

This next lemma essentially follows from Lemma 6, as most of the integral curves given by
�
�i �1
k1

(t) : t 2 IR
	

are straight parallel lines for i = 1; 2. Given that from Lemma 6 we know that Dv (�)�i is clockwise the normal

to these classes of \lines" for i = 1; 2, we only have to show that signi�cant subskewcube of our skewcube is

contained within a neighborhood of these lines to conclude that for most points x within this subskewcube, the

directions of Dv (x)�1 and Dv (x)�2 are roughly �xed. So (as a weak conclusion) we have that most points

in our subskewcube are such that Dv (�) remain close to one component of the wells.

Lemma 8. Given skew cube S := P (a; �1; �2; c6w) with the following properties:

� S is contained in skew rectangles R1 := F (a; c7w�2; r1�1), R2 := F (a; r2�2; c7w�1) with
w
ri
< �2 for

i = 1; 2 where c7 is some constant bigger than c6.

� We have level set functions �a
i : Ri ! IR such that if we let

Gi :=

(
t 2 (a+ h�ii) \B w

�6
(a) :

Z
�
a �1
i

(t)\Ri
J (x) dH1x � �w

)
we have

L1
�
(a+ h�ii) \ B w

�6
(a) nGi

�
� �w (149)

for i = 1; 2.
� Z

N w

�2
(S)

d (Dv (x) ; SO (2) [ SO (2)H) dL2x < �3w2

then if we take skewcube eS := P (a; �1; �2; c8w) (for some constant c8 strictly less than c7) there exists

rotation R0 2 SO (2) and S 2 fId;Hg such that

L2
�n
x 2 eS : jDv (x)�R0Sj >

p
�
o�

< 20��8~c4�
1
8w2:

Proof. This lemma follows from Lemma 6 in a relatively straightforward way. Let

t1 := @P

�
a; �1; �2;

2w

�2

�
\ fa+ ��1 : � > 0g ; t2 := @P

�
a; �1; �2;

2w

�2

�
\ fa+ ��1 : � � 0g :

t3 := @P

�
a; �1; �2;

2w

�2

�
\ fa+ ��2 : � > 0g ; t4 := @P

�
a; �1; �2;

2w

�2

�
\ fa+ ��2 : � � 0g :

Observe �g 26.

t4

t1

t3

t2

v(t3)

v(t2)

v(t1)

v(t4)

θt 1

θt 1v(     ) l 1

φ1

2φ

a

v(a)

Figure 26

Take point #t1 2 G1 \ [t1; t2]. By Lemma 1 and bilipschitzness we have that line [v (t1) ; v (t2)] is some
distinct angle away from line l1 := l#t1 . Speci�cally there exists a constant c1 := c (�) 2 (0; 1) such that

L1
�
Pl?1

([v (t1) ; v (t2)])
�
� c1 jv (t1)� v (t2)j :
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Similarly if we chose point #t2 2 G2 \ [t3; t4] let l2 := l#t2 we have

L1
�
Pl?1

([v (t3) ; v (t4)])
�
� c1 jv (t3)� v (t4)j :

So for some c2 := c (�) we have

Bc2w (v (a)) � P�1
l?1

�
Pl?1

([v (t1) ; v (t2)])
�

(150)

and

Bc2w (v (a)) � P�1
l?2

�
Pl?2

([v (t3) ; v (t4)])
�
:

Let Q1 := Phl?1 i
([v (t1) ; v (t2)]) and Q2 := Phl?2 i

([v (t3) ; v (t4)]). We cut Q1 into intervals of width �
1
16w
2

.

Formally, we can �nd a set

�
B

�
1
16 w
8

�
�1k
�
: k = 1; 2; : : :M0

�
that are pairwise disjoint, with

�
�1k : k = 1; 2; : : :M0

	
�

Q2,

Q2 �
M0[
k=1

B
�

1
16 w
4

�
�1k
�

and M0 :=
h
4L1(Q1)

�
1
16 w

i
+ 1 � 5

h
�

1
16

i
.

Similarly we cut Q1 into intervals of width �
1
16 w
2

. So we �nd

�
B

�
1
16 w
8

�
�2k
�
: k = 1; 2; : : :M1

�
that are

pairwise disjoint, with
�
�2k : k = 1; 2; : : :M1

	
� Q2,

Q2 �
M1[
k=1

B
�

1
16 w
4

�
�1k
�

and M1 :=
h
4L1(Q2)

�
1
16 w

i
+ 1 � 5

h
��

1
16

i
.

Now as v ([t1; t2]) is connected, for each k 2 f1; 2; : : :M0g we have P�1
l?1

�
�1k
�
\ v ([t1; t2]) 6= ;. So we can

pick q1k 2 P�1
l?1

�
�1k
�
\ v ([t1; t2]) for k 2 f1; 2; : : :M0g and q2k 2 P�1

l?2

�
�2k
�
\ v ([t3; t4]) for k 2 f1; 2; : : :M1g.

Now observe �g 27 below.

v(t2)

v(t4)

v(t1)

v(t3)

φ

Q2

Q1

φ1

2

1l

2l

Figure 27

By (149) for each k 2 f1; 2; : : :M0g we must be able to chose �1k 2 N�w

�
v�1

�
q1k
��
\ G1 and for each

k 2 f1; 2; : : :M1g we can chose �2k 2 N�w

�
v�1

�
q1k
��
\G2 so we have

Q1 �
M0[
k=1

B
�

1
16 w
4

�
Pl?1

�
v
�
�1k
���

(151)



54 LOWER BOUNDS FOR THE TWO WELL PROBLEM

and

Q2 �
M1[
k=1

B
�

1
16 w
4

�
Pl?1

�
v
�
�2k
���

: (152)

Now by Lemma 6 we know w�1
k
(the clockwise normal to l�1

k
) and w1 is the clockwise normal to l1 are such

that ���w�1
k
� w1

��� < 2048��6�
1
16 for any k 2 f1; 2; : : :N0g (153)

Observe �g 28.

τ k
1v(     )

w

τkl

~
l1

1

k

1/16cos 5000 α−6σ

Figure 28

As the angle between w�1
k
and w1 is less than 5000�

�6�
1
16 , if we let ~l1k be the line centered on v

�
�1k
�
parallel

to l1 as can be seen from �g 28

N
�

1
16 w
4

�
~l1k

�
� N

5000��6�
1
16 w

�
l�1
k

�
: (154)

So by Lemma 7, (153) and (154)

L2
��

x 2 N
�

1
16 w
4

�
~l1
k

�
\ R1 :

��Dv �v�1 (x)��1 � w1
�� > 6000��6�

1
16

��
� L2

 (
x 2 N

�
1
16 w

�7

�
~l�1
k

�
\ R1 :

���Dv �v�1 (x)��1 � w�1
k

��� > 3000��6�
1
16

)!
� ��6~c4�

3
16w2:

However from (150) and (151) we have

Bc2w (v (a)) �
N0[
k=1

N
�

1
16 w
4

�
~l1k

�
\ R1:

If we let ~l2k be the line centered on v
�
�2k
�
parallel to l2 for each k 2 f1; 2; : : :N1g. In exactly the same we

have

Bc2w (v (a)) �
N1[
k=1

N
�

1
16 w
4

�
~l2k

�
\ R2:

So

L2
�n
x 2 Bc2w (v (a)) :

��Dv �v�1 (x)��1 � w1
�� > 6000��6�

1
16

o�
�

N0X
k=1

L2
�n
x 2 N

�
1
16 w

�
~l1k

�
\ Ri :

��Dv �v�1 (x)��1 � w1
�� > 3000��6�

1
16

o�
� ��6M0~c4�

3
16w2

� 5��6~c4�
7
8w2 (155)

In exactly the same way we have

L2
�n
x 2 Bc2w (v (a)) :

��Dv �v�1 (x)��2 � w2
�� > 6000��6�

1
16

o�
� 5��6~c4�

1
8w2: (156)
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Let J := fx 2 S : d (Dv (x) ; SO (2) [ SO (2)H) <
p
�g and

Z :=
n
x 2 Bc2w (v (a)) :

��Dv �v�1 (x)��2 � w2
�� < 6000��6�

1
16 and

��Dv �v�1 (x)��1 � w1
�� < 6000��6�

1
16

o
so by assumption (134) and (155), (156) we have

L2 (Bc2w (v (a)) n (Z [ v (J))) � 20��6~c4�
1
8w2: (157)

Now for any z 2 Bc2w (v (a)) \ (Z [ v (J)) since for z 2 Z we have
��Dv �v�1 (z)��RS

�� < p
� for some

R 2 SO (2) and some S 2 fId;Hg and as the angle between RS�1 and RS�2 changes radically depending
on whether S = Id or S = H whilst w1 and w2 are independent of x, so we either have�

Dv
�
v�1 (z)

�
: z 2 Bc2w (v (x)) \ (Z [ v (J))

	
� Np

� (SO (2)) (158)�
Dv
�
v�1 (z)

�
: z 2 Bc2w (v (x)) \ (Z [ v (J))

	
� Np

� (SO (2)H) : (159)

Now assuming c2 is big enough we have thateS := P (a; �1; �2; c8w) � v�1 (Bc2w (v (a)))

and hence from (157)

L2
�n
x 2 eS : d (Dv (x) ; SO (2)A) �

p
�
o�

� 20��8~c4�
1
8w2

and hence we have established the lemma.
�
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7.3. Proof of Proposition 1 continued.

Lemma 6 and Lemma 8 have essentially done most of the proof of Proposition 1 for us. The only \work" to

be done in the coming proof is to set up all the conditions to apply Lemmas 6, 8 and simply to count up the

consequences in terms our exponents � and �.

Proof. So recall, we have Z
S

d (Dv (x) ; SO (2) [ SO (2)H) dL2x � �
7m0
2

+8�2 (160)

and for the set
n
C
(p)

k : k 2 f1; : : : [��m0 ]g
o
of pairwise disjoint columns width �m0� going through S parallel

to �p centered on a
(p)

k . We let E
(p)

k := N(c7�1)�m0 �

�
C
(p)

k

�
for k 2 f1; : : : [��m0 ] + 1g. From (160) we can �nd

a set
n
k
p
1 ; : : : k

p

Q
p

0

o
of distinct numbers satisfying the following inequalitiesZ

v

�
E
(p)

k
p
j

� J (x) dL2x � �3m0+7�2

for each j 2 f1; : : :Qp
0g and

Q
p
0 �

�
1� �

m0
2

� �
��m0

�
for p = 1; 2: (161)

And by assumption (132) we have

Q
p

0X
j=1

Z
v

�
E
(p)

k
p
j

� J (x)
���D�(p)

k
p

j

��� dL2x � �m0+1�2

for p = 1; 2.
We also have

R
S

��D2v (x)
�� dL2x < ��. Let

B
p
0 =

8<:kpj :
Z
v

�
E
(p)

k
p
j

� J (x)
���D�p

k
p

j

(x)
��� dL2x � �

m0
2 �m0+1�2; j 2 f1; : : :Qp

0g

9=; :

So Card (Bp
0)�

m0
2 �m0+1�2 � �m0+1�2 implies Card (Bp

0 ) � �
�m0
2 . Let

G
p
0 :=

�
k
p
j : j 2 f1; : : :Q

p
0g
	
nBp

0

thus

Card (Gp
0) �

h
��m0

�
1� 2�

m0
2

�i
: (162)

Let ai;j be the centerpoint of E
(1)
i \ E(2)

j . Note that Si;j := P (ai;j ; �1; �2; c6�
m0�) � E

(1)
i \ E(2)

j . Let

l
(p)

k :=
�
a
(p)

k + h�pi
�
\ S. Let

U
p

k
:=

(
t 2 l(p)

k
:

Z
�
p �1

k
(t)\v

�
E
(p)

k

� J (x) dH1x � �
m0
4 �m0�

)
: (163)

Let k 2 Gp
0, by the coarea formula, for any k 2 Gp

0Z
t2Up

k

Z
�
p �1

k
(t)\v

�
E
(p)

k

� J (x) dH1xdL1t �
Z
t2IR

Z
�
p �1

k
(t)\v

�
E
(p)

k

� J (x) dH1xdL1t

=

Z
v

�
E
(p)

k

� J (x)
���D�(p)

k

��� dL2x
� �

m0
2 �m0+1�2:
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So L1 (Up

k )�
m0
4 �m0� � �

m0
2 �m0+1�2 which implies L1 (Up

k ) � �
m0
4 ��. Now let us temporarily �x p = 1. Let

�1k;r := l
(1)

k \N�m0 �

�6
(Sk;r) for k 2 f1; 2; : : : [��m0 ] + 1g, r 2 f1; 2; : : : [��m0 ] + 1g. For k 2 G1

0 let

D1
k :=

n
r 2

�
1; 2; : : :

�
��m0

�	
: L1

�
�1k;r \ U1

k

�
> �1+

m0
8 �m0�

o
: (164)

So since
n
�1k;r : r 2 f1; 2; : : : [��m0 ] + 1g

o
do not overlap by more than

�
��6

�
+ 1 we have

�6

2
Card

�
D1
k

�
�1+

m0
8 �m0� � L1

�
U1
k

�
� �

m0
4 ��

and thus

Card
�
D1
k

�
� 2��6�

m0
8 ��m0 :

For p = 2 we can de�ne �2k;r := l
(2)
r \N�m0 �

�6
(Sk;r) for k; r 2 f1; : : : [��m0 ] + 1g. And for r 2 G2

0 we let

D2
r :=

n
k 2

�
1; 2; : : :

�
��m0

�	
: L1

�
�2k;r \ U2

k

�
> �1+

m0
8 �m0�

o
:

We can see in exactly the some way that Card
�
D2
r

�
� 2��6�

m0
8 ��m0 .

Now we de�ne the \bad" skew cubes fB0 of the set
�
Si;j : i 2 G1

0; j 2 G2
0

	
as follows

Si;j 2 fB0 i� N�m0 �

�6
(Si;j) \ l(1)i 2

�
�1i;r : r 2 D1

i

	
or N�m0 �

�6
(Si;j) \ l(2)j 2

�
�2k;j : k 2 D2

j

	
: (165)

So

Card
�fB0

�
�

[��m0 ]+1X
k=1

D1
k +

[��m0 ]+1X
r=1

D2
r

� 8��6
�
��m0

�
�
m0
8 ��m0

� 8��6�
m0
8

�2m0
: (166)

Let fG0 :=
�
Si;j : i 2 G1

0; j 2 G2
0

	
nfB0. So from (162) and (166) we have

Card
�fG0

�
=

1

�2m0
�Card

��
1; : : :

�
��m0

�
+ 1
	
nG1

0

�
��m0

�Card
��
1; : : :

�
��m0

�
+ 1
	
nG2

0

�
��m0 �Card

�fB0

�
� 1

�2m0

�
1� 4�

m0
2 � 8��6�

m0
8

�
�

�
1� 16��6�

m0
8

�
�2m0

: (167)

Obviously we want to apply Lemma 8 to the skewcubes
n
Si;j 2 fG0

o
. First we have to make a further

selection. Let w := c7�
m0� and let � := �

m0
8 .

Now let

G0 :=

8<:Si;j 2 fG0 :

Z
N�m0 �

�2
(Si;j)

d (Dv (x) ; SO (2) [ SO (2)H) dL2x < c27�
m0(2+ 1

4 )�2

9=;
assuming (160) we have that Card

�fG0nG0

�
c27�

m0(2+ 1
2 )�2 � �3m0�2 so

fG0nG0 = ;: (168)

Given Si;j 2 G0 let R1 := F (ai;j ; w�2; ��1) and R2 := F (ai;j ; ��2; w�1).
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As � > �
m0
4 and w > �m0� we know from de�nitions (163), (164) and (165) and the fact that Si;j 2 G0

that

Gp :=

(
t 2 (ai;j + h�pi) \ B w

�6
(ai;j) :

Z
�
a �1
i

(t)\Rp
J (x) dH1x � �w

)
is such that

L1
�
(ai;j + h�pi) \ B w

�6
(ai;j) nGp

�
� ��m0� � �w

for p = 1; 2. So we apply Lemma 8 to Si;j to conclude that for gSi;j := P (ai;j ; �1; �2; c8w) there exists rotation
Ri;j 2 SO (2) and Si;j 2 fId;Hg such that

L2
�n
x 2gSi;j : jDv (x)�Ri;jSi;j j > �

m0
16

o�
< 20��8~c4c

2
7�

m0
64 (�m0�)

2

so by (167) and (168) we have established the proof of Proposition 1.
�
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8. The Coarea alternative: Part II

In the �rst part of the \coarea alternative" we established that for a skewcube S of diameter � with very small

bulk energy and surface energy bounded by ��, there must exist very many \controlled" subskewcubes of size

roughly �m0�; by this we mean that Dv (�) is these subskewcubes remains (mostly) close to one component of

the wells. Recall that the goal of the \coarea alternative" was to show that for a function v and skewcube S

under our hypotheses and with little surface energy over S, given triangle �i � S, if we let L denote the linear

part of the aÆne interpolation of v on the corners of L, then L will be very close to these wells. In the coming

Lemma we will establish this for skewcube S under our hypotheses and additionally having the property of

having many \controlled" subskewcubes.
The proof is based on two observations. Firstly we know from a calculation in the proof of Lemma 1 (speci�cally,

equation (14)) that the tangent vx0 at point x0 of the pull back of an integral curve given by a level set of �i

is of the form vx0 :=
�
S�1 (Y (t0))S

�1 (Y (t0))
�
ni where Dv (�) = R (�)S (�) is the polar decomposition of

Dv (�). So the tangent doesn't depend of the rotational part of the derivative. Secondly, from our constraint

on surface energy,
R
S

��D2v (x)
�� dL2x � ��, if we take any choice of direction  0 2 S1 then considering lines in

direction  0 going through S spaced out from one another by �m0�, all but
�

�
�m0

�
of these lines must be such

that they only pass through controlled subskewcubes that have derivative close the same component of the wells.

So suppose at least half our controlled subskewcubes are such that Dv (�) is close to SO (2)H, then we must be

able to �nd many lines parallel to H�2n1 and H
�2n2 running through S only touching controlled subskewcubes

with derivative close to SO (2)H.

φ 1

φ 2

H n 1
−2

H n
−2

2

Figure 29

Recall from the introduction, in trying to control our function v on skewcube S our �rst step was to show

that the integral curves run in straight lines, we did this by using the \pull back idea" (which only required

information about the bulk energy) and the \ODE method" in which we needed somehow to �nd integral curves

along which Dv (�) stays close the wells. In our situation now, we have that for many pulled back integral

curves through S, Dv (�) along the pulled back curve does indeed stay close to the wells (in fact stays close to

SO (2)H) and as such by using bulk energy as we have done before, its easy to show that these integral curves

form something very much like straight lines.

Observe �g 29. Its not hard to see we can �nd lines parallel to H�2n1 and H
�2n2 which enclose a large subset

of S and have the property that they intersect only controlled skewcubes for which Dv (�) is close to SO (2)H.

Let D denote the region enclosed. Let B1, B2, B3, B4 denote the sides of D, ie. @D =
S4

i=1 Bi. By using

the \pull back idea" and the \ODE method" carefully its not hard to show that vbBi � (RiH + �i)bBi for some

Ri 2 SO (2) and some �i 2 IR2
. And then by using Lemma 6 and the fact that det (Dv (�)) � 1 for most

points, we can (with some care) show that vb@D �
� eRH + �

�
b@D

. From this, by considering the action of v

on rank � 1 lines parallel to �1 and �2 running through D, its easy to see that any triangle �i � D is such

that if L denotes the linear part of the aÆne interpolation of v on the corners of �i, then L is very close to a

matrix in SO (2)H.
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This does the case where at least half the controlled subskewcubes are such that Dv (�) are close to SO (2)H. In

the case where half the controlled subskewcubes are close to SO (2) we can argue in an entirely analogous way.

In this case we will consider lines going through S in directions n1 and n2, these form pullbacks of integral

curves for which Dv (�) stays close to SO (2). We can then argue the same way to get control of a region

contained by four such lines, speci�cally we can conclude that any triangle �i contained in this region is such

that the linear part of the aÆne interpolation of v on �i is close to a matrix in SO (2). This is how the proof

works.

Lemma 9. Let v 2 AF (
) and let S := P (a; �1; �2; c9�) � 
 where c9 is some large constant we will decide

on later.

Let �
Li;j := P (ai;j ; �1; �2; �

m0�) : i; j 2
�
1; 2; : : :

�
��m0

�
+ 1
		

be a set of pairwise disjoint skewcubes such that S � [i;j2f1;:::[��m0 ]+1gLi;j . Let

Si;j := P (ai;j ; �1; �2; c8�
m0�) :

Suppose we have a set G0 � fSi;j : i; j 2 f1; : : : [��m0 ] + 1gg such that for any Si;j 2 G0

�
L2
�n
x 2 Si;j : d (Dv (x) ; Ri;jSi;j) > �

m0
16

o�
< 20c27~c4�

�8�
m0
64 (��m0)

2

for some Ri;j 2 SO (2), Si;j 2 fId;Hg
�

Card (G0) �
1� 16��2�

m0
8

�2m0

And we suppose also that Z
S

��D2v (x)
�� dL2x � �� (169)

and Z
S

d (Dv;K) dL2x � �
m0
2 �2 (170)

then if �i is the triangle in 4� that contains a, let Li be the linear part of the aÆne map we get from the

interpolation of v on the corners of �i, we have the following inequality;

d (Li; SO (2) [ SO (2)H) < �
m0
1024 :

Proof. Let B0 := fSi;j : Si;j \ S 6= ; and Si;j 62 G0g. So Card (B0) � 16��2�
m0
8

�2m0
.

We start by having to consider two cases,
Let

G
(1)
0 :=

�
Si;j 2 G0 : DvbSi;j � Ri;j for some Ri;j 2 SO (2)

	
and let

G
(2)
0 :=

�
Si;j 2 G0 : DvbSi;j � Ri;jTi;j for some Ri;j 2 SO (2) and Ti;j 2 fId;Hg

	
:

Case 1: Card
�
G
(2)
0

�
� Card

�
G
(1)
0

�
.

Case 2: Card
�
G
(1)
0

�
� Card

�
G
(2)
0

�
.

We will have to argue the two cases in analogues, but di�erent ways. As Case 1 is a little more intricate
we chose to argue it in detail.

Step 1 Take vector �1. Recall de�nition (54).

We can �nd a chain of points f~xk : k = 1; 2; : : :M0g � P�?1
(S),M0 =

24L1

�
P
�?
1
(S)

�
�m0�

35 such that j~xk�1 � ~xk j =

j~xk � ~xk+1j = ��m0 for k = 2; 3; : : :M0 � 1. Now for k 2 f2; 3; : : :M0g letfZk := nSi;j 2 S : Li;j \ P�1
�?1

(~xk) 6= ;
o
:
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Note fSi;j 2 Sg �
SM0

k=1
fZk. Let

E0 :=

8<:k 2 f1; 2; : : :M0g : There exists S
(1)
i;j 2 fZk \G0 with DvbS(1)

i;j

� SO (2) and

S
(2)
i;j 2 fZk \G0 with DvbS(2)

i;j

� SO (2)H

9=;
By 5r Covering Theorem ([16] Theorem 2.1) can take some subset E1 � E0 which has the following

properties

� For any k1; k2 2 E1 that are not equal, gZk1 \gZk2 = ;.
� [

k2E0

B2�m0� (~xk) �
[
k2E1

B10�m0� (~xk) : (171)

Now we clearly have that for each k 2 E1 we haveZ
P
�1

�?
i

(B10�m0 �(~xk))

��D2v (x)
�� dL2x � �m0�

2
:

So from (170) Card (E1)
�m0

2
� � ��

2
which implies that

Card (E1) � �1�m0 (172)

and from (171) we have

Card (E0) 2�
m0� = L1

 
P�?1

 [
k2E0

B2�m0� (~xk)

!!

� L1

 
P�?1

 [
k2E1

B10�m0� (~xk)

!!
� 10�m0�Card (E1) :

So Card (E1) � Card(E0)

5
and thus from (172) we have

Card (E0) � 5�1�m0 : (173)

Let Q0 := f1; 2; : : :M0g nE0. So for any k 2 Q0, fZk \ G0 consists only of skewcubes Si;j for which DvbSi;j �
SO (2) or consists only of skewcubes Si;j for which DvbSi;j � SO (2)H . Let

Q1 :=
n
k 2 Q0 : Card

�fZk \ B0

�
� �

m0
16 ��m0

o
Now by a similar application of the 5r covering theorem

Card (Q0nQ1)�
m0
16 ��m0 � 20�

m0
8

�2m0

so

Card (Q0nQ1) �
20�

m0
16

�m0
:

Thus

Card (Q1) =
�
1� 5�� 20�

m0
16

�
��m0 : (174)

Finally for some constant we letfQ2 =
n
k 2 f1; 2; : : :M0g : L1

�
P�1
�?1

(~xk) \ S
�
� 10��

o
so its easy to see from the diagram Q1nfQ2 � 10c1�

�m0+1 for some c1 := c (�) > 0. Let Q2 := Q1nfQ2. So
from (174) we have

Card (f1; 2; : : :M0g nQ2) � 20c1�
1�m0 : (175)

Step 2.
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Now we will show that either

� For any Si;j 2
S
k2Q2

fZk, DvbSi;j � Ai;j for Ai;j 2 SO (2)

� For any Si;j 2
S
k2Q2

fZk, DvbSi;j � Bi;j for Bi;j 2 SO (2)H .

Suppose this was not true, so we can �nd k1; k2 2 Q2 such that:

� For all Si;j 2gZk1
DvbSi;j � Ai;j with Ai;j 2 SO (2)

� For all Si;j 2gZk2 ,
DvbSi;j � Bi;j with Bi;j 2 SO (2)H:

Now by considering the change in derivative of Dv in direction �1 from the set
S
Si;j2fZ1

Si;j to the setS
Si;j2fZ2

Si;j we see that Z
S

��D2v (x)
�� dL2x � 10��

which contradicts assumption (169). So we have established the claim.
Now if we start the argument again from the beginning and instead of taking a chain of points in P�?1 (S)

we take a chain of points in P�?2
(S), we can then run through the whole argument again to establish the

following.

Let f ~zk : k = 1; 2 : : :M1g � P�?2
(S), (M1 =

24L1

�
P
�?
2
(S)

�
�m0 �

35) be a chain of points such that

j~zk � ~zk+1j = ��m0

for k = 1; 2; : : :M1 � 1. Let P1 :=
n
k 2 f1; : : :M1g : L1

�
P�1
�?2

( ~zk) \ S
�
> 10��

o
. For k 2 f1; 2; : : :M1g we letfYk := nSi;j : Li;j \ P�1

�?2
( ~zk) 6= ;

o
. We can �nd a subset P2 � P1 with the following properties.

There exists S 2 fId;Hg such that

� For any Si;j 2
S
k2P2 Yk we have

DvbSi;j (�) � Ai;j (176)

with Ai;j 2 SO (2)S.
�

Card (f1; 2; : : :M1g nP2) � 20c1�
1�m0 (177)

Step 3. Now we re�ne the set up. Now for any k1 2 Q2 we have situation shown on �g 31.
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φ

1

2

φ
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Figure 31

Since every point in P�1
�?1

(xk1 )\S is covered by skewcubes Li;j which are in turn covered by Si;j . We have

N�2c2��
m0

�
P�1
�?1

(xk1 )
�
\ S �

[
Si;j2Zk

Si;j :

Now by de�nition of Q2, for some S 2 fId;Hg we have that for any Si;j 2
S
k2Q2

fZk,
L2
�n
x 2 Si;j : d (Dv (x) ; SO (2)S) > �

m0
16

o�
< 20c27~c4�

�8�
m0
64 (��m0)

2
:

So

L2
�n
x 2 N�2c2��

m0

�
P�1
�?1

(xk1)
�
\ S : d (Dv (x) ; SO (2)S) > �

m0
16

o�
�

X
Si;j2fZk

L2
�n
x 2 Si;j : d (Dv (x) ; SO (2)S) > �

m0
16

o�
� 20c27~c4�

�8Card
�fZk��m0

64 (��m0)
2
:

Now as fSi;j : i; j 2 f1; 2; : : : [��m0 ] + 1gg do not overlap by more than c8 times, formally

k
X

i;j2f1;:::[��m0 ]+1g

XSi;jk1 � c8:

We have

Card
�fZk� � c8Card

�
Li;j : Li;j \ P�1

�?1
(~xk) 6= ;

�
� 2c8�

�m0 :

So

L2
�n
x 2 N

c8�2��
m0

�
P�1
�?1

(~xk1)
�
\ S : d (Dv (x) ; SO (2)S) > �

m0
16

o�
� c2�

2�m0(1+ 1
64 )

and so by Fubini we must be able to �nd some xk1 2 B�m0(1+ 1
128 )�

(~xk1 ) so

L1
�n
x 2 P�1

�?1
(xk1) \ S : d (Dv (x) ; SO (2)S) > �

m0
16

o�
� c2��

m0
128 : (178)

So by doing this for every k 2 Q2, we can �nd a set fxk : k 2 Q2g such that

� For every k 2 Q2

L1
�n
x 2 P�1

�?1
(xk) \ S : d (Dv (x) ; SO (2)S) > �

m0
16

o�
� c2��

m0
128 (179)

� jxk � ~xkj � �m0(1+ 1
128 )� for each k 2 Q2.
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Let Zk :=
n
Si;j : Li;j \ P�1

�?1
(xk) 6= ;

o
.

Now in exactly the same way we can �nd a set fzk : k 2 P2g such that for some S 2 fId;Hg
� For every k 2 P2

L1
�n
x 2 P�1

�?2
(zk) \ S : d (Dv (x) ; SO (2)S) > �

m0
16

o�
� c6��

m0
128

� jzk � ~zkj � �m0(1+ 1
128 )� for each k 2 P2.

Let Yk :=
n
Si;j : Li;j \ P�1

�?2
(zk) 6= ;

o
.

Step 4
Observe �g 32.
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Let

�1 :=
n
Si;j 2 S : Li;j \ P�1

�?1
(xk) 6= ; for k 2 Q2

o
and let

�2 :=
n
Si;j 2 S : Li;j \ P�1

�?2
(zk) 6= ; for k 2 P2

o
:

Now as can be seen from the diagram, assuming we chose c8 big enough, then for some c3 > ��1 we will decide
on later, I := P (a; �1; �2; �c3�) � �S is such that

I � P�1
�?2

([z1; zM1
]) \ P�1

�?1
([x1; xM0

]) :

Now let � := fSi;j : Si;j \ I 6= ;g. So if we have that � \ �1 \ �2 6= ; then we have that there exists
S 2 fId;Hg such that for any Si;j 2 � \ (�1 [�2) we have:

There exists Ri;j 2 SO (2) such that L2
�n
x 2 Si;j : d (Dv (x) ; Ri;jS) > �

m0
16

o�
< 20c27~c4�

�8�
m0
64 (��m0)

2
:

(180)
We will estimate Card (�n (�1 [�2)). Since for any k1 2 f1; 2; : : :M1g, k2 2 f1; 2; : : :M2g

Card (Zk1 \ Yk2) � c4

for some constant c4 = c (�). So for any k1 2 f1; 2; : : :M1g we have

Card

0@Zk1 \
0@ [
k22f1;:::M1gnP2

Yk2

1A1A = Card

0@ [
k22f1;:::M1gnP2

Zk1 \ Yk2

1A
� Card (f1; : : :M1g nP2) c4: (181)
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So by (177), (175)

Card

0@0@ [
k12f1;:::M0gnQ2

Zk1

1A \

0@ [
k22f1;:::M1gnP2

Yk2

1A1A �
X

k12f1;:::M0gnQ2

Card

0@Zk1 \
0@ [
k22f1;:::M1gnP2

Yk2

1A1A
� Card (f1; : : :M0g nQ2) Card (f1; : : :M1g nP2) c4

� 100c21
c4�

2

�2m0
:

Now

�n (�1 [�2) = (�n�1) \ (�n�2)

�

0@ [
k12f1;:::M0gnQ2

Zk1

1A \

0@ [
k22f1;:::M1gnP2

Yk2

1A
So

Card (�n (�1 [�2)) � 400c21
c4�

2

�2m0

and thus � \�2 \�2 6= ; and so (180) is true.
Now the arguments are completely analogous no matter what S is, however as the details are slightly more

intricate when S = H we will deal with this case.
See �g 33.
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Let 
1 : : : 
4 > 1 be some numbers we will decide on later. Let �1 := a+
1�1, �2 := a�
2�1, �3 := a+
3�2
and �4 := a� 
4�2.

We assume 
1 : : : 
4 have been chosen so that �1 2 P�1
�?1

(xk1 ) for some k1 2 Q2 and �2 2 P�1
�?1

(xk2) for some

k2 2 Q2. And �3 2 P�1
�?2

(zk3) for some k3 2 P2 and �4 2 P�1
�?1

(zk4) for some k4 2 P2. We also assume (using

(175),(177) that)
j
i � 
j j < 20c1� for any i; j 2 f1; : : : 4g : (182)

As shown on �g 33. Let D denote the region enclosed by the lines f�1 + h�1ig, f�2 + h�1ig, f�3 + h�2ig
and f�4 + h�2ig as shown.

Now we assume c3 has been chosen such that f
ig can be chosen so that I2 := P (a; �1; �2; c11�
m0�) � D

(for some c11 > 0 we will decide on later) and D � I .
We assume c11 > 0 is suÆciently smaller than 
1 so that we can �nd k1 2 Q2 such that xk1 2 Ph�?1 i (DnI2)

with P�1
h�?1 i

(xk1) \ fa+ ��1 : � > 0g 6= ;. In the same way we can �nd k3 2 Q2 such that xk3 2 Ph�?1 i (DnI2)
and P�1

�?1
(xk3) \ fa� ��1 : � > 0g. We also can �nd k2; k4 with zk2 ; zk4 2 Ph�?2 i

(DnI2) and P�1
�?2

(zk2) \
fa+ ��2 : � > 0g 6= ;, P�1

�?2
(zk4) \ fa+ ��1 : � � 0g 6= ;.
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Step 5 We will show for j 2 f1; 3g
� For any y1; y2 2 D \ P�1

�?1

�
xkj
�
where k1 2 Q2 and jy1 � y2j >

p
�� we have

jv (y1)� v (y2)j 2
h���P�?1 (y1 � y2)

��� �1� c5�
m0
256

�
;

���P�?1 (y1 � y2)
��� �1 + c5�

m0
256

�i
: (183)

And speci�cally we have

H1 ([y1; y2]) �
�
1 + c5�

m0
256

� ���P�?1 (y1 � y2)
��� (184)

� For j 2 f2; 4g and for any y3; y4 2 D \ P�1
�?2

�
zkj
�
where k2 2 P2 and jy3 � y4j >

p
�� we have

jv (y3)� v (y4)j 2
h���P�?2 (y3 � y4)

��� �1� c5�
m0
256

�
;

���P�?2 (y3 � y4)
��� �1 + c5�

m0
256

�i
: (185)

And speci�cally we have

H1 ([y3; y4]) �
�
1 + c5�

m0
256

� ���P�?1 (y3 � y4)
��� (186)

We will argue only the case where y1; y2 2 D \ P�1
�?1

�
xkj
�
, kj 2 Q2. The case where y3; y4 2 D \ P�1

�?2

�
zkj
�

for kj 2 P2 follows in exactly the same way.

We start by establishing (184). Let L =
n
x 2 [y1; y2] : d (Dv (x) ; SO (2)H) � �

m0
16

o
. For each x 2 [y1; y2]

let W (x) 2 SO (2)H be such that

d (Dv (x) ; SO (2) [ SO (2)H) = jDv (x)�W (x)j :

So by (178) we have L1 ([y1; y2] nL) � c2��
m0
128 and so

��H1 (v ([y1; y2]))� jy1 � y2j jH�1j
�� =

�����
Z
[y1;y2]

(jDv (x)�1j � jH�1j) dH1x

�����
�

Z
L

jDv (x) �W (x)j dL1x+
Z
[y1;y2]nL

jDv (x)j+ jH�1j dL1x

� �
m0
16 jy1 � y2j+ 2c2�

�2��
m0
128

� 4��2c2 jy1 � y2j�
m0
128

� 1
2 :

Now as we know from (48), jy1 � y2j jH�1j =
���P�?1 (y1 � y2)

��� and thus���H1 (v ([y1; y2]))�
���P�?1 (y1 � y2)

������ � 4��2c2 jy1 � y2j�
m0
128

� 1
2 : (187)

So this establishes (184).
Now we will show

jv (y1)� v (y2)j �
���P�?1 (y1 � y2)

��� �1� �
m0
256

�
:

We appeal to Lemma 4 where it was shown that for any two points �1; �2 2 v (S) such that [�1; �2] � v (S) andZ
[�1;�2]

d
�
Dv
�
v�1 (z)

�
;K
�
dL1x < �

m0
128 j�1 � �2j

we have

j�1 � �2j �
�
1� 2��2�

m0
256

�
j	1 (�1)�	1 (�2)j :

By the area formula we have
R
v(S)

J (x) dL2x � ��2�
m0
2 �2 so by Fubini we must be able to �nd interval

[�1; �2] parallel to [v (y1) ; v (y2)] withZ
[�1;�2]

d
�
Dv
�
v�1 (x)

�
;K
�
dL1x � �

m0
64 � � �

m0
128 jl1 � l2j :
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And �1 2 N
�
m0
128 �

(v (y1)) and �2 2 N
�
m0
128 �

(v (y2)). So by Lemma 4 we have

j�1 � �2j �
�
1� 2��2�

m0
128

�
j	1 (�1)�	1 (�2)j :

Now by Bilipschitzness we have

jv (y1)� v (y2)j �
�
1� 5��2�

m0
128

�
j	1 (v (y1))�	1 (v (y2))j

=
�
1� 5��2�

m0
128

�
L1
�
P�?1

([y1; y2])
�
:

So this together with (187) establishes Step 5

Step 6

Take q 2 f2; 4g. Consider the line (�q + h�2i) \ D. We will show that there exists Rq 2 SO (2) such that
for any z 2 (�q + h�2i) \D with jz � �q j >

p
�� we have

v (z) 2 B
c6�

m0
1024 �

(v (�q) +RqH (z � �q)) : (188)

And similarly for q 2 f1; 3g. For the line (�q + h�1i)\D we will show that there exists Rq 2 SO (2) such that
for any z 2 (�q + h�1i) \D with jz � �q j >

p
�� we have

v (z) 2 B
c6�

m0
1024 �

(v (�q) +RqH (z � �q)) : (189)

We argue only the case q = 1. All other cases follow in exactly the same way. Observe �g 34 below.

v(o )

v(o )θ1v(    )

1

2

θ1

o 1

o 2

l

−<> 1

ψ 1

Figure 34

Firstly by the Pythagoras type arguments coming from Lemma 5 (see in particular �g 7) (183) implies that

v ([o1; o2]) � N
�
m0
512 �

(v (�1) + l) (190)

for some l 2 G (1; 2).

Let  1 2 S1 be such that h 1i = l and  1 �
�

v(o2)�v(o1)
jv(o2)�v(o1)j

�
> 0. Let R1 2 SO (2) be the rotation such that

R1

�
o2�o1
jo2�o1j

�
=  1. Now for any z 2 (�1 + h�1i) \D with jz � �1j >

p
�� and z � (��1) � �1 � (��1). Let eR

be a rotation such that eR� z��1
jz��1j

�
= v(z)�v(�1)

jv(z)�v(�1)j
�  1.

So

v (z) = v (�1) + jv (z)� v (�1)j eR� z � �1

jz � �1j

�
: (191)



68 LOWER BOUNDS FOR THE TWO WELL PROBLEM

Now (190) we know
��(v (z)� v (�1)) �  ?1

�� � �
m0
512 � and so

j(v (z)� v (�1)) �  1j � jv (z)� v (�1)j �
��(v (z)� v (�1)) �  ?1

��
� jv (z)� v (�1)j � �

m0
512 �: (192)

So as we know by Bilipschitzness that

jv (z)� v (�1)j � ��2 jz � �1j
� ��2

p
��: (193)

And as o2�o1
jo2�o1j

= z��1
jz��1j

= ��1 we have����R1 � eR� � �1��� =

���� 1 � v (z)� v (�1)

jv (z)� v (�1)j

����
�

����1� (v (z)� v (�1)) �  1
jv (z)� v (�1)j

����+ ���� (v (z)� v (�1)) �  ?1
jv (z)� v (�1)j

����
� jv (z)� v (�1)j�1

�
jjv (z)� v (�1)j � (v (z)� v (�1)) �  1j+

��(v (z)� v (�1)) �  ?1
���

� 2�
m0
512 �

�2
p
��

� c5�
m0
1024

which implies
���R1 � eR��� � c5�

m0
1024 .

Now putting this together with (191) we have from (190), (192) and (193)

v (z) 2 B
c5��

m0
1024

�
v (�1) + jv (z)� v (�1)jR1

�
z � �1

jz � �1j

��
which completes the proof of (189) for the case z � (��1) � �1 � (��1).

Now if z � (��1) < �1 � (��1) we let �R be the rotation such that

�R

�
z � �1

jz � �1j

�
=

v (z)� v (�1)

jv (z)� v (�1)j
� � 1 (194)

but since z��1
jz��1j

= �1 we can see as before (since R1 (�1) = � 1) that
�� �R�R1

�� � c5�
m0
1024 so again by using

this with an unscrambling of (194) we have complete the proof of (189).
Step 7. We will show v (D) is (roughly) mapped onto a parallelogram congruent to H (D).

First we �nd the corners of the shape D. Let o1 := (�1 + h�1i)\(�4 + h�2i), o2 := (�1 + h�1i)\(�3 + h�2i),
o3 := (�2 + h�1i) \ (�3 + h�2i), o4 := (�2 + h�1i) \ (�4 + h�2i).

Let X denote the shape contained by the lines

f[v (o1) ; v (o2)] ; [v (o1) ; v (o4)] ; [v (o3) ; v (o4)] ; [v (o3) ; v (o2)]g :
Note

��(o1 � o4) � �?1
�� = ��(o2 � o3) � �?1

�� =: � and
��(o1 � o2) � �?2

�� = ��(o3 � o4) � �?2
�� =: � by Step 5 (see �g

33) we have

jv (o4)� v (o1)j 2
h�
1� c5�

m0
256

�
�;
�
1 + c5�

m0
256

�
�
i

and

jv (o2)� v (o3)j 2
h�
1� c5�

m0
256

�
�;
�
1 + c5�

m0
256

�
�
i
:

And also by Step 5 we have

jv (o1)� v (o2)j 2
h�
1� c5�

m0
256

�
�;
�
1 + c5�

m0
256

�
�
i

and

jv (o4)� v (o3)j 2
h�
1� c5�

m0
256

�
�;
�
1 + c5�

m0
256

�
�
i
:
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So X must be roughly a parallelogram. Formally, there exists a parallelogram eX such that

H
�
X; eX� � c7�

m0
256 �:

Now by Step 6 we have that H (v (D) ;X) � c6�
m0
1024 � and so

H
�eX; v (D)� � 4c7�

m0
1024 �: (195)

By the fact that
R
D
J (x) dL2x � ��2�

m0
2 L2 (D) we have

L2 (v (D)) 2
��

1� �
m0
4

�
L2 (D) ;

�
1 + �

m0
4

�
L2 (D)

�
and so

L2
�eX� 2 ��1� 4c7�

m0
1024

�
L2 (D) ;

�
1 + 4c7�

m0
1024

�
L2 (D)

�
:

Now given that the size lengths of eX are prescribed and are (upto error 2c7�
m0
512 �) the same side lengths

as H (D), there can only be two possible parallelogram with volume equal to L2 (D). So (see �g 35) v (D) is
mapped (roughly) onto one of two possible parallelograms, as shown.

v(o1)

v(o3) v(o3)

v(o2) v(o1)

v(o3)

v(o2)

Case 1

v(o3)

Case 2

Figure 35

We know of course that H maps D onto a parallelogram and L2 (H (D)) = L2 (D). So H (D) is one of the
parallelograms shown in �g 35, in fact its parallelogram show is Case 2.

We will show that v (D) is mapped onto the parallelogram given by H (D). The �g 36 below shows H (D).

Ho

Ho

Ho

Ho

Hθ

Hθ Hθ

Hθ
1

2

2

3

3

1

4

4

Hφ

Hφ1

2

Figure 36

Now by Step 5 and (49) we see

jv (�4)� v (o1)j �
�
1 + c5�

m0
256

�
jH (�4 � o1)j

and

jv (�1)� v (o1)j �
�
1 + c5�

m0
256

�
jH (�1 � o1)j :
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So if we had Case 2 and v (o1) was mapped to one of the sharp corners of the parallelograms, then v (�1) would

be within
�
1 + c5�

m0
256

�
jH (�1 � o1)j of the sharp corner and v (�4) would also be within

�
1 + c5�

m0
256

�
jH (�4 � o1)j

of the sharp corner.

In the same way v (�3) and v (�1) would be (respectively) within distance
�
1 + c5�

m0
256

�
jH (�1 � o3)j,�

1 + c5�
m0
256

�
jH (�3 � o3)j of the opposite sharp corner. Now as can be seen from the (36), in this case

jv (�1)� v (�3)j would have to be � (1 + c8) jH (�1 � �3)j for some not so small constant c8 = c (�) > 0. How-
ever as �1; �3 2 (a+ h�1i) we have that jv (�1)� v (�3)j �

�
1 + �2

�
j�1 � �3j =

�
1 + �2

�
jH (�1 � �3)j and this

gives as a contradiction.
So we must have Case 1, which is to say v (D) is (roughly) mapped onto a parallelogram congruent H (D).

Formally, (195) implies that for some � 2 IR2 we have

H (v (D) ; H (D) + �) � 42c7�
m0
1024 �: (196)

Step 8. We will use this to prove that for some R 2 SO (2) such that for any x 2 @Dn
S4

i=1B
p
�w (�i) we

have
v (x) 2 B

42c7�
m0
1024 �

(v (�1) +RH (x� �1)) : (197)

We start by noting that since v (D) is an almost parallelogram (see (196)) we know that R1 and R3 from
(189) are such that

jR1 �R3j < 42c7�
m0
1024 (198)

and R2, R4 from (188) are such that

jR2 �R4j < 2c6�
m0
1024 : (199)

So it suÆces to show
jR3 �R4j < 8c7�

m0
1024 : (200)

Now by (188) and (189) we have for any z 2 (�4 + h�2i) \DnBp�� (o4) that
v (z) 2 B

c6�
m0
1024 �

(v (o4) +R4H (z � o4)) (201)

and for any z 2 (�3 + h�1i) \DnBp�� (o4) we have
v (z) 2 B

c6�
m0
1024 �

(v (o4) +R3H (z � o4)) : (202)

Now from (201), (202) we have

(v (o1)� v (o4)) � (v (o3)� v (o4)) 2 B
2c6�

m0
1024 �

(R4H (o1 � o4) � R3H (o3 � o4))

However by Step 7 we know v (D) is mapped onto a rectangle congruent to H (D) and so the arrangement
of corners is as shown on Case 2, �g 36. And so, as can be seen from these diagrams, (196) implies that

(v (o1)� v (o4)) � (v (o3)� v (o4)) 2 B
4c7�

m0
1024 �

(H (o1 � o4) �H (o3 � o4))

So
R4H (o1 � o4) �R3H (o3 � o4) 2 B

4c7�
m0
1024

(H (o1 � o4) �H (o3 � o4))

and thus
R�13 R4H (o1 � o4) �H (o3 � o4) 2 B

8c7�
m0
1024

(H (o1 � o4) �H (o3 � o4)) :

So there are two possibilities. Either R�13 R4 is close to the identity or R�13 R4 
ips H (o1 � o4) onto the

other side of H (o3 � o4) as shown on �g 37. We will gain a contradiction from the possibility that R�13 R4 is
not close to the identity in the following way. Observe �gure 38.

Now we can assume we have chosen f�1; �2; �3; �4g such thatZ
[o4;o1]

d (Dv (x) ; SO (2) [ SO (2)H) dL1x < � jo4 � o1j

and Z
[o4;o3]

d (Dv (x) ; SO (2) [ SO (2)H) dL1x < � jo4 � o3j
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θθ

−1
3 4 1

4

4

4R  R  H(o  −o )
3H(o  −o )

1H(o −o )

Figure 37

o4

o3

v(o3)

v(o4)

o1

v(o1)

<> 1

φ

φ

1

2

<> 2
2α

α1

Figure 38

and so (as shown) we must be able to �nd �1 2 [o4; o3] and �2 2 [o4; o1] such that �2 � �1 is parallel to �1,

d (Dv (�1) ; SO (2) [ SO (2)H) < �

and Z
[�1;�2]

d (Dv (z) ; SO (2) [ SO (2)H) dL1z � � j�1 � �2j : (203)

Now since v ((�1; �2)) can not pass through v ([o4; o3]) or v ([o4; o1]) by Bilipschitzness. And more impor-
tantly since at point �1 (as the Dv (�1) is orientation preserving) the \triple junction" formed by the lines
[o4; o3] and [�1; �2] must be mapped to a \similar" \triple junction" of v ([o4; o3]) and v ([�1; �2]). See �gure
39.

α

α1

1

v(    )

Figure 39
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So v ([�1; �2]) is forced to take a journey around the outside of v ([o3; o4]) [ v ([o1; o4]) as shown in �g 38.
But this means

H1 (v ([�1; �2])) > (1 + c10) j�1 � �2j (204)

for some not small constant c10 = c (�) > 0.
However (203) since �1 is a rank-1 direction for H we have

H1 (v ([�1; �2])) =

Z
[�1;�2]

jDv (z)�1j dL1z � (1 + �) j�1 � �2j

which contradicts (204). So �nally we have a contradiction from the assumption that R�13 R4 
ips H (o1 � o4)
onto the other side of H (o3 � o4). So we must have the only other possibility which is

R�13 R4 2 N
8c7�

m0
1024

(Id) ; (205)

and this establishes (200).
Now we will use this prove (197). We will argue for z 2 [o4; o3] nBp�� (�2). See �g 33, by (189) and

(198),(199), (205) we have

v (z)� v (o4) 2 B
20c7�

m0
1024 �

(R1H (z � o4)) (206)

and by (188), (198), (199), (205)

v (o4)� v (o1) 2 B
20c7�

m0
1024 �

(R1H (o4 � o1)) (207)

and �nally by (189)

v (o1)� v (�1) 2 B
c6�

m0
1024 �

(R1H (o1 � �1)) : (208)

Now by adding together (206), (207) and (208) we have

v (z) 2 B
42c7�

m0
1024 �

(R1H (z � �1) + v (�1)) (209)

and this establishes (197).
The cases, z 2 [o1; o4] nBp�� (�4), z 2 [o2; o4] nBp�� (�2), z 2 [o2; o3] nBp�� (�3) and can be argued in the

same way
Step 8
Now we assume 
1; 
2; 
3; 
4 have been chosen big enough so that if �i 2 4� is the element of the triangu-

lation that contains a, then �i � D. Let f!1; !2; !3g denote the corners of �i. Now by assumption, none of
the edges of �i are close to being parallel to the axis �1, �2. So we have that

Card
�
f!1; !2; !3g \

�
Np

�� (a+ h�1i) [Np
�� (a+ h�2i)

��
� 1:

If f!1; !2; !3g\
�
Np

�� (a+ h�1i) [Np
�� (a+ h�2i)

�
= ; then the situation is even simpler, so we will argue

the case where the interaction is non-empty.
So without loss of generality assume

f!1g = f!1; !2; !3g \Np
�� (a+ h�1i) : (210)

Let ~
1; ~
2; ~
3; ~
4 > 0 be numbers we decide on later and let ~�1 := a+ ~
1�1, ~�2 := a� ~
2�1, ~�3 := a+ ~
3�2 and
~�4 := a+ ~
4�2. By (175) and (177) we can assume ~
1; ~
2; ~
3; ~
4 have been chosen so that

� ~�1 2 P�1
�?1

(xk5) for some k5 2 Q2, ~�2 2 P�1
�?1

(xk6 ) for some k6 2 Q2, ~�3 2 P�1
�?2

(zk7) for some k7 2 P2
and ~�4 2 P�1

�?2
(zk8) for some k8 2 P2.

� !1 2 N20c1�

�
P�1
�?1

�
P�?1

�
~�1

���
, !2 2 N20c1�

�
P�1
�?2

�
P�?2

�
~�3

���
and !3 2 N20c1�

�
P�1
�?2

�
P�?2

�
~�4

���
.

Note that this last condition together with (210) implies !1 2 Np
�

�
~�1

�
. Let eD denote the region enclosed

by n�
~�1 + h�1i

�
;
�
~�2 + h�1i

�
;
�
~�3 + h�2i

�
;
�
~�4 + h�2i

�o
:
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Either by arguments entirely analogues to those we used to establish (197) or by using (197) directly to

show that v
�eD� isn't mapped onto the \wrong parallelogram" (the one that isn't H

�eD�) we can establish

the following:
There exits R 2 SO (2) such that for any

x 2 @ eDn 4[
j=1

Bp��

�
~�j

�
that

v (x) 2 B
42c7�

m0
1024 �

�
v
�
~�1

�
+ RH

�
x� ~�1

��
� B

44c7�
m0
1024 �

(v (!1) + RH (x� !1)) :

This of course implies that

v (!2) 2 B
44c7�

m0
1024 �

(v (!1) +RH (!2 � !1)) (211)

v (!3) 2 B
44c7�

m0
1024 �

(v (!1) +RH (!3 � !1)) : (212)

Now let A be the aÆne map we get by interpolating v on the corners f!1; !2; !3g. So A = L + � where

L 2 M2�2 and � 2 IR2. Thus we have v (!2) � v (!1) = L (!2 � !1) and v (!3) � v (!1) = L (!3 � !1). As
from (211) and (212) we have

L (!2 � !1) = v (!2)� v (!1) 2 B
44c7�

m0
1024 �

(RH (!2 � !1))

L (!3 � !1) = v (!3)� v (!1) 2 B
44c7�

m0
1024 �

(RH (!3 � !1)) :

This implies

L

�
!2 � !1

j!2 � !1j

�
2

�
z

j!2 � !1j
: z 2 B

44c7�
m0
1024 �

(RH (!2 � !1))

�
� B

c12�
m0
1024

�
RH

�
!2 � !1

j!2 � !1j

��
(213)

and

L

�
!3 � !1

j!3 � !1j

�
2

�
z

j!3 � !1j
: z 2 B

44c7�
m0
1024 �

(RH (!3 � !1))

�
� B

c12�
m0
512

�
RH

�
!3 � !1

j!3 � !1j

��
: (214)

So
���(L�RH)

�
!3�!1
j!3�!1j

���� � c12�
m0
1024 and

���(L�RH)
�

!2�!1
j!2�!1j

���� � c12�
m0
1024 .

From this it follows easily that jL� RH j � c13�
m0
1024 . And so for Case 1, where Card

�
G
(2)
0

�
� Card

�
G
(1)
0

�
we have established the lemma.

Case 2 where Card
�
G
(1)
0

�
� Card

�
G
(2)
0

�
follows via entirely analogous arguments, in fact its is even easier.

In this case we take a chain of points
�
zkj
	
2 Pn?1 (S) and

�
xkj
	
2 Pn?2 (S) so we gain control of v on the linesn

P�1
n?1

�
zkj
�
\ S
o
and

n
P�1
n?2

�
xkj
�
\ S
o
. Exactly analogous to what we have done in Case 1, we will show a

parallelogram with sides parallel to n1 and n2 is mapped (roughly) to a rotated version of some parallelogram.
From this we harvest the approximate control on the corners of �i and we are done.

�
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9. Counting the Oscillation

This last lemma is one of the most crucial in the whole proof. The basic idea has been explained in section 4.3

of the introduction. As noted in the introduction, the \coarea alternative" we actually need is more subtle than

the one sketched there. The basic idea behind the improved \coarea alternative" is explained in the introduction

to section 7; as described we must argue the \coarea alternative" in the thin columns running up through S in

directions �1 and �2.

Given a thin rectangular region C of width w parallel to �i, inside S the basic rule of thumb for the relationship

between the \coarea integral" of v over v (C) and the surface energy of v over C is (assuming the bulk energy

of v over C is small enough). R
v(C)

J (x) jD�i (x)j dL2x
w

� c

Z
C

��D2v (x)
�� dL2x

And the proof of this is basically as described in section 4.3 of the introduction. The rest of the proof is just

arithmetic to show that the quantities add up to be what we expect.

Lemma 10. Let v 2 AF (
). Given skew cube S := P (a; �1; �2; c9�) � 
. Let m0 2 IN be a big integer whose

value we will decide on later.

Suppose for some p 2 f1; 2g we have;

� Let fCp

k : k 2 f1; 2; : : : [��m0 ]gg denote the set of columns of width �m0� going through S, parallel to

�p. Let a
(p)

k denote the center point in C
(p)

k . Let �p

k denote the level set function de�ned with respect

to line

n
a
(p)

k + h�ki
o
. Let E

(p)

k := Nc5�
m0

�
C
(p)

k

�
\ S

Let fk1; k2; : : : kQ0
g � f1; 2; : : : [��m0 ]g be a subset of distinct numbers such thatZ

v

�
E
(p)

kj

� J (x) dL2x � �3m0+7�2 (215)

for each j 2 f1; 2; : : :Q0g and Q0 �
�
1� �

m0
2

�
[��m0 ]

�
Q0X
j=1

Z
v

�
E
(p)

kj

� J (x) jD�p

k (x)j dL2x � �m0+1�2

then Z
S

��D2v (x)
�� dL2x � c0��:

Proof. Firstly we note that we have

Q0X
j=1

��1��m0

Z
v

�
E
(p)

kj

� J (x) jD�p

k (x)j dL2x > ��:

Let

G0 :=

(
j 2 f1; 2; : : :Q0g : ��1��m0

Z
v

�
E
(p)

kj

� J (x) jD�p

k (x)j dL2x � �m0+2�

)
and let B0 := f1; 2; : : :Q0g nG0.

As X
j2G0

��1��m0

Z
v

�
E
(p)

kj

� J (x) jD�p

k (x)j dL2x+
X
j2B0

�m0+2� � ��

we have X
j2G0

��1��m0

Z
v

�
E
(p)

kj

� J (x) jD�p

k (x)j dL2x � (1� �)��:
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Let

#j := ��1��m0

Z
v

�
E
(p)

kj

� J (x) jD�p

k (x)j dL2x (216)

for j 2 G0. So X
j2G0

#j � (1� �)�� (217)

and
�j � �m0+2� (218)

for each j 2 G0.

Claim 2. We will show we can �nd z0 2 P�?p
�
E
(p)

kj

�
such thatZ

v

�
E
(p)

kj
\P�1

�?p
(z0)

� J (x) jD�p

k (x)j dH1x � �4�j : (219)

And Z
v

�
E
(p)

kj
\P�1

�?p
(z0)

� J (x) dH1x � �m0+4��4
Z
v

�
E
(p)

kj
\P�1

�?p
(z0)

� J (x) jD�p

k (x)j dH1x

Proof of Claim

Let

G2 :=

8>><>>:
z 2 P�?p

�
E
(p)

kj

�
:

R
v

�
E
(p)

kj
\P�1

�?p
(z)

� J (x)
���D�p

kj
(x)
��� jD	p (x)j dH1x

� ��m0�4
R
v

�
E
(p)

kj
\P�1

�?p
(z)

� J (x) jD	p (x)j dH1x

9>>=>>;
and let

G3 :=

8<:z 2 P�?p �E(p)

kj

�
:

Z
v

�
E
(p)

kj
\P�1

�?p
(z)

� J (x)
���D�p

kj
(x)
��� jD	p (x)j dH1x � �4�j

9=; :

Suppose the claim is not true and so G2 \G3 = ;. Thus P�?p
�
E
(p)

kj

�
� Gc

2 [Gc
3. By the Coarea formulaZ

v

�
E
(p)

kj

� J (x)
���D�p

kj
(x)
��� dL2x =

Z
z2P

�?p

�
E
(p)

kj

�
Z
v

�
E
(p)

kj
\P�1

�?p
(z)

� J (x)
���D�p

kj
(x)
��� jD	p (x)j dH1xdL1z

�
Z
z2P

�?p

�
E
(p)

kj

�
nG2

Z
v

�
E
(p)

kj
\P�1

�?p
(z)

� J (x)
���D�p

kj
(x)
��� jD	p (x)j dH1xdL1z

+

Z
z2P

�?p

�
E
(p)

kj

�
nG3

Z
v

�
E
(p)

kj
\P�1

�?p
(z)

� J (x)
���D�p

kj
(x)
��� jD	p (x)j dH1xdL1z

�
Z
z2P

�?p

�
E
(p)

kj

�
0@��m0�4

Z
v

�
E
(p)

kj
\P�1

�?p
(z)

� J (x) jD	p (x)j dH1x+ �4�j

1A dL1z

� ��m0�4
Z
v

�
E
(p)

kj

� J (x) dL2x+ �4�jL
1
�
P�?p

�
E
(p)

kj

��
: (220)

Recall de�nition of �j , (216), rearranging (220) we have by (215) and (218) that

��m0�j � �4�jc0�
m0� � ��m0�4

Z
v

�
E
(p)

kj

� J (x) dL2x
� �2m0+3�2

� �m0+1�j�
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and as �4 << c0 we have a contradiction. So we have established the claim. }
So we can �nd z0 2 G2 \G3 such thatZ

v

�
E
(p)

kj
\P�1

�?p
(z0)

� J (x)
���D�p

kj
(x)
��� dH1x � �4�j

and (by the fact that �2 � jD	p (x)j � ��2)Z
v

�
E
(p)

kj
\P�1

�?p
(z0)

� J (x) dH1x � �m0+4��4
Z
v

�
E
(p)

kj
\P�1

�?p
(z0)

� J (x)
���D�p

kj
(x)
��� dH1x: (221)

Claim 3. We can �nd subset U0 � v
�
E
(p)

kj
\ P�1

�?p
(z0)

�
such that

H1 (U0) � �m0+3� (222)

and Z
U0

J (x)
���D�p

kj
(x)
��� dH1x � �4

2
�j (223)

Proof of Claim.

Note, most of the points of v
�
E
(p)

kj
\ P�1

�?p
(z0)

�
are much less than average: Formally, let

U0 :=

8>><>>:x 2 v
�
E
(p)

kj
\ P�1

�?p
(z0)

�
: J (x) > ���4

R
v

�
E
(p)

kj
\P�1

�?p
(z0)

� J (x)
���D�p

kj
(x)
��� dH1x

H1

�
v
�
E
(p)

kj
\ P�1

�?p
(z0)

��
9>>=>>;

so using (221) for the �rst inequality

�m0+4��4
Z
v

�
E
(p)

kj
\P�1

�?p
(z0)

� J (x)
���D�p

kj
(x)
��� dH1x �

Z
U0

J (x) dH1x

� ���4

R
v

�
E
(p)

kj
\P�1

�?p
(z0)

� J (x)
���D�p

kj
(x)
��� dH1x

H1

�
v
�
E
(p)

kj
\ P�1

�?p
(z0)

�� H1 (U0) :

So we have

�m0+3H1
�
v
�
E
(p)

kj
\ P�1

�?p
(z0)

��
� H1 (U0) :

Let

D0 := v
�
E
(p)

kj
\ P�1

�?p
(z0)

�
nU0:

So

Z
D0

J (x)
���D�p

kj
(x)
��� dH1x � ���4

R
v

�
E
(p)

kj
\P�1

�?p
(z0)

� J (x)
���D�p

kj
(x)
��� dH1x

H1

�
v
�
E
(p)

kj
\ P�1

�?p
(z0)

�� Z
D0

���D�p

kj
(x)
��� dH1x:

As by Lemma 1
R
D0

���D�p

kj
(x)
��� dH1x � ��2�. SoZ

D0

J (x)
���D�p

kj
(x)
��� dH1x � ���6

�

H1

�
v
�
E
(p)

kj
\ P�1

�?p
(z0)

�� Z
v

�
E
(p)

kj
\P�1

�?p
(z0)

� J (x)
���D�p

kj
(x)
��� dH1x

� ���8
Z
v

�
E
(p)

kj
\P�1

�?p
(z0)

� J (x)
���D�p

kj
(x)
��� dH1x
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and so as � << �8 we haveZ
U0

J (x)
���D�p

kj
(x)
��� dH1x � 1

2

Z
v

�
E
(p)

kj
\P�1

�?p
(z0)

� J (x)
���D�p

kj
(x)
��� dH1x � �4�j

2

and this establishes the claim. }
Note in particular Z

U0

���D�p

kj
(x)
��� dH1x � �6�j

2
(224)

Now for any point x 2 v (lt), let t(x) be the tangent to the curve v (lt) at x, as �
p

k is increasing up the curve
v (lt), we have that

t (x) �D�p

k (x) > 0:

On the other hand if we let vx 2 t (x)? we claim

vx �D�p

kj
(x) = 0 (225)

to prove (225) we argue as follows.

Take function X : [0;1)! IR2 solving the ODE

X (0) = x
dX

dt
(t0) = D	p (X (t0))

then by de�nition of we know �p
a is constant on fX (t) : t > 0g. So

D�p

kj
(x) � dX

dt
(0) = 0: (226)

From what we have previously calculated (see (9)), we know

dX

dt
(0) = Dv�T

�
v�1 (x)

�
np:

So

dX

dt
(0) � t (x) = Dv�T

�
v�1 (x)

�
np �Dv

�
v�1 (x)

�
�p

= np �Dv�1
�
v�1 (x)

�
Dv
�
v�1 (x)

�
�p

= np � �p
= 0;

so dX
dt

(0) 2 t (x)?. Now as we are in IR2 so vx 2 t (x)? will be of the form vx = �dX
dt

(0) for some � 2 IR and

so by (226) we have that for any vx 2 t (x)?, (225) is true.
So in fact v (lt0) is an integral curve for vector �eld D�p

kj
. Formally; for any x 2 v (lt) we have

t (x) kD�p

kj
(x) ; t (x) �D�p

kj
(x) > 0: (227)

For convenience, at this point we �xed p = 1. Now U0 is an open set in v
�
E
(p)

kj
\ P�1

�?p
(z0)

�
so v�1 (U0) is an

open set in lt0 \S. So v�1 (U0) is a countable union of intervals in E
(p)

kj
\P�1

�?p
(z0), i.e. v

�1 (U0) =
S
n (an; bn)

where an; bn 2 E(p)

kj
\ P�1

�?p
(z0). We have from (222)X

n2IN

jan � bnj � H1
�
v�1 (U0)

�
� ��2H1 (U0)

� ��2�m0+3�:
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Take n 2 IN, �rstly we solve the ODEs

X(1) (0) = v (an)
dX(1)

dt
(t0) = D	1

�
X(1) (t0)

�
X(2) (0) = v (bn)

dX(2)

dt
(t0) = D	1

�
X(2) (t0)

�
By Lemma 1 there exists unique numbers t1; t2 2 IR such that X(1) (t1) 2

�
akp + h�1i

	
and X(2) (t2) 2�

akp + h�1i
	
then by de�nition of �1

kj
we have that

�1
kj
(v (an)) = X(1) (t1) � �1

�1
kj
(v (bn)) = X(1) (t2) � �1:

Now let M :=
n
n 2 IN :

����1
kj
(v (an))��1

kj
(v (bn))

��� > 2 jan � bnj
o
. So by (227) letting t (x) denote the tan-

gent to curve v (lt0) at point x, we haveX
INnM

Z
v((an;bn))

���D�1
kj
(x)
��� dH1x =

X
INnM

Z
v((an;bn))

D�1
kj
(x) � t (x) dH1x

=
X
INnM

�1
kj
(v (bn))��1

kj
(v (an))

�
X
n2IN

2 jan � bnj

� 2��2�m0+3�: (228)

So from (224), (228) the fact that U0 =
S
n2IN v ((an; bn)) and the fact that by de�nition of G0, �j � �m0+2�

we have X
n2M

Z
v((an;bn))

���D�1
kj
(x)
��� dH1x � �6�j

2
� 2��2�m0+3�

� �6�j

4
: (229)

Recall we know from Lemma 1, Y (1) (t) := v�1
�
X(1) (t)

�
and Y (2) (t) := v�1

�
X(2) (t)

�
travel in cones. Let

i 2M , k 2 f1; 2g and let X
(k)

i be the solution of

X
(1)
i (0) = v (ai)

dX
(1)
i

dt
(t0) = D	1

�
X
(1)
i (t0)

�
X
(2)
i (0) = v (bi)

dX
(2)
i

dt
(t0) = D	1

�
X
(2)
i (t0)

�
Let Y

(k)
i (t) = v�1

�
X
(k)
i (t)

�
and let tki 2 IR be the unique number such that Y

(k)
i

�
tki
�
2 fa+ h�1ig.

Denoted by Q
(k)

i :=
n
Y
(k)

i (t) : t 2
�
0; tki

�o
and de�ne function #ki : Ph�?i i

�
Q
(k)

i

�
! IR by

#ki (x) :=
�
P�1
h�?1 i

(x) \Q(k)

i

�
� �1:

So by Lemma 1, #1i and #
2
i are well de�ned Lipschitz functions. See �gure 40.

At this point the indices have been changed and �xed so often we chose to take a moment to recall where
we are. We are in column E1

kj
, U0 is a subset of a line running parallel to �1 up through E1

kj
. U0 is the

countable union of intervals f(an; bn) : n 2 INg, #1i is the function from �?i to IR2 whose graph is the pullback

of part of an integral curve that runs from v (ai) to v (a+ h�1i) and #2i is the function from �?i to IR2 whose
graph is the pullback of part of an integral curve that runs from v (bi) to v (a+ h�1i).
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a

a
b
1

1

a

b

2

2

a

b

3

3

φ

φ

1

2

dc 00

U0

Figure 40

From this point on to simplify notation we will take i to be �xed. So let pk := #ki . Now let functions

q1 : Ph�?1 i

�
Q
(1)

i

�
! IR and q2 : Ph�?1 i

�
Q
(2)

i

�
! IR be de�ned as follows. Let c0, d0 be the end points

of interval Ph�?1 i

�
Q
(1)
i

�
(which also, as can be seen from �g 40, are the endpoints of Ph�?1 i

�
Q
(2)
i

�
). For

x 2 [c0; d0] let

qk (x) :=

Z x

c0

p0k (z) dL
1z for k = 1; 2: (230)

So

jq1 (d0)� q2 (d0)j =

�����
Z d0

c0

p01 (z)� p02 (z) dL
1z

�����
�

Z d0

c0

jp01 (z)� p02 (z)j dL1z: (231)

So from (230) and since by de�nition of �1
kj
, �1

kj
(v (ai)) = #1i (d0) = p1 (d0) and �1

kj
(v (bi)) = #2i (d0) =

p2 (d0) and as p1 (c0) = ai, p2 (c0) = bi we have

jq1 (d0)� q2 (d0)j = j(p1 (d0)� p2 (d0))� (p1 (c0)� p2 (c0))j
�

�������1
kj
(v (ai))��1

kj
(v (bi))

���� jp1 (c0)� p2 (c0)j
���

�
����1

kj
(v (ai))��1

kj
(v (bi))

���� jai � bij

�

����1
kj
(v (ai))��1

kj
(v (bi))

���
2

:

So by (231) ����1
kj
(v (ai))��1

kj
(v (bi))

���
2

�
Z d0

c0

jp01 (z)� p02 (z)j dL1z: (232)

Let t1 2 (0; t0). Now if we let v
(k)
t1

denote the tangent to the path
n
Y
(k)
i (t) : t 2 [c0; d0]

o
at point Y

(k)
i (t1)

then as we have already calculated

v
(k)
t1

:=
h
S�1

�
Y
(k)
i (t1)

�
S�1

�
Y
(k)
i (t1)

�i
n1: (233)
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As vector p0k (t1)�1 + n1 is parallel to and pointing in the same direction as v
(k)
t1

we have

p0k (t1)�1 + n1�
p0k (t1)

2
+ 1
� 1

2

= v
(k)
t1

for k = 1; 2:

Claim 4. We will show ���v(1)t1
� v

(2)
t1

��� � 2c15 jp02 (t1)� p01 (t2)jp
��2 + 1

(234)

for some small constant c1 > 0.

Unfortunately we will have to consider three cases.
Firstly the trivial case.
Case 0. If p01 (t1) and p

0
2 (t1) has the opposite sign, then������ p01 (t1)q

(p01 (t1))
2
+ 1

� p02 (t1)q
(p02 (t1))

2
+ 1

������ =
jp01 (t1)jq

(p01 (t1))
2
+ 1

+
jp02 (t1)jq

(p02 (t1))
2
+ 1

� jp01 (t1)� p02 (t1)j
2
p
(��2 + 1)

(235)

and we are done.
Case 1 If max fjp1 (t1)j ; jp2 (t1)jg � c1 where c1 > 0 is a small constant we will decide on later.
Now ���v(1)t1

� v
(2)
t1

��� �
����v(1)t1

� v
(2)
t1

�
� �1
���

=

������ p01 (t1)q
(p01 (t1))

2
+ 1

� p02 (t1)q
(p02 (t1))

2
+ 1

������
�

������p
0
1 (t1)� p02 (t1)q
(p01 (t1))

2
+ 1

�������
������p02 (t1)

0@ 1q
(p01 (t1))

2
+ 1

� 1q
(p01 (t2))

2
+ 1

1A
������ (236)

So as ������ 1q
(p01 (t1))

2
+ 1

� 1q
(p01 (t2))

2
+ 1

������ =

������
q
(p01 (t2))

2
+ 1�

q
(p01 (t1))

2
+ 1q

(p01 (t1))
2
+ 1

q
(p01 (t2))

2
+ 1

������
� 2

�
��4 + 1

��1 ����q(p01 (t2))
2
+ 1�

q
(p01 (t1))

2
+ 1

���� (237)

Now observe �g 41.

θ

|p’ (t )|

|p’ (t )|

11

1 2

θ

Figure 41
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Now as can be seen from �g 41, assuming constant c1 has been chosen small enough we have that����q1 + (p01 (t1))
2 �

q
1 + (p01 (t2))

2

���� � 2 jjp01 (t1)j � jp01 (t2)jj sin �1:

And for some enough c1 we also know �1 � 2 jp01 (t1)j. This gives����q1 + (p01 (t1))
2 �

q
1 + (p01 (t2))

2

���� � 4 jjp01 (t1)j � jp01 (t2)jj jp01 (t2)j :

Putting this together with (237) and recalling the assumption the assumption that max fjp1 (t1)j ; jjp2 (t1)jg �
c1 for some small constant c1 we have�����1 + (p01 (t1))

2
�� 1

2 �
�
1 + (p01 (t2))

2
�� 1

2

���� � 8c1
�
��4 + 1

�
jjp01 (t1)j � jp01 (t2)jj ;

Applying this to (236) gives���v(1)t1
� v

(2)
t1

��� � jp01 (t1)� p02 (t1)j
(��2 + 1)

2
� 8c21

�
��4 + 1

��1 jjp01 (t1)j � jp01 (t2)jj
� jp01 (t1)� p02 (t1)j

2 (��2 + 1)
2

which is what we want.
Case 2 max fjp01 (t1)j ; jp02 (t1)jg � c1.���v(1)t1

� v
(2)
t1

��� �
����v(1)t1

� v
(2)
t1

�
� n1
���

�

�����p02 (t1)2 + 1
� 1

2 �
�
p01 (t1)

2
+ 1
� 1

2

�����
p01 (t1)

2
+ 1
� 1

2
�
p02 (t1)

2
+ 1
� 1

2

�

�����p02 (t1)2 + 1
� 1

2 �
�
p01 (t1)

2
+ 1
� 1

2

����
(��2 + 1)

:

Now we need to use the following identityp
(a2 + 1)�

p
(b2 + 1) =

(a� b) (a+ b)p
(a2 + 1) +

p
(b2 + 1)

:

So we have �����
r�

p02 (t1)
2
+ 1
�
�
r�

p01 (t1)
2
+ 1
������

� jp02 (t1)� p01 (t1)j jp02 (t1) + p01 (t1)j
2
p
(��2 + 1)

� 2c1 jp01 (t1)� p02 (t1)j
2
p
��2 + 1

:

Thus we have established the claim. }
More notation, for a point z 2 Q

(k)
i let tk (z) 2 S1 denote the tangent to graph Q

(k)
i for k 2 f1; 2g, then

inequality (234) in our notation becomes; for any z0 2 Ph�?1 i
�
Q
(k)
i

�
jt1 (p1 (z0))� t2 (p2 (z0))j �

2c1

(��2 + 1)
1
2

jp02 (z0)� p01 (z0)j :
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So inequality (232) becomes����1
kj
(v (ai))��1

kj
(v (bi))

���
2

�
�
��2 + 1

� 1
2

2c1

Z d0

c0

jt1 (p1 (z))� t2 (p2 (z))j dL1z: (238)

Now as we have already calculated ti (p1 (z)) =
�
S�1 (p1 (z))S

�1 (p1 (z))
�
ni, (recall the notation, Dv (�) =:

R (�)S (�) where R (�) 2 SO (2) and S (�) is a positive symmetric matrix). Since the map Dv (�) ! S (�) is a
projection and jS (�)j > � we have

jDv (p1 (z))�Dv (p2 (z))j > jS (p1 (z))� S (p2 (z))j

� 1

2
kS (p1 (z))� S (p2 (z)) k

� �2

2
k (S (p1 (z))� S (p2 (z))) (S (p1 (z))S (p2 (z)))

�1 k

=
�2

2
kS (p1 (z))�1 � S (p2 (z))

�1 k

Now

jDv (p1 (z))�Dv (p2 (z))j
�

� �2

2
kS (p2 (z))�1 kkS (p1 (z))�1 � S (p2 (z))

�1 k

� �2

2
kS (p2 (z))�2 � S (p1 (z))

�1
S (p2 (z))

�1 k

and similarly

jDv (p1 (z))�Dv (p2 (z))j
�

� �2

2
kS (p1 (z))�2 � S (p1 (z))

�1
S (p2 (z))

�1 k:

Putting these things together we have

jDv (p2 (z))�Dv (p1 (z))j
�

� �2

2
kS (p2 (z))�2 � S (p1 (z))

�2 k

� �2

2

����S (p2 (z))�2 � S (p1 (z))
�2
�
n1

���
� �2

2
jt2 (p2 (z))� t1 (p1 (z))j :

Inserting this into equation (238) gives us����1
kj
(v (ai))��1

kj
(v (bi))

���
2

� 4
�
��2 + 1

� 1
2

c1�3

Z d0

c0

jDv (p1 (z))�Dv (p2 (z))j dL1z

=
4
�
��2 + 1

� 1
2

c1�3

Z d0

c0

�����
Z p1(z)

p2(z)

@

@�1
Dv (x) dL1x

����� dL1z
�

4
�
��2 + 1

� 1
2

c1�3

Z d0

c0

Z p1(z)

p2(z)

��D2v (x)
�� dL1xdL1z: (239)

Now let Vi denote the region enclosed by the two graphs Q
(1)
i , Q

(2)
i and the lines lt0 , lPh�?

1
i(a)

. Formally

Vi :=
S
z2[c0;d0] [p1 (z) ; p2 (z)]. The set fEi : i 2Mg is pairwise disjoint and the equation (239) in this notation

is by Fubini ����1
kj
(v (ai))��1

kj
(v (bi))

���
2

�
4
�
��2 + 1

� 1
2

c1�3

Z
Vi

��D2v (x)
�� dL2x:
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So from (229) and from the fact that v (lt1) is an integral curve for �1
kj

we have by summing over M

�6�

4
�

X
i2M

Z
v((ai;bi))

D�1
kj
(x) txdH

1x

=
X
i2M

����1
kj
(v (ai))��1

kj
(v (bi))

���
�

4
�
��2 + 1

� 1
2

c1�3

 X
i2M

Z
Vi

��D2v (x)
�� dL2x! :

Now
S
i2M Vi � E

(p)

kj
so �nally we haveZ

E
(p)

kj

��D2v (x)
�� dL2x > c1�

9�j

16
:

So for each j 2 G0 we have that Z
E
(p)

kj

��D2v (x)
�� dL2x � c1�

9

16
�j :

Thus recall (217) X
j2G0

Z
E
(p)

kj

��D2v (x)
�� dL2x � c1�

9

16

0@X
j2G0

#j

1A � c1�
9

16
(1� �)��:

However
n
E
(p)

kj
: j 2 G0

o
are overlapping, recall E

(p)

k := Nc5�
m0�

�
C
(p)

k

�
\ S, where

n
C
(p)

kj
: j 2 G0

o
are

disjoint columns of width �m0� going through S. So
n
E
(p)

kj
: j 2 G0

o
can not overlap by more than 2 [c5] times.

Thus must be able to �nd a subset G1 � G0 such that

�
P

j2G0

R
E
(p)

kj

��D2v (x)
�� dL2x � c2�

9��
64

.

�
n
E
(p)

kj
: j 2 G1

o
are disjoint.

�
n
E
(p)

kj
: j 2 G1

o
� S.

So this implies Z
S

��D2v (x)
�� dL2x � c2�

9��

64
:

�
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10. Proof of Theorem 2

The proof of Theorem 2 is just a matter of collecting everything together.

Proof. Recall, we have triangulation4� of 
, with triangulation size �. Let v 2 AF (
) and we have skewcube
S := P (a; �1; �2; c�) such that N �

�2
(S) � 
. In addition we have following inequalitiesZ

S

d (Dv (x) ;K) dL2x � �
7m0
2

+8�2 (240)

and Z
S

��D2v (x)
�� dL2x � c0��: (241)

Let
n
C
(p)

k : k 2 f1; : : : [��m0 ] + 1g
o
denote the set of columns width �m0� going through S, parallel to �p

for p = 1; 2. Let E
(p)

k := Nc5�
m0 �

�
C
(p)

k

�
\ S for k = 1; 2; : : : [��m0 ] + 1. Let

Lp :=

(
k 2

�
1; : : :

�
��m0

�
+ 1
	
:

Z
v

�
E
(p)

k

� J (x) dL2x � �3m0+7�2

)
:

So as the set
n
E
(p)

k : k 2 f1; : : : [��m0 ] + 1g
o
does not overlap more than 2c5�

�m0 times

1

2c5
�m0�3m0+7�2Card (Lp) �

�
2c5�

�m0
��10@X

k2Lp

Z
v

�
E
(p)

k

� J (x) dL2x
1A

�
Z
v(S)

J (x) dL2x

� ��2�
7m0
2

+8�2

Which implies

Card (Lp) � 2c5�
�m0�

m0
2
+1:

So we must be able to �nd distinct numbers
n
k1; k2; : : : kQp

0

o
� f1; 2; : : : [��m0 ] + 1g such that Qp

0 ��
1� �

m0
2

�
��m0 and Z

v

�
E
(p)

k

� J (x) dL2x � �3m0+7�2

for j 2 f1; 2; : : :Qp
0g. Now if we have that for p 2 f1; 2g

Q
p

0X
j=1

Z
v

�
E
(p)

k

� J (x)
���D�(p)

k (x)
��� dL2x � �m0+1�2

we can apply Lemma 10 to conclude Z
S

��D2v (x)
�� dL2x � c0��

and this contradicts (241).
So we must have

Q
p

0X
j=1

Z
v

�
E
(p)

k

� J (x)
���D�(p)

k (x)
��� dL2x � �m0+1�2: (242)

So now, by (240), (241) and (242) can invoke Proposition 1 which gives the following conclusion;
Let �

Li;j := P (ai;j ; �1; �2; �
m0�) : i; j 2

�
1; 2; : : :

�
��m0

�
+ 1
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be a set of pairwise disjoint skewcubes such that S � [i;i2f1;:::[��m0 ]+1gLi;j . Let

Si;j := P (ai;j ; �1; �2; c2�
m0�)

for some constant c2 > 1 we will decide on later.
There exists a set G0 � fSi;j : i; j 2 f1; : : : [��m0 ] + 1gg such that

�
L2
�n
x 2 Si;j : d (Dv (x) ; Ri;jTi;j) > �

m0
16

o�
< 20c27~c4�

�8�
m0
64 (��m0)

2

for some Ri;j 2 SO (2), Ti;j 2 fId;Hg
�

Card (G0) �
1� 16��2�

m0
8

�2m0

Now this, together with (240) and (241) gives us all we need to invoke Lemma 9. So if �i is a triangle in
4� that contains a and L is the linear part of the aÆne map we get from interpolating v on the corners of �i,
we have the following inequality

d (L; SO (2) [ SO (2)H) < �
m0
1024

and this complete the proof of Theorem 2. �
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11. The Proof of Theorem 1

First note that we have the following trivial lower bound for for the �nite element approximation of I .
Now consider a triangulation of 
 with triangles size of �. Let

A� :=

�
v : 
! IR2 : v satis�es the aÆne boundary condition and piecewise aÆne on

f�i : i = 1; : : :M1g

�
Note that its trivial that for any u 2 A� we must have as least ��1

100
triangles �i;j with

d (D�i;j ; SO (2) [ SO (2)H) > �4:

So

inf
u2A�

I (u) � �4

100
�:

We can use Theorem 2 in the following way:
Suppose Z




d (Dv (x) ; SO (2) [ SO (2)H) dL2x � ��

and Z



��D2v (x)
�� dL2x � ���:

Let
�
�i : 1 = 1; : : :

�
��2
�
+ 2
	
be a triangulation of with triangle size �. Let � := �1�� . Let ~� := �

1024
m0 .

Let B1 :=
n
�i :

R
�i
T (x) dL2x � �2+


o
. So Card (B1) �

2+
 � �� which implies Card (B1) � ���
�2.

Let

B2 :=

�
�i : The linear part of the aÆne interpolation of S on �i is distance > � from

SO (2) [ SO (2)H

�
So by Theorem 1 we have

Card (B2) ~�� = Card (B2) �
1+

1024(1��)
m0

� ���

which implies

Card (B2) � �
�1� 1024

m0
��
:

Now let ~v� be the triangulation of v on
�
�i : i = 1; : : : ��2

	
. We have the following estimate

I (~v�) =

Z



d (D~v� (x) ;K) dL2x

=
X
�i2B1

Z
�i

d (D~v� (x) ;K) dL2x+
X
�i2B2

Z
�i

d (D~v� (x) ;K) dL2x+
X

�i 62(B1[B2)

Z
�i

d (D~v� (x) ;K) dL2x

� ��2�2 (Card (B1) + Card (B2)) +
X

�i 62(B1[B2)

Z
�i

d (D~v� (x) ;K) dL2x

� ��2�2
�
���
�2 + �

�1� 1024
m0

��
�
+ �1��L2 (
)

So by letting � := 7m0

2
+ 8, 
 := m0

2
, � := 1024

m0
we have

I (~v�) � c�
1� 2048

m0 :

Now letting m1 = 4m0 completes the proof of Theorem 1.
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12. Proof of Corollary 1

So if we have a function v such that I�(v)

�
� �

� 2048

m2
1 . Recall h := �

m2
1�2048

m3
1Z




d (Dv (x) ; SO (2) [ SO (2)H) dL2x � �

m2
1�2048

m2
1

= hm1 :

And Z



��D2v (x)
�� dL2x � I� (v)

�

� h
�
�

m3
1

m2
1
�2048

�
2048

m2
1

= h
�2048m1

m2
1
�2048

As we know m1 � 2048 so we have m2
1 � 2048 = m1

�
m1 � 2048

m1

�
� m2

1

2
so 2048m1

m2
1�2048

� 4096
m1

and soZ



��D2v (x)
�� dL2x � h

�2048m1

m2
1
�2048

� h
� 4096

m1 : (243)

So by Theorem 1 if ~vh denotes the F.E. approximation on the triangulation 4h we have

I (~vh) � ch
1� 8192

m1 :
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13. Appendix

13.1. H�1H�1ni = �i for i = 1; 2. We begin by calculating �1 and �2. Firstly we know �i 2 �i for i = 1; 2.
Recall from section 4.1 in the introduction (in particular see �g 2), that �1 is the optimal direction for the
path W that joins two lines l1; l2 (that are parallel to �1), but that minimizes the integral

R
W
jHt (x)j dH1x

(where t (x) is the tangent to the path W at point x). Now let  0 2 S1 be the vector \in between" ��1 and
��2 (formally  0 := ��1��2

j�1+�2j
),  0 is the vector that is most shrunk under the action of H (see for example �g

14). However as we will see,  0 is not the optimal angle for W because it is at too 
at an angle to ��1 (see
�g 2) so any path joining l1 and l2 that is parallel to  0 will have to be so long it cancels the shrinking e�ects
of  0. For the same reason it is clear that the optimal vector �1 must be in the \half" of the shrink directions
that lie between ��2 and  0, i.e. paths that are parallel to vectors in the other \half" will be too long.

Hence �1 (as is shown on �g 42) points above the x-axis. By absolutely identical considerations we see that
�2 also points above the x-axis.

Ξ

n n

φ

φ2

1

12

1nH nH 2
−1 −1H−1

21Ξ
<> 21<>

Figure 42

Using this initial (crude) information about �1, �2 we will now calculate the coordinate of �2.

Firstly recall from (54) that for the unique ~a 2 [0; �) such that tan 2~a = 2~�3

(1�~�6) we have �2 :=
�
cos ~a
sin ~a

�
.

Note that

r�
(2~�3)

2
+ (1� ~�6)

2
�

=
p
(4~�6 + 1� 2~�6 + ~�12)

=
p
(1 + 2~�6 + ~�12)

=
�
1 + ~�6

�
So

sin 2~a =
2~�3

(1 + ~�6)
and cos 2~a =

�
1� ~�6

�
(1 + ~�6)

:
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Hence

(sin ~a)
2

=
1

2
�
�
1� ~�6

�
2 (1 + ~�6)

=
1

2

 �
1 + ~�6

�
(1 + ~�6)

�
�
1� ~�6

�
(1 + ~�6)

!

=
1

2

�
2~�6

(1 + ~�6)

�
=

~�6

(1 + ~�6)
:

And thus

sin ~a = � ~�3p
(1 + ~�6)

: (244)

(cos ~a)
2

=
1

2
+

�
1� ~�6

�
2 (1 + ~�6)

=
1

(1 + ~�6)

Hence

cos ~a = � 1p
(1 + ~�6)

(245)

Now from (244) and (245) and what we have established about �2 pointing above the x-axis and the fact
that it belongs to �2, we must have that

sin ~a =
~�3p

(1 + ~�6)
; cos ~a =

1p
(1 + ~�6)

:

Now we need to calculate �1. We have to start from scratch. So for  :=
�
cos a
sin a

�
, let

g (a) := jH j2 � ( � n1)2

= ~�2 cos2 a+
sin2 a

~�2
�
 
� ~� cosap

(1 + ~�2)
+

sin ap
(1 + ~�2)

!2

= ~�2 cos2 a+
sin2 a

~�2
� ~�2 cos2 a

(1 + ~�2)
� sin2 a

(1 + ~�2)
+
2~� sin ~a cos ~a

(1 + ~�2)
:

So

~�2
�
~�2 + 1

�
g (a) := ~�6 cos2 a+ sin2 a+ 2~� cosa sin a:

And as in the calculation of ~a, by standard trigonometric identities this reduces to

~�2
�
~�2 + 1

�
g (a) = ~�6

�
1 + cos 2a

2

�
+
1� cos 2a

2
+ ~�2 sin 2a:

so

2~�2
�
~�2 + 1

�
g (a) =

�
~�6 � 1

�
cos 2a+ 2~�3 sin 2a+ ~�6 + 1:

Thus

2~�2
�
~�2 + 1

�
g0 (a) = �2

�
~�6 � 1

�
sin 2a+ 4~�3 cos 2a:

So

g0
�
~b
�
= 0 , 2

�
�6 � 1

�
sin 2~b = 4~�3 cos 2~b

, tan 2~b =
�2~�3

(1� ~�6)
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Hence
tan 2~b = � tan 2~a: (246)

Now as we know �2 =
�
cos ~a
sin ~a

�
points upwards and to the right (as shown in �g 42) so ~a 2

�
0; �

2

�
.

So (246) implies either ~b = �~a or ~b = � � ~a. Now as the former possibility implies that �1 =
�
cos~b

sin~b

�
is not

in �1 so we must have that ~b = � � ~a.
Thus

�1 =
�
cos��~a
sin��~a

�
=
�
� cos ~a
sin ~a

�
= �2: (247)

We claim
H�1H�1n2 = �2: (248)

From �g 42 it should seem reasonable that H�1H�1n2 is sent into the shrink directions, speci�cally into

�1. And from what we have calculated �2 :=

0BB@
r�

1�~�2
�2�~�2

�
r�

�2�1
�2�~�2

�
1CCA. Now from (35) we have n2 :=

0@q 1�~�2
�2�~�2q
�2�1
�2�~�2

1A for

� = ~��1. So by writing this out more carefully we have n2 :=

0@ ~�p
(1+~�2)
1p

(1+~�2)

1A. Now
H�1H�1n2 =

�
~��2 0
0 ~�2

�0@ ~�p
(1+~�2)
1p

(1+~�2)

1A
=

�
1

~�
p
(1+~�2)

~�2p
(1+~�2)

�
=

 
1

~�
p
1+~�2

~�2p
1+~�2

!
: (249)

Now we normalize the vector; sos�
1

~�2 (1 + ~�2)
+

~�4

(1 + ~�2)

�
=

s
~�6 + 1

~�2 (1 + ~�2)

=

p
(~�6 + 1)

~�
p
(1 + ~�2)

And hence

H�1H�1n2

jH�1H�1n2j
=

~�
p
(1 + ~�2)p
(~�6 + 1)

H�1H�1n2

=

0@ ~�
p
1+~�2p

(~�6+1)

1

~�
p
1+~�2

~�
p
1+~�2p

(~�6+1)

~�2

~�
p
1+~�2

1A
=

0@ 1p
(~�6+1)

~�3p
(~�6+1)

1A
= �2

which establishes the claim.
From the fact that �2 = �1 and n1 = n2, using (248) we get

H�1H�1n1 = H�1H�1n1 = H�1H�1n2 = �2 = �1

and this completes the calculation.
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