MAPPING PROPERTIES OF THE MAXIMAL AVERAGING OPERATOR ASSOCIATED TO THE 2-PLANE TRANSFORM

THEMIS MITSIS

ABSTRACT. We extend Christ's estimate for the 2-plane transform to a maximal operator setting.

1. INTRODUCTION

Let $\mathcal{G}_{n,2}$ be the Grassmannian manifold of all 2-dimensional linear subspaces of \mathbb{R}^n equipped with the unique invariant probability measure $\gamma_{n,2}$. For a function f satisfying the appropriate integrability conditions, the 2-plane transform $T_{n,2}f$ is defined by

$$T_{n,2}f(\Pi, y) = \int_{\Pi} f(x+y)d\mathcal{L}^2(x),$$

where \mathcal{L}^2 is 2-dimensional Lebesgue measure on the plane $\Pi \in \mathcal{G}_{n,2}$.

The following mixed-norm estimate was proved by Christ [2].

$$||T_{n,2}f||_{L^{q}(L^{r})} \leq C_{n,p,q,r}||f||_{p}$$
(1.1)

where

$$\frac{n}{p} - \frac{n-2}{r} = 2, \quad 1 \le p \le \frac{n+1}{3}, \quad q \le (n-2)p',$$

and

$$\|T_{n,2}f\|_{L^{q}(L^{r})}^{q} = \int_{\mathcal{G}_{n,2}} \left(\int_{\Pi^{\perp}} |T_{n,2}f(\Pi, y)|^{r} d\mathcal{L}^{n-2}(y) \right)^{q/r} d\gamma_{n,2}(\Pi),$$

 Π^{\perp} being the orthogonal complement of Π , \mathcal{L}^{n-2} (n-2)-dimensional Lebesgue measure on Π^{\perp} , and p' the conjugate exponent of p.

It is unlikely that this estimate is sharp. For example, it does not imply full Hausdorff dimension for (n, 2)-sets, a fact which was proved by the author in [3]. Actually, Christ conjectured that (1.1) should hold with

$$\frac{n}{p} - \frac{n-2}{r} = 2, \quad 1 \le p < \frac{n}{2}, \quad q \le (n-2)p'.$$

Notice that in the above conjectured range of boundedness, r approaches ∞ as p approaches the endpoint n/2. It is therefore natural to consider the corresponding maximal averaging operator which is analogous to the

²⁰⁰⁰ Mathematics Subject Classification. 42B25.

This research has been supported by a Marie Curie Fellowship of the European Community programme "Improving Human potential and the Socio-economic Knowledge Base" under contract number HPMFCT-2000-00442.

Kakeya maximal function introduced by Bourgain [1]. To do this, we need some further notation. For $\Pi \in \mathcal{G}_{n,2}$, $a \in \mathbb{R}^n$, $\delta \ll 1$, we denote by $\Pi^{\delta}(a)$ the $\delta/2$ -neighborhood of the intersection of $\Pi + a$ with the ball of radius 1/2 centered at *a*, and define

$$\mathcal{M}_{\delta}f:\mathcal{G}_{n,2}\to\mathbb{R}$$

by

$$\mathcal{M}_{\delta}f(\Pi) = \sup_{a \in \mathbb{R}^n} \frac{1}{|\Pi^{\delta}(a)|} \int_{\Pi^{\delta}(a)} |f(y)| dy,$$

where $|\Pi^{\delta}(a)|$ is the volume of $\Pi^{\delta}(a)$, and $f : \mathbb{R}^n \to \mathbb{R}$ any locally integrable function.

We are interested in proving $L^p \to L^q(\mathcal{G}_{n,2}, \gamma_{n,2})$ estimates for this operator. To find the optimal range for *p* and *q* we argue as follows.

If *f* is the characteristic function of a ball of radius δ , then $||f||_p$ is comparable to $\delta^{n/p}$, and $||\mathcal{M}_{\delta}||_{L^q(\mathcal{G}_{n,2},\gamma_{n,2})}$ is comparable to δ^2 . Therefore, the best possible bound is

$$\|\mathcal{M}_{\delta}f\|_{L^{q}(\mathcal{G}_{n,2},\gamma_{n,2})} \leq C_{n,p,q}\delta^{2-n/p}\|f\|_{p}, \ p < n/2, \ q \geq 1.$$

On the other hand, if *f* is the characteristic function of a rectangle of dimensions $1 \times 1 \times \delta \times \cdots \times \delta$, then $||f||_p = \delta^{(n-2)/p}$ and $||\mathcal{M}_{\delta}f||_{L^q(\mathcal{G}_{n,2},\gamma_{n,2})}$ is, up to a multiplicative constant, greater than $\delta^{2(n-2)/q}$. It follows that if the above estimate is true, we must have

$$\delta^{2(n-2)/q} \leq C_{n,p,q} \delta^{2-n/p} \delta^{(n-2)/p},$$

which forces q to be less than (n-2)p'.

These examples suggest the following conjecture which, if true, would imply the result in [3].

For every $\varepsilon > 0$ there exists a constant $C_{\varepsilon,p,q} > 0$ such that

$$\|\mathcal{M}_{\delta}f\|_{L^{q}(\mathcal{G}_{n,2},\gamma_{n,2})} \leq C_{\varepsilon,p,q}\delta^{2-n/p-\varepsilon}\|f\|_{p},$$

where

$$1 \le p \le \frac{n}{2}, \quad q \le (n-2)p'.$$

The purpose of this paper is to give a geometric proof of the following partial result, which may be thought of as a stronger version of Christ's estimate.

Theorem 1.1. For every $\varepsilon > 0$ there exists a constant $C_{\varepsilon,p,q} > 0$ such that

$$\|\mathcal{M}_{\delta}f\|_{L^{q}(\mathcal{G}_{n,2},\gamma_{n,2})} \leq C_{\varepsilon,p,q}\delta^{2-n/p-\varepsilon}\|f\|_{p},$$
(1.2)

where

$$1 \le p \le \frac{n+1}{3}, \quad q \le (n-2)p'.$$

In an attempt to prove an estimate like (1.2) which is insensitive to $\delta^{-\varepsilon}$ factors, it would seem reasonable to try to modify or refine the nearly optimal argument of Mitsis [3]. However, that argument is based, in part, on a discretization of the sharp bound for the Radon transform due to Oberlin and Stein [4], which yields a distributional-type inequality with the "wrong" exponent for the λ -parameter. This defect is of no consequence, as far as the geometric problem considered in [3] is concerned, but makes the approach of that paper inapplicable in the present context. Therefore, we have to use a more direct, but less efficient, high-low multiplicity argument. It is the author's impression that any improvement on (1.2) would require a complete understanding of the geometry of the Radon transform, and so, an alternative, purely geometric proof of the result in [4] would be a valuable contribution.

2. Preliminaries

Throughout this paper, the capital letter *C*, subscripted or otherwise, will denote various constants whose values may change from line to line. $x \leq y$ means $x \leq Cy$, and similarly with $x \geq y$ and $x \simeq y$. Also, we will use the notation Π^{δ} for any set $\Pi^{\delta}(a)$, since the basepoint *a* is irrelevant in all our arguments. Further notational conventions follow below.

 S^{n-1} is the (n-1)-dimensional sphere. B(a, r) is the ball of radius *r* centered at *a*. A(a, r) is the annulus $B(a, 2r) \setminus B(a, r)$. $L_e(a)$ is the line in the direction $e \in S^{n-1}$ passing through the point *a*, i.e.

$$L_e(a) = \{a + te : t \in \mathbb{R}\}.$$

 $T_e^{(r)(\beta)}(a)$ is the tube of length *r*, cross-section radius β , centered at *a*, and with axis in the direction $e \in S^{n-1}$, i.e.

$$T_e^{(r)(\beta)}(a) = \{x \in \mathbb{R}^n : \text{dist}(x, L_e(a)) \le \beta \text{ and } |\text{proj}_{L_e(a)}(x) - a| \le r/2\},\$$

where $\operatorname{proj}_{L_e(a)}(x)$ is the orthogonal projection of x onto $L_e(a)$.

 χ_E is the characteristic function of the set E.

 $|\cdot|$ denotes Lebesgue measure or cardinality, depending on the context. If $\Pi_1, \Pi_2 \in \mathcal{G}_{n,2}$, then their distance θ is defined by

$$\theta(\Pi_1, \Pi_2) = \|\operatorname{proj}_{\Pi_1} - \operatorname{proj}_{\Pi_2}\|,$$

where $\|\cdot\|$ is the operator norm. $\gamma_{n,2}$ is a 2(n-2)-dimensional regular measure with respect to this distance, in the sense that

$$\gamma_{n,2}(\{\Pi \in \mathcal{G}_{n,2} : \theta(\Pi, \Pi_0) \le r\}) \simeq r^{2(n-2)}, \ \forall \Pi_0 \in \mathcal{G}_{n,2}, r < 1.$$

A finite subset of $\mathcal{G}_{n,2}$ is called δ -separated if the distance between any two of its elements is at least δ . So, if \mathcal{B} is a maximal δ -separated subset of $\mathcal{A} \subset \mathcal{G}_{n,2}$, then

$$\gamma_{n,2}(\mathcal{A}) \lesssim |\mathcal{B}|\delta^{2(n-2)}.$$

Moreover, if $\mathcal{A} \subset \mathcal{G}_{n,2}$ is δ -separated, and \mathcal{B} is a maximal η -separated subset of \mathcal{A} with $\eta \geq \delta$, then

$$|\mathcal{B}| \gtrsim |\mathcal{A}| (\delta/\eta)^{2(n-2)}$$

For technical reasons, we introduce the following subsets of $\mathcal{G}_{n,2}$.

 $\mathcal{A}_{n,2} := \{ \Pi \in \mathcal{G}_{n,2} : \theta(\Pi, x_1 x_2 \text{-plane}) \le 1/4 \},\$

$$\mathcal{B}_{n,2} := \{ \Pi \in \mathcal{G}_{n,2} : \theta(\Pi, x_1 x_2 \text{-plane}) \le 1/2 \}.$$

Notice that by invariance, it is enough to prove Theorem 1.1 for \mathcal{M}_{δ} restricted to $\mathcal{R}_{n,2}$.

We finally note the following fact which can be proved by fairly elementary arguments.

Lemma 2.1. Let $\Pi \in \mathcal{B}_{n,2}$. Then there exist unique $\overline{u}, \overline{v} \in \mathbb{R}^{n-2}$ with $|u|, |v| \leq 1$ such that $\Pi = \{(s, t, s\overline{u} + t\overline{v}) : s, t \in \mathbb{R}\}$. Further, for any $\Pi_j = \{(s, t, s\overline{u}_j + t\overline{v}_j) : s, t \in \mathbb{R}\} \in \mathcal{B}_{n,2}, j = 1, 2$, we have $\theta(\Pi_1, \Pi_2) \simeq |\overline{u}_1 - \overline{u}_2| + |\overline{v}_1 - \overline{v}_2|$.

3. Geometric Lemmas

In this section we prove two technical results that will allow us to control the cardinality and the intersection properties and of a family of sets Π^{δ} containing a fixed line segment.

Lemma 3.1. Let $\{\Pi_j\}_{j=1}^M$ be a δ -separated set in $\mathcal{A}_{n,2}$. Suppose that there exist points $a, b \in \mathbb{R}^n$ and a number $\rho \geq 4\delta$ such that $|a - b| \geq \rho$, and for each j there is a Π_j^{δ} with $a, b \in \Pi_j^{\delta}$. Further, suppose that \mathcal{B} is a maximal ζ -separated subset of $\{\Pi_j\}_{i=1}^M$ with $\zeta \geq C\delta/\rho$. Then $|\mathcal{B}| \gtrsim M(\rho\delta/\zeta)^{n-2}$.

Proof. After rotating and translating, we may assume that Π_1 is the x_1x_2 -plane, $\{\Pi_j\} \subset \mathcal{B}_{n,2}, a = \mathbf{0}$ and $b = (b_1, 0, \overline{b})$, for some $\overline{b} \in \mathbb{R}^{n-2}$. Then, by Lemma 2.1, there exist unique $u_j, v_j \in \mathbb{R}^{n-2}$ such that

$$\Pi_{i} = \{(s, t, su_{i} + tv_{i}) : s, t \in \mathbb{R}\}$$

and

$$\theta(\Pi_i, \Pi_k) \simeq |u_i - u_k| + |v_i - v_k|.$$

Therefore, we can think of $\{\Pi_j\}_{j=1}^M$ as a set of points in $B(0, C) \subset \mathbb{R}^{2(n-2)}$ under the identification $\Pi_j \leftrightarrow (u_j, v_j)$. We claim that $\{\Pi_j\}_{j=1}^M$ is contained in a rectangle *R* of sidelength, up to constants, δ/ρ in n-2 dimensions and *C* in the remaining n-2 dimensions. To see this, note that since $b \in \Pi_j^\delta$, there exists

$$w_j = (s_j, t_j, s_j u_j + t_j v_j) \in \prod_j$$

with

$$w_j - b| = |(s_j - b_1, t_j, s_j u_j + t_j v_j - \overline{b})| \le \delta.$$

Therefore

$$|s_j - b_1| \le \delta, \quad |t_j| \le \delta, \quad |s_j u_j + t_j v_j - \overline{b}| \le \delta.$$

In particular $|\overline{b}| \leq \delta$, and so

$$|s_j| \ge |b_1| - \delta \ge |b| - 2\delta \ge \rho - 2\delta \ge \rho/2.$$

On the other hand

$$|s_j u_j| \le \delta + |t_j v_j| + |\overline{b}| \le \delta.$$

Consequently $|u_j| \leq \delta/\rho$, proving the claim.

Now, for appropriately chosen constants C_1, C_2, C_3 , we have

$$\{B(\Pi_j, C_1^{-1}\delta)\}_{j=1}^M$$
 is a disjoint family

$$B(\Pi_j, C_1^{-1}\delta) \subset C_2 R \quad \text{(the dilate of } R \text{ around its center),}$$
$$\bigcup_{j=1}^M B(\Pi_j, C_1^{-1}\delta) \subset \bigcup_{\Pi_j \in \mathcal{B}} (B(\Pi_j, C_3\zeta) \cap C_2 R),$$

and $B(\prod_j, C_3\zeta) \cap C_2R$ is contained in a rectangle of sidelength, up to constants, δ/ρ in n-2 dimensions and ζ in the remaining n-2 dimensions. Therefore, by volume counting

$$M\delta^{2(n-2)} \leq |\mathcal{B}|(\delta/\rho)^{n-2}\zeta^{n-2}.$$

We conclude that

$$|\mathcal{B}| \gtrsim M(\delta \rho / \zeta)^{n-2}$$

_		

Lemma 3.2. Let $\Pi_1, \Pi_2 \in \mathcal{G}_{n,2}$ be such that $\theta(\Pi_1, \Pi_2) \leq 1/2$. Suppose that there exist $a, b \in \Pi_1^{\delta} \cap \Pi_2^{\delta}$, $\rho > 0$ with $\rho \leq |a - b| \leq 2\rho$. Then

$$\Pi_1^{\delta} \cap \Pi_2^{\delta} \cap B(a, 2\rho) \subset T_e^{(4\rho)(\beta)}(a)$$

where e = (a - b)/|a - b| and $\beta = C\delta/\theta(\Pi_1, \Pi_2)$.

Proof. Let $\theta = \theta(\Pi_1, \Pi_2)$. If $\rho \leq C_1 \delta/\theta$ then $B(a, 2\rho) \subset T_e^{(4\rho)(\beta)}(a)$, so we may assume that $\rho \geq C_1 \delta/\theta$. We can also assume that Π_2 is the $x_1 x_2$ -plane, $a = \mathbf{0}, b = (b_1, 0, \overline{b}), \overline{b} \in \mathbb{R}^{n-2}$. Since $\theta \leq 1/2$, by Lemma 2.1, we can write $\Pi_1 = \{(s, t, s\overline{u} + t\overline{v}) : s, t \in \mathbb{R}\}$, where $\overline{u}, \overline{v} \in \mathbb{R}^{n-2}, |\overline{u}|, |\overline{v}| \leq 1$, and $\theta \simeq |\overline{u}| + |\overline{v}|$. Since $b \in \Pi_1^\delta \cap \Pi_2^\delta$, there exists $(s, t, s\overline{u} + t\overline{v}) \in \Pi_1$ such that

$$|b_1 - s| \leq \delta, |t| \leq \delta, |s\overline{u} + t\overline{v} - \overline{b}| \leq \delta, |\overline{b}| \leq \delta.$$

Hence

$$\begin{aligned} |\overline{u}| &\leq \frac{|s\overline{u} + t\overline{v} - \overline{b}| + |t\overline{u}| + |\overline{b}|}{|s|} \lesssim \frac{\delta}{|b| - |\overline{b}| - |b_1 - s|} \\ &\leq \frac{\delta}{\rho - C\delta} \leq \frac{\delta}{\rho(1 - CC_1^{-1})} \lesssim \frac{\delta}{\rho}, \end{aligned}$$

for C_1 sufficiently large. Consequently

$$\overline{v} = |\overline{v}| + |\overline{u}| - |\overline{u}| \ge C^{-1}\theta - C\delta/\rho \ge (C^{-1} - CC_1^{-1})\theta \ge \delta,$$

for C_1 large enough.

Now let $y = (y_i) \in \Pi_1^{\delta} \cap \Pi_2^{\delta} \cap B(a, 2\rho)$. Then there exist $z_1 = (s_1, t_1, s_1\overline{u} + t_1\overline{v}) \in \Pi_1$, $z_2 = (s_2, t_2, \overline{\mathbf{0}}) \in \Pi_2$ such that $|y - z_1| \leq \delta$, $|y - z_2| \leq \delta$. Therefore $|s_1\overline{u} + t_1\overline{v}| \leq \delta$, $|s_1| \leq |z_1| \leq |z_1 - y| + |y| \leq \delta + \rho \leq \rho$. It follows that

$$|t_1| \leq \frac{|s_1\overline{u} + t_1\overline{v}| + |s_1\overline{u}|}{|\overline{v}|} \lesssim \frac{\delta + \rho(\delta/\rho)}{\theta} \lesssim \frac{\delta}{\theta}.$$

Hence

dist
$$(y, x_1$$
-axis $) \le |y - (s_1, 0, \overline{\mathbf{0}})| \le |y - z_1| + |t_1| + |s_1\overline{u} + t_1\overline{v}|$
 $\le \delta + \delta/\theta + \delta \le \delta/\theta.$

We conclude that

$$dist(y, L_e(\mathbf{0})) \le |y - y_1 b_1^{-1} b| \le dist(y, x_1 \text{-}axis) + |y_1| |b_1|^{-1} |b|$$

$$\lesssim \delta/\theta + \delta \le \delta/\theta.$$

4. Proof of Theorem 1.1

Let $E \subset \mathbb{R}^n$, $0 < \lambda \le 1$, and

$$A_{\lambda} = \{ \Pi \in \mathcal{A}_{n,2} : \mathcal{M}_{\delta} \chi_E(\Pi) \ge \lambda \}.$$

By the standard interpolation theorems, it is enough to prove the following restricted weak-type estimate at the endpoint.

$$\gamma_{n,2}(A_{\lambda}) \le C_{\varepsilon} \left(\frac{1}{\delta}\right)^{\varepsilon} \left(\frac{|E|}{\lambda^{(n+1)/3} \delta^{(n-2)/3}}\right)^{3}.$$
(4.1)

Now, let $\{\Pi_j\}_{j=1}^M$ be a maximal δ -separated subset of A_{λ} . Then proving (4.1) amounts to proving

$$|E| \ge C_{\varepsilon}^{-1} \delta^{\varepsilon} \lambda^{(n+1)/3} M^{1/3} \delta^{n-2}.$$
(4.2)

Since $\Pi_j \in A_{\lambda}$, there exists Π_j^{δ} such that

$$|\Pi_{j}^{\delta} \cap E| \ge \frac{3}{4} \lambda |\Pi_{j}^{\delta}|.$$
(4.3)

Put $\gamma = \lambda^{1/2} (\log(1/\delta))^{-1/2}$ and note that (4.2) is trivial if $4\delta \ge \gamma$. Indeed, (4.3) implies

$$\begin{split} |E| \gtrsim \lambda \delta^{n-2} &= \lambda^{(n+1)/3} \lambda^{-(n-2)/3} \delta^{n-2} \\ \gtrsim \lambda^{(n+1)/3} (\delta^2 \log(1/\delta))^{-(n-2)/3} \delta^{n-2} \\ &= (\log(1/\delta))^{-(n-2)/3} \lambda^{(n+1)/3} ((1/\delta)^{2(n-2)})^{1/3} \delta^{n-2} \\ \ge C_{\varepsilon}^{-1} \delta^{\varepsilon} \lambda^{(n+1)/3} M^{1/3} \delta^{n-2}. \end{split}$$

We may therefore assume that $4\delta \leq \gamma$.

Now, let δ_0 be a small constant to be determined later. Then for $\delta \ge \delta_0$, we have $M \le 1$, and so (4.3) trivially implies (4.2) as before. Hence we can also assume that $\delta \le \delta_0$.

After these preliminary reductions, we can proceed with the proof of (4.2). First, we find a large number of sets $\prod_{j=1}^{\delta}$ so that the measure of their intersection with *E* is concentrated in annuli of fixed dimensions. More

precisely, we claim that there exist a number $\rho \ge \gamma$ and a set $C \subset {\{\Pi_j^{\delta}\}_{j=1}^M}$ with

$$|C| \gtrsim \left(\log(C/\gamma)\right)^{-2}M,\tag{4.4}$$

so that for each $\Pi_j^{\delta} \in C$ there is a set $P_j \subset \Pi_j^{\delta}$ of measure

$$|P_j| \gtrsim (\log(C/\gamma))^{-2} \lambda |\Pi_j^{\delta}|$$
(4.5)

such that for each $z \in P_j$

$$\left|\Pi_{j}^{\delta} \cap E \cap B(z, 2\rho) \cap (T_{e}^{(4r)(\gamma^{2}/r)}(z))^{\complement}\right| \gtrsim \lambda |\Pi_{j}^{\delta}|, \tag{4.6}$$

for all $e \in S^{n-1}$, $\gamma \leq r \leq 1$, and

$$|\Pi_{j}^{\delta} \cap E \cap A(z,\rho)| \gtrsim (\log(C/\gamma))^{-1} \lambda |\Pi_{j}^{\delta}|.$$
(4.7)

To see this, note that for all $z \in \mathbb{R}^n$, $e \in S^{n-1}$ and r > 0 with $\gamma \le r \le 1$ we have

$$\begin{split} \left| \Pi_{j}^{\delta} \cap E \cap (T_{e}^{(4r)(\gamma^{2}/r)}(z))^{\mathbb{C}} \right| &= |\Pi_{j}^{\delta} \cap E| - |\Pi_{j}^{\delta} \cap E \cap T_{e}^{(4r)(\gamma^{2}/r)}(z)| \\ &\geq \frac{3}{4} \left(\lambda |\Pi_{j}^{\delta}| - Cr \frac{\gamma^{2}}{r} |\Pi_{j}^{\delta}| \right) \\ &= \frac{3}{4} \lambda (1 - C(\log(1/\delta))^{-1}) |\Pi_{j}^{\delta}| \\ &\geq \frac{\lambda}{2} |\Pi_{j}^{\delta}|, \end{split}$$

for δ_0 small enough.

Now, for each $1 \le j \le M$, $z \in \prod_{i=1}^{\delta} \cap E$, $i \in \mathbb{N}$, consider the quantity

$$Q(j,z,i) = \inf_{\substack{r:\gamma \le r \le 1\\ e \in S^{n-1}}} \left| \prod_{j=1}^{\delta} \cap E \cap B(z,\gamma 2^{i}) \cap (T_{e}^{(4r)(\gamma^{2}/r)}(z))^{\complement} \right|.$$

Then

$$Q(j, z, 0) \le C\gamma^2 \delta^{n-2} = C\lambda (\log(1/\delta))^{-1} \delta^{n-2} \le \frac{\lambda}{10} |\Pi_j^{\delta}|,$$

provided that δ_0 has been chosen small enough. On the other hand

$$Q(j, z, \log(C/\gamma)) \ge \frac{\lambda}{2} |\Pi_j^{\delta}|.$$

Therefore, there exists $i_{j,z}$ with $1 \le i_{j,z} \le \log(C/\gamma)$, such that

$$Q(j,z,i_{j,z}) \ge \frac{\lambda}{4} |\Pi_j^{\delta}|, \quad \text{and} \quad Q(j,z,i_{j,z}-1) < \frac{\lambda}{4} |\Pi_j^{\delta}|.$$

Since there are at most $\log(C/\gamma)$ possible $i_{j,z}$, there is an i_j and a set $P'_j \subset \prod_{j=1}^{\delta} \cap E$ of measure

$$|P'_j| \gtrsim (\log(C/\gamma))^{-1}\lambda |\Pi_j^{\delta}|$$

such that for each $z \in \Pi'_j$

$$Q(j, z, i_j) \ge \frac{\lambda}{4} |\Pi_j^{\delta}|, \quad \text{and} \quad Q(j, z, i_j - 1) < \frac{\lambda}{4} |\Pi_j^{\delta}|.$$

Since there are M sets Π_j^{δ} and at most $\log(C/\gamma)$ possible i_j , there is an i_0 and a subset $C' \subset {\{\Pi_j^{\delta}\}_{j=1}^M}$ such that

$$|C'| \gtrsim (\log(C/\gamma))^{-1}M,$$

and for each $\Pi_j^{\delta} \in C'$ and each $z \in \Pi_j'$

$$\left|\Pi_{j}^{\delta} \cap E \cap B(z, \gamma 2^{i_{0}}) \cap (T_{e}^{(4r)(\gamma^{2}/r)}(z))^{\complement}\right| \geq \frac{\lambda}{4} |\Pi_{j}^{\delta}|$$

for all $e \in S^{n-1}$, $\gamma \leq r \leq 1$, and

$$\left|\Pi_{j}^{\delta} \cap E \cap B(z, \gamma 2^{i_0-1}) \cap (T_{e_{j,z}}^{(4r_{j,z})(\gamma^2/r_{j,z})}(z))^{\complement}\right| < \frac{\lambda}{4} |\Pi_{j}^{\delta}|,$$

for some $e_{j,z} \in S^{n-1}$, $\gamma \leq r_{j,z} \leq 1$. It follows that

$$\begin{split} \frac{\lambda}{4} |\Pi_{j}^{\delta}| &\leq \left|\Pi_{j}^{\delta} \cap E \cap (T_{e_{jz}}^{(4r_{jz})(\gamma^{2}/r_{jz})}(z))^{\complement}\right| \\ &- \left|\Pi_{j}^{\delta} \cap E \cap B(z, \gamma 2^{i_{0}-1}) \cap (T_{e_{jz}}^{(4r_{jz})(\gamma^{2}/r_{jz})}(z))^{\complement}\right| \\ &= \left|\Pi_{j}^{\delta} \cap E \cap (B(z, \gamma 2^{i_{0}-1}))^{\complement} \cap (T_{e_{jz}}^{(4r_{jz})(\gamma^{2}/r_{jz})}(z))^{\complement}\right| \\ &\leq \left|\Pi_{j}^{\delta} \cap E \cap (B(z, \gamma 2^{i_{0}-1}))^{\complement}\right| \\ &= \sum_{k=0}^{\log(C/\gamma)} |\Pi_{j}^{\delta} \cap E \cap A(z, \gamma 2^{i_{0}+k-1})|. \end{split}$$

Therefore, there is a $k_{j,z}$ such that

$$|\Pi_{i}^{\delta} \cap E \cap A(z, \gamma 2^{i_0 + k_{j,z} - 1})| \gtrsim (\log(C/\gamma))^{-1} \lambda |\Pi_{i}^{\delta}|$$

Repeatedly using the pigeonhole principle as before, we conclude that there is a number $\rho = \gamma 2^{i_0+k_0-1}$ and a set $C \subset C'$ with

$$|C| \gtrsim (\log(C/\gamma))^{-2}M,$$

so that for each $\Pi_j^{\delta} \in C$, there is a subset $P_j \subset P'_j$ of measure

 $|P_j| \gtrsim (\log(C/\gamma))^{-2} \lambda |\Pi_j^{\delta}|$

such that for each $z \in P_j$

$$\left|\Pi_{j}^{\delta} \cap E \cap B(z, 2\rho) \cap (T_{e}^{(4r)(\gamma^{2}/r)}(z))^{\complement}\right| \gtrsim \lambda |\Pi_{j}^{\delta}|,$$

for all $e \in S^{n-1}$, $\gamma \le r \le 1$, and

$$|\Pi_{j}^{\delta} \cap E \cap A(z,\rho)| \gtrsim (\log(C/\gamma))^{-1} \lambda |\Pi_{j}^{\delta}|,$$

proving the claim.

This construction will allow us to carry out a "high-low multiplicity segment" argument as follows. We fix a number *N* and consider two cases.

CASE I.
$$\forall a \in \mathbb{R}^n |\{j : a \in P_j\}| \le N.$$

CASE II. $\exists a \in \mathbb{R}^n |\{j : a \in P_j\}| \ge N.$

FIGURE 1. High multiplicity line segment

In case I we have

$$\begin{aligned} |E| &\geq \Big| \bigcup_{j:\Pi_{j}^{\delta} \in C} P_{j} \Big| \geq \frac{1}{N} \sum_{j:\Pi_{j}^{\delta} \in C} |P_{j}| \\ &\gtrsim \frac{1}{N} |C| \left(\log(C/\gamma) \right)^{-2} \lambda \delta^{n-2} \\ &\gtrsim \frac{M}{N} \left(\log(C/\gamma) \right)^{-4} \lambda \delta^{n-2}, \end{aligned}$$
(4.8)

where we have used (4.4) and (4.5).

In case II, we fix a number μ and consider two subcases.

$$\begin{aligned} \text{(II)}_1. \ \forall b \in A(a,\rho) \ |\{j: a \in P_j, b \in \Pi_j^\delta\}| &\leq \mu. \\ \text{(II)}_2. \ \exists b \in A(a,\rho) \ |\{j: a \in P_j, b \in \Pi_j^\delta\}| &\geq \mu \ \text{(see Figure 1)}. \end{aligned}$$

In subcase $(II)_1$ we have

$$\begin{aligned} |E| &\ge \Big| \bigcup_{j:a \in P_j} \Pi_j^{\delta} \cap E \cap A(a,\rho) \Big| \\ &\ge \frac{1}{\mu} \sum_{j:a \in P_j} |\Pi_j^{\delta} \cap E \cap A(a,\rho)| \\ &\gtrsim \frac{N}{\mu} \left(\log(C/\gamma) \right)^{-1} \lambda \delta^{n-2}, \end{aligned}$$
(4.9)

where the last inequality follows from (4.7).

In subcase (II)₂ let \mathcal{B} be a maximal $C_1 \rho \delta / \gamma^2$ -separated subset of $\{\Pi_j : a \in P_j, b \in \Pi_j^{\delta}\}$. Then for C_1 large enough, $C_1 \rho \delta / \gamma^2 \ge C \delta / \rho$. Therefore by

Lemma 3.1

$$|\mathcal{B}| \gtrsim \mu \gamma^{2(n-2)}.$$

Note that if $\Pi_i, \Pi_k \in \mathcal{B}$ then by Lemma 3.2

$$\Pi_j^{\delta} \cap \Pi_k^{\delta} \cap B(a, 2\rho) \subset T_e^{(4\rho)(CC_1^{-1}\gamma^2/\rho)}(a) \subset T_e^{(4\rho)(\gamma^2/\rho)}(a),$$

where e = (a - b)/|a - b|, provided that C_1 has been chosen large enough. Therefore the family

$$\left\{\Pi_j^{\delta} \cap E \cap B(a, 2\rho) \cap (T_e^{(4\rho)(\gamma^2/\rho)}(a))^{\complement} : \Pi_j \in \mathcal{B}\right\}$$

is disjoint. Consequently

$$\begin{split} E| \geq \Big| \bigcup_{j:\Pi_{j} \in \mathcal{B}} \Pi_{j}^{\delta} \cap E \cap B(a, 2\rho) \cap (T_{e}^{(4\rho)(\gamma^{2}/\rho)}(a))^{\complement} \Big| \\ &= \sum_{j:\Pi_{j} \in \mathcal{B}} \Big| \Pi_{j}^{\delta} \cap E \cap B(a, 2\rho) \cap (T_{e}^{(4\rho)(\gamma^{2}/\rho)}(a))^{\complement} \Big| \\ &\gtrsim |\mathcal{B}| \lambda \delta^{n-2} \\ &\gtrsim \gamma^{2(n-2)} \mu \lambda \delta^{n-2}, \end{split}$$
(4.10)

where we have used (4.6). So, in case II we see that choosing

$$\mu = N^{1/2} \left(\log(C/\gamma) \right)^{-1/2} \gamma^{-(n-2)},$$

(4.9) and (4.10) imply that

$$|E| \gtrsim \left(\log(C/\gamma)\right)^{-1/2} \gamma^{n-2} \lambda N^{1/2} \delta^{n-2}.$$
(4.11)

Choosing

$$N = M^{2/3} \left(\log(C/\gamma) \right)^{-7/3} \gamma^{-2(n-2)/3}$$

(4.8) and (4.11) yield

$$\begin{split} |E| \gtrsim \left(\log(C/\gamma)\right)^{-5/3} \gamma^{2(n-2)/3} \lambda M^{1/3} \delta^{n-2} \\ &= \left(\log \frac{C}{\lambda^{1/2} (\log(1/\delta))^{-1/2}}\right)^{-5/3} (\lambda^{1/2} (\log(1/\delta))^{-1/2})^{2(n-2)/3} \lambda M^{1/3} \delta^{n-2} \\ &\gtrsim C_{\varepsilon}^{-1} \delta^{\varepsilon} \lambda^{(n+1)/3} M^{1/3} \delta^{n-2}, \end{split}$$

which is (4.2). The proof is complete.

References

- [1] J. BOURGAIN. Besicovitch type maximal operators and applications to Fourier analysis. *Geom. Funct. Anal.* (2) **1** (1991), 147-187.
- [2] M. CHRIST. Estimates for the *k*-plane transform. *Indiana Univ. Math. J.* (6) **33** (1984), 891-910.
- [3] T. MITSIS. (*n*, 2)-sets have full Hausdorff dimension. *Preprint*.
- [4] D. M. OBERLIN, E. M. STEIN. Mapping properties of the Radon transform. Indiana Univ. Math. J. (5) 31 (1982), 641-650.

Department of Mathematics and Statistics, University of Jyväskylä, P.O. Box 35, FIN-40351 Jyväskylä, Finland

E-mail address: mitsis@maths.jyu.fi