MAPPING PROPERTIES OF THE MAXIMAL AVERAGING
OPERATOR ASSOCIATED TO THE 2-PLANE TRANSFORM

THEMIS MITSIS

Asstract. We extend Christ’s estimate for the 2-plane transform to a
maximal operator setting.

1. INTRODUCTION

Let G, be the Grassmannian manifold of all 2-dimensional linear sub-
spaces of R" equipped with the unique invariant probability measure y».
For a function f satisfying the appropriate integrability conditions, the 2-
plane transform T, f is defined by

Toaf(ILY) = f f(x + Y)dL2(x).

where £2 is 2-dimensional Lebesgue measure on the plane I € G,,».
The following mixed-norm estimate was proved by Christ [2].

||Tn,2f||Lq(Lf) < Cn,p,q,er“p (1-1)
where 5 1
D—E%—:& 1spsn;, q<(n-2)p,
and

q/r
||Tn,2f||ﬁq(|_r) = f (f I Th2 f(IL, Y)|rd£n_2(y)) dyn2(I1),
Gn,Z I+

IT* being the orthogonal complement of I1, £"? (n — 2)-dimensional Le-
besgue measure on IT+, and p’ the conjugate exponent of p.

It is unlikely that this estimate is sharp. For example, it does not imply
full Hausdorft dimension for (n, 2)-sets, a fact which was proved by the
author in [3]. Actually, Christ conjectured that (1.1) should hold with

n n-2 n
———2=2, 1< = <(n-2)p.
S , l<p<z g<(-2p

Notice that in the above conjectured range of boundedness, r approaches
oo as p approaches the endpoint n/2. It is therefore natural to consider
the corresponding maximal averaging operator which is analogous to the
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Kakeya maximal function introduced by Bourgain [1]. To do this, we need
some further notation. For IT € Gy, a € R", 6 < 1, we denote by I1°(a) the
6/2-neighborhood of the intersection of IT + a with the ball of radius 1/2
centered at a, and define

M(;f . gn’z - R
by

1
MsT(II) = su f f(y)|dy,
° ( ) ae]Re |H6(a)| H(‘(a)| (y)l Y

where |[1°(a)] is the volume of I1°(a), and f : R" — R any locally integrable
function.

We are interested in proving LP — L9(G 2, vn2) estimates for this opera-
tor. To find the optimal range for p and q we argue as follows.

If f is the characteristic function of a ball of radius s, then || f||, is com-
parable to 6P, and [IMsllLaGnavnz) IS COMparable to 52. Therefore, the best
possible bound is

M5 FllLa@nznz) < Crpad™ "Plifllp, P<N/2, g2 1.

On the other hand, if f is the characteristic function of a rectangle of di-
mensions 1 X 1 X § X -+ x &, then ||f|l, = 6®2/P and [|MsfllLag,ynz) 1S,
up to a multiplicative constant, greater than §X"2/9, |t follows that if the
above estimate is true, we must have

§2(n-2)/q <C, pq52—n/p5(n—2)/P,

which forces g to be less than (n— 2)p’.
These examples suggest the following conjecture which, if true, would
imply the result in [3].

For every £ > 0 there exists a constant C,. , 4 > 0 such that
IMs Flla@norns) < Cepad™ ™ P Il fllp,
where

1<p<=, g<(h-2)p.

NI S

The purpose of this paper is to give a geometric proof of the following
partial result, which may be thought of as a stronger version of Christ’s
estimate.

Theorem 1.1. For every € > 0 there exists a constant C,, , > 0 such that

IMs FllLanoyns) < Cepad® PNl fllp, (1.2)
where
1
l1<pc< n; , g<(nh-2)p.



In an attempt to prove an estimate like (1.2) which is insensitive to 6—°
factors, it would seem reasonable to try to modify or refine the nearly op-
timal argument of Mitsis [3]. However, that argument is based, in part, on
a discretization of the sharp bound for the Radon transform due to Oberlin
and Stein [4], which yields a distributional-type inequality with the “wrong”
exponent for the A-parameter. This defect is of no consequence, as far as
the geometric problem considered in [3] is concerned, but makes the ap-
proach of that paper inapplicable in the present context. Therefore, we have
to use a more direct, but less efficient, high-low multiplicity argument. It
is the author’s impression that any improvement on (1.2) would require a
complete understanding of the geometry of the Radon transform, and so, an
alternative, purely geometric proof of the result in [4] would be a valuable
contribution.

2. PRELIMINARIES

Throughout this paper, the capital letter C, subscripted or otherwise, will
denote various constants whose values may change from line to line. x Sy
means x < Cy, and similarly with x > y and x ~ y. Also, we will use the
notation I1° for any set I1°(a), since the basepoint a is irrelevant in all our
arguments. Further notational conventions follow below.

S"1 s the (n — 1)-dimensional sphere.

B(a, r) is the ball of radius r centered at a.

A(a,r) is the annulus B(a, 2r) \ B(a,r).

Lc(a) is the line in the direction e € S™* passing through the point a, i.e.

Le(a) = {a+te:teR).

TO®)(a) is the tube of length r, cross-section radius 3, centered at a, and
with axis in the direction e S"1, i.e.

TOW(@) = {x e R": dist(x, Le(a)) < B and [proj,_(X) — a < r/2},

where proj,_,)(X) is the orthogonal projection of x onto Le(a).
xe is the characteristic function of the set E.
| - | denotes Lebesgue measure or cardinality, depending on the context.
If ITy, 1, € Gn o, then their distance 6 is defined by

6(Iy, IT2) = ||projpy, — Projp,ll,

where || - || is the operator norm. 7yn, is a 2(n — 2)-dimensional regular
measure with respect to this distance, in the sense that

Yn2({Tl € G : O, TIp) < r}) = ™2 VIIj € Gno, ¥ < 1.

A finite subset of G,» is called §-separated if the distance between any
two of its elements is at least 6. So, if 8 is a maximal 5-separated subset of
A C Gna, then

Yn2(A) < |Bl6X2,
3



Moreover, if A C G is §-separated, and B is a maximal n-separated subset
of A withn > §, then
1Bl 2 |AlS/7)*"2.
For technical reasons, we introduce the following subsets of G ».
Anz = {1 € Gn2 : O(I1, Xy Xo-plane) < 1/4},
Bz :={Il € Gny : 6(I1, X1 %-plane) < 1/2}.
Notice that by invariance, it is enough to prove Theorem 1.1 for M;
restricted to A ».

We finally note the following fact which can be proved by fairly elemen-
tary arguments.

Lemma2.1. LetII € B,,. Thenthereexist unique T,V € R"2 with |u], V| <
1suchthatIT = {(s,t, SU+tV) : st € R}. Further, for any IT = {(st, SU; +
t\_/J) s teR}e Bn,z, J =12, we have Q(Hl, Hz) ~ [Up — Uy| + [Vh — V.

3. GEOMETRIC LEMMAS

In this section we prove two technical results that will allow us to control
the cardinality and the intersection properties and of a family of sets I1°
containing a fixed line segment.

Lemma 3.1. Let {Hj}?il be a §-separated set in Ap,. Suppose that there
exist pointsa, b € R" and a number p > 46 such that [a — b| > p, and for
each j thereis aIlf with a, b € 1. Further, suppose that 8 is a maximal

{-separated subset of {ITj}}1; with ¢ > Cs/p. Then |B| 2 M(ps/{)™2.

Proof. After rotating and translating, we may assume t_hat IT; is the XqXo-
plane, {I1j} € Bnz, @ = 0and b = (by,0, b), for some b € R™2. Then, by
Lemma 2.1, there exist unique u;, v; € R™2 such that

I = {(st,su; + tvj) : s te R}
and

O(ITj, IT) = |uj — Ul + V) — Vidl.
Therefore, we can think of {Hj}}\il as a set of points in B(0,C) c R"2
under the identification IT; « (u;, v;). We claim that {TT;}’, is contained in
a rectangle R of sidelength, up to constants, §/p in n— 2 dimensions and C
in the remaining n — 2 dimensions. To see this, note that since b € I1¢, there
exists

Wi = (Sj,tj, Sju; + thj) € HJ‘
with B
|Wj — b| = |(SJ‘ - bl,tj, Sju; + thj - b)| < 6.
Therefore B
|Sj —b1| <6, |tj| <9, |SjUj +thj —b| < 6.

In particular |b| < 8, and so

ISjl > || =6 > b - 25 > p - 25 > p/2.
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On the other hand B
|SjUj| <6+ |thj| +|b| < 6.
Consequently |uj| < 6/p, proving the claim.
Now, for appropriately chosen constants C4, C,, C3, we have
{B(II;,C %)}, isadisjoint family,

B(I1;, C;'6) c C,R  (the dilate of Raround its center),
M

|JBam;, o) c | J(B(IT;,Cs0) N CR),

j=1 IjeB
and B(ITj, C3¢) N C;R s contained in a rectangle of sidelength, up to con-
stants, 6/p in n — 2 dimensions and ¢ in the remaining n — 2 dimensions.
Therefore, by volume counting

Mé-Z(n—Z) < |B|(6/p)n—2§n—2.
We conclude that
1B| 2 M(6p/0)™>.
O

Lemma 3.2. Let I1y, I, € Gy be such that (13, I1T,) < 1/2. Suppose that
thereexist a,b € I1) N 113, p > O with p < |a—b| < 2p. Then
T N 113 N B(a, 2p) € T (a),
wheree = (a—b)/|la— bl and g = C5/0(I14, I1,).
Proof. Let 6 = 6(I1y, I1,). If p < C16/6 then B(a, 2p) ¢ T®)(a), so we
may assume that,g > C16/6. We can also assume that IT, is the x;X,-plane,
a=0,b=(b,0,b), beR"2 Since § < 1/2, by Lemma 2.1, we can write
I, = {(st,sU+1V) : st e R}, where G,Ve R"2, [T,V < 1,and 6 ~ [T| + [V]
. Since b € TI§ N 115, there exists (s, t, U+ tV) € I1; such that
by -8 <6, It|< 6, |sU+tv—-b| <6, bl 6.
Hence
ST + tV — b| + |tT] + [b| 5
< < —
E lbl — |b] — [b; —
5] 0 )
< < < -,
p—Cé = p(l-CC") " p
for C; sufficiently large. Consequently
VM = +[0 -t >C'-Cs/p>(Ct-CCH24,

for C, large enough.
Now lety = (y;) € IT{ N T N B(a, 2p). Then there exist z; = (sy, t1, iU+

t,V) € Iy, 2 = (S, 1, 0) € I1, such that |y — zi| < 6, |y — 2| < 6. Therefore

[l

ISU+ VI <6, s <Mzl <|z-Y+IYs6+p<p.
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It follows that
[S1U + t4V] + [s1Uf < 6+ p(6/p) <
\Y - 0 -

< >
0
Hence
dist(y, x;-axis) < |y — (s1,0,0)| < |y — za| + [ta] + |S1T + t1V]
SO6+6/0+06<6/6.
We conclude that
dist(y, Le(0)) < ly — yab; bl < dist(y, x;-axis) + |ya/lbs| /D]
$6/0+6<46/0.

4. Proor oF THEOREM 1.1
LetECR",0<A<1,and
Ay ={ll € Any : Msye() > A}.

By the standard interpolation theorems, it is enough to prove the following
restricted weak-type estimate at the endpoint.

1 & |E| 3
'}/n,Z(A/l) < Cg 5 m . (41)

Now, let {H,-}}‘”:l be a maximal §-separated subset of A,. Then proving (4.1)
amounts to proving

E| > C;l6eAMDIM 352, (4.2)
Since IT; € A, there exists H‘J? such that

I NE| > %ﬁlﬂ‘ﬁ. (4.3)

Put y = A%2(log(1/6))~*2 and note that (4.2) is trivial if 45 > y. Indeed,
(4.3) implies

E| > 5" 2 = J(+D)/3 ) -(n-2)/3 gn-2
> /1(n+l)/3(62 |0g(1/5))—(n—2)/36n—2
= (|0g(1/5))—(n—2)/3/1(n+1)/3((1/5)2(n—2))1/35n_2
> Clge \(H D3\ 302,

We may therefore assume that 46 < .

Now, let 5o be a small constant to be determined later. Then for § > &g,
we have M < 1, and so (4.3) trivially implies (4.2) as before. Hence we can
also assume that § < 6.

After these preliminary reductions, we can proceed with the proof of
(4.2). First, we find a large number of sets H‘J? so that the measure of their

intersection with E is concentrated in annuli of fixed dimensions. More
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precisely, we claim that there exist a number p > y and a set C c {I1
with

Cl 2 (log(C/7))*M,
so that for each I1{ € C there is a set P; c TI? of measure

IPjl 2 (log(C/y)) 2AITTS|
such that for each z € P;
I N E N B(z, 20) N (TE00(@)°| 2 Al
forallee S,y <r <1, and
1% N E N Az p)| 2 (Iog(C/y)) AT,

J}J =1

(4.4)

(4.5)

(4.6)

4.7)

To see this, note that forall ze R", e S"tandr > Owithy <r <1 we

have
I 0 E 0 (TE0 @) = 115 1 E| - 115 0 E 0 TE ()

> 3 (zlrﬁl -Cr- |H6|)
- Z1(1 — C(log(1/8))~)IITS|

A
2 §|Htjs|,

for 6o small enough.
Now, foreach1 < j< M, ze H‘J? N E, i € N, consider the quantity

Qi.zi)= inf [T} 0 E N B y2)n (TE" @),
ees™1
Then

Q(j,z0) < Cy%"2 = Ca(log(1/8)) 6" 2 < |n6|

~ 10
provided that 5o has been chosen small enough. On the other hand

, A
Q(i> 2 log(C/7)) = SIS
Therefore, there exists |JZ with 1 <ij, < log(C/7), such that

Q(JZ»HZ) |H6 and Q(jazaij,z 1)< |H6

Since there are at most Iog(C/y) possible i;,, there is an i; and a set P, c

H‘J? N E of measure
P}l 2 (log(C/y))*AlITS|
such that for each z € H’.

Q(j.zij) = - IH5 and Q(j,zij-1) < |H5
7



Since there are M sets H‘5 and at most log(C/y) possible i}, there is anip and
asubset C’ {H‘s};"' 1 such that

j
IC’ 2 (log(C/y))™*M,
and for each H‘? eC’andeach ze H’.

‘H‘S N E N B(zy2°) N (T(‘")(VZ/')(Z))C‘ |H6
forallee S™1, y <r <1, and
15 0 E Bz 27 0 (T )| < i,
for some e, € S™1, y <rj, < 1. It follows that
gmﬂ <[ n En @)
- [ A E N Bz y2" ) 0 (TEH) |

io— Arjz /Tiz
= 1§ N En (Bz 72" )¢ 0 (TE279 )|

IA

I N E N (Bz 72" )|

log(C/y) _
D NEN ARz y20 ).
k=0

Therefore, there is a k;, such that

1T} N E N Az 72" 2 (log(C/y)) ™ AIITS].

Repeatedly using the pigeonhole principle as before, we conclude that there
is a number p = y2'o*%~1 and a set C ¢ C’ with

Cl 2 (log(C/7))*M.
so that for each I} € C, there is a subset P; c P} of measure
IPjl 2 (log(C/y)) 2AITLS|
such that for each z € P;

1} N E N B(z 20) n (TETP @) | 2 A

forallee S™, y<r <1, and
15 N E N Az p)l % (log(C/y)) AL,

proving the claim.
This construction will allow us to carry out a “high-low multiplicity seg-
ment” argument as follows. We fix a number N and consider two cases.

CASE l.VaeR" |{j:aePj}|<N.
CASE Il.JaeR" [{j:aePj}| > N.
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Ficure 1. High multiplicity line segment

In case | we have

B> Pj|z% > Py

jmgec jmgec
2 SIC1log(C/y) 457
2 5 (100" 1577, @8)
where we have used (4.4) and (4.5).

In case I, we fix a number x and consider two subcases.

(1. Vb e Aa.p) Ij iaePj,bellf)l <pu.
(1)2. b e Alp) I{j :ae Pj,bellf)| > u (see Figure 1).

In subcase (I1); we have

El>| [ MnENA@p)

j-aeP;j

1
>= > I NENA@p)

j-aeP;
N -1 ,5en-2
z;(log(C/y)) A", (4.9)
where the last inequality follows from (4.7).

In subcase (I1), let B be a maximal C,06/y?-separated subset of {IT; :
aePjbe H‘J?}. Then for C; large enough, C1p8/y? > Cé8/p. Therefore by
9



Lemma 3.1
1Bl 2 py? ™2,
Note that if IT;, ITx € 8 then by Lemma 3.2
-1.2
I N I3 N B(a, 20) € TeP 7P (@) ¢ T0%0) (@),

where e = (a— b)/|a— b, provided that C; has been chosen large enough.
Therefore the family

(I N E n B(a, 20) N (TE0P(@)C - 11 € B]
is disjoint. Consequently
El>| () mnEnB@2)n (T (@)

jIHJ' eB
2
= > |1 nEnB(a 20) n (T 0(@)C|
jHjeB
> |BlAs"?
Z ,y2(ﬂ—2)ll/16n—2, (4.10)

where we have used (4.6). So, in case Il we see that choosing
u=NY2(log(C/y)) ™2y,
(4.9) and (4.10) imply that
|E| 2 (I0g(C/y)) ™2y 2ANY26™2, (4.11)
Choosing
N = M?2 (log(C/y)) "2y 227,
(4.8) and (4.11) yield
[EI 2 (log(C/y)) ™y 22 Am* 35" 2

-5/3
(/11/2(|09(1/5))_1/2)2“]_2)/3/1M1/36n_2

=|lo c
"9 22 (log(1/0)) 2

Z C—lé‘s/l(rl+l)/3 M 1/36n—2’
which is (4.2). The proof is complete.
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