
MAPPING PROPERTIES OF THE MAXIMAL AVERAGING
OPERATOR ASSOCIATED TO THE 2-PLANE TRANSFORM

THEMIS MITSIS

A. We extend Christ’s estimate for the 2-plane transform to a
maximal operator setting.

1. I

Let Gn,2 be the Grassmannian manifold of all 2-dimensional linear sub-
spaces of Rn equipped with the unique invariant probability measure γn,2.
For a function f satisfying the appropriate integrability conditions, the 2-
plane transform Tn,2 f is defined by

Tn,2 f (Π, y) =
∫

Π

f (x + y)dL2(x),

where L2 is 2-dimensional Lebesgue measure on the plane Π ∈ Gn,2.
The following mixed-norm estimate was proved by Christ [2].

‖Tn,2 f ‖Lq(Lr) ≤ Cn,p,q,r‖ f ‖p (1.1)

where
n
p
−

n − 2
r
= 2, 1 ≤ p ≤

n + 1
3
, q ≤ (n − 2)p′,

and

‖Tn,2 f ‖qLq(Lr) =

∫

Gn,2

(∫

Π⊥

|Tn,2 f (Π, y)|rdLn−2(y)

)q/r

dγn,2(Π),

Π
⊥ being the orthogonal complement of Π, Ln−2 (n − 2)-dimensional Le-

besgue measure on Π⊥, and p′ the conjugate exponent of p.
It is unlikely that this estimate is sharp. For example, it does not imply

full Hausdorff dimension for (n, 2)-sets, a fact which was proved by the
author in [3]. Actually, Christ conjectured that (1.1) should hold with

n
p
−

n − 2
r
= 2, 1 ≤ p <

n
2
, q ≤ (n − 2)p′.

Notice that in the above conjectured range of boundedness, r approaches
∞ as p approaches the endpoint n/2. It is therefore natural to consider
the corresponding maximal averaging operator which is analogous to the
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Kakeya maximal function introduced by Bourgain [1]. To do this, we need
some further notation. For Π ∈ Gn,2, a ∈ Rn, δ � 1, we denote by Πδ(a) the
δ/2-neighborhood of the intersection of Π + a with the ball of radius 1/2
centered at a, and define

Mδ f : Gn,2 → R

by

Mδ f (Π) = sup
a∈Rn

1
|Πδ(a)|

∫

Πδ(a)
| f (y)|dy,

where |Πδ(a)| is the volume of Πδ(a), and f : Rn → R any locally integrable
function.

We are interested in proving Lp → Lq(Gn,2, γn,2) estimates for this opera-
tor. To find the optimal range for p and q we argue as follows.

If f is the characteristic function of a ball of radius δ, then ‖ f ‖p is com-
parable to δn/p, and ‖Mδ‖Lq(Gn,2 ,γn,2) is comparable to δ2. Therefore, the best
possible bound is

‖Mδ f ‖Lq(Gn,2,γn,2) ≤ Cn,p,qδ
2−n/p‖ f ‖p, p < n/2, q ≥ 1.

On the other hand, if f is the characteristic function of a rectangle of di-
mensions 1 × 1 × δ × · · · × δ, then ‖ f ‖p = δ

(n−2)/p and ‖Mδ f ‖Lq(Gn,2,γn,2) is,
up to a multiplicative constant, greater than δ2(n−2)/q. It follows that if the
above estimate is true, we must have

δ2(n−2)/q ≤ Cn,p,qδ
2−n/pδ(n−2)/p,

which forces q to be less than (n − 2)p′.
These examples suggest the following conjecture which, if true, would

imply the result in [3].

For every ε > 0 there exists a constant Cε,p,q > 0 such that

‖Mδ f ‖Lq(Gn,2,γn,2) ≤ Cε,p,qδ
2−n/p−ε‖ f ‖p,

where

1 ≤ p ≤
n
2
, q ≤ (n − 2)p′.

The purpose of this paper is to give a geometric proof of the following
partial result, which may be thought of as a stronger version of Christ’s
estimate.

Theorem 1.1. For every ε > 0 there exists a constant Cε,p,q > 0 such that

‖Mδ f ‖Lq(Gn,2,γn,2) ≤ Cε,p,qδ
2−n/p−ε‖ f ‖p, (1.2)

where

1 ≤ p ≤
n + 1

3
, q ≤ (n − 2)p′.
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In an attempt to prove an estimate like (1.2) which is insensitive to δ−ε

factors, it would seem reasonable to try to modify or refine the nearly op-
timal argument of Mitsis [3]. However, that argument is based, in part, on
a discretization of the sharp bound for the Radon transform due to Oberlin
and Stein [4], which yields a distributional-type inequality with the “wrong”
exponent for the λ-parameter. This defect is of no consequence, as far as
the geometric problem considered in [3] is concerned, but makes the ap-
proach of that paper inapplicable in the present context. Therefore, we have
to use a more direct, but less efficient, high-low multiplicity argument. It
is the author’s impression that any improvement on (1.2) would require a
complete understanding of the geometry of the Radon transform, and so, an
alternative, purely geometric proof of the result in [4] would be a valuable
contribution.

2. P

Throughout this paper, the capital letter C, subscripted or otherwise, will
denote various constants whose values may change from line to line. x . y
means x ≤ Cy, and similarly with x & y and x ' y. Also, we will use the
notation Πδ for any set Πδ(a), since the basepoint a is irrelevant in all our
arguments. Further notational conventions follow below.

S n−1 is the (n − 1)-dimensional sphere.
B(a, r) is the ball of radius r centered at a.
A(a, r) is the annulus B(a, 2r) \ B(a, r).
Le(a) is the line in the direction e ∈ S n−1 passing through the point a, i.e.

Le(a) = {a + te : t ∈ R}.

T (r)(β)
e (a) is the tube of length r, cross-section radius β, centered at a, and

with axis in the direction e ∈ S n−1, i.e.

T (r)(β)
e (a) = {x ∈ Rn : dist(x, Le(a)) ≤ β and |projLe(a)(x) − a| ≤ r/2},

where projLe(a)(x) is the orthogonal projection of x onto Le(a).
χE is the characteristic function of the set E.
| · | denotes Lebesgue measure or cardinality, depending on the context.
If Π1,Π2 ∈ Gn,2, then their distance θ is defined by

θ(Π1,Π2) = ‖proj
Π1
− proj

Π2
‖,

where ‖ · ‖ is the operator norm. γn,2 is a 2(n − 2)-dimensional regular
measure with respect to this distance, in the sense that

γn,2({Π ∈ Gn,2 : θ(Π,Π0) ≤ r}) ' r2(n−2), ∀Π0 ∈ Gn,2, r < 1.

A finite subset of Gn,2 is called δ-separated if the distance between any
two of its elements is at least δ. So, if B is a maximal δ-separated subset of
A ⊂ Gn,2, then

γn,2(A) . |B|δ2(n−2).
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Moreover, ifA ⊂ Gn,2 is δ-separated, andB is a maximal η-separated subset
ofA with η ≥ δ, then

|B| & |A|(δ/η)2(n−2).

For technical reasons, we introduce the following subsets of Gn,2.

An,2 := {Π ∈ Gn,2 : θ(Π, x1x2-plane) ≤ 1/4},

Bn,2 := {Π ∈ Gn,2 : θ(Π, x1x2-plane) ≤ 1/2}.
Notice that by invariance, it is enough to prove Theorem 1.1 for Mδ

restricted toAn,2.
We finally note the following fact which can be proved by fairly elemen-

tary arguments.

Lemma 2.1. Let Π ∈ Bn,2. Then there exist unique u, v ∈ Rn−2 with |u|, |v| .
1 such that Π = {(s, t, su + tv) : s, t ∈ R}. Further, for any Π j = {(s, t, su j +

tv j) : s, t ∈ R} ∈ Bn,2, j = 1, 2, we have θ(Π1,Π2) ' |u1 − u2| + |v1 − v2|.

3. G L

In this section we prove two technical results that will allow us to control
the cardinality and the intersection properties and of a family of sets Πδ

containing a fixed line segment.

Lemma 3.1. Let {Π j}
M
j=1 be a δ-separated set in An,2. Suppose that there

exist points a, b ∈ Rn and a number ρ ≥ 4δ such that |a − b| ≥ ρ, and for
each j there is a Πδj with a, b ∈ Πδj. Further, suppose that B is a maximal
ζ-separated subset of {Π j}

M
j=1 with ζ ≥ Cδ/ρ. Then |B| & M(ρδ/ζ)n−2.

Proof. After rotating and translating, we may assume that Π1 is the x1x2-
plane, {Π j} ⊂ Bn,2, a = 0 and b = (b1, 0, b), for some b ∈ Rn−2. Then, by
Lemma 2.1, there exist unique u j, v j ∈ R

n−2 such that

Π j = {(s, t, su j + tv j) : s, t ∈ R}

and
θ(Π j,Πk) ' |u j − uk| + |v j − vk |.

Therefore, we can think of {Π j}
M
j=1 as a set of points in B(0,C) ⊂ R2(n−2)

under the identification Π j ↔ (u j, v j). We claim that {Π j}
M
j=1 is contained in

a rectangle R of sidelength, up to constants, δ/ρ in n − 2 dimensions and C
in the remaining n− 2 dimensions. To see this, note that since b ∈ Πδj, there
exists

w j = (s j, t j, s ju j + t jv j) ∈ Π j

with
|w j − b| = |(s j − b1, t j, s ju j + t jv j − b)| ≤ δ.

Therefore
|s j − b1| ≤ δ, |t j| ≤ δ, |s ju j + t jv j − b| ≤ δ.

In particular |b| ≤ δ, and so

|s j| ≥ |b1| − δ ≥ |b| − 2δ ≥ ρ − 2δ ≥ ρ/2.
4



On the other hand
|s ju j| ≤ δ + |t jv j| + |b| . δ.

Consequently |u j| . δ/ρ, proving the claim.
Now, for appropriately chosen constants C1,C2,C3, we have

{B(Π j,C
−1
1 δ)}

M
j=1 is a disjoint family,

B(Π j,C
−1
1 δ) ⊂ C2R (the dilate of R around its center),

M
⋃

j=1

B(Π j,C
−1
1 δ) ⊂

⋃

Π j∈B

(B(Π j,C3ζ) ∩ C2R),

and B(Π j,C3ζ) ∩ C2R is contained in a rectangle of sidelength, up to con-
stants, δ/ρ in n − 2 dimensions and ζ in the remaining n − 2 dimensions.
Therefore, by volume counting

Mδ2(n−2) . |B|(δ/ρ)n−2ζn−2.

We conclude that
|B| & M(δρ/ζ)n−2.

�

Lemma 3.2. Let Π1,Π2 ∈ Gn,2 be such that θ(Π1,Π2) ≤ 1/2. Suppose that
there exist a, b ∈ Πδ1 ∩ Π

δ
2, ρ > 0 with ρ ≤ |a − b| ≤ 2ρ. Then

Π
δ
1 ∩ Π

δ
2 ∩ B(a, 2ρ) ⊂ T (4ρ)(β)

e (a),

where e = (a − b)/|a − b| and β = Cδ/θ(Π1,Π2).

Proof. Let θ = θ(Π1,Π2). If ρ ≤ C1δ/θ then B(a, 2ρ) ⊂ T (4ρ)(β)
e (a), so we

may assume that ρ ≥ C1δ/θ. We can also assume that Π2 is the x1x2-plane,
a = 0, b = (b1, 0, b), b ∈ Rn−2. Since θ ≤ 1/2, by Lemma 2.1, we can write
Π1 = {(s, t, su+ tv) : s, t ∈ R}, where u, v ∈ Rn−2, |u|, |v| . 1, and θ ' |u| + |v|
. Since b ∈ Πδ1 ∩ Π

δ
2, there exists (s, t, su + tv) ∈ Π1 such that

|b1 − s| . δ, |t| . δ, |su + tv − b| . δ, |b| . δ.

Hence

|u| ≤
|su + tv − b| + |tu| + |b|

|s|
.

δ

|b| − |b| − |b1 − s|

≤
δ

ρ − Cδ
≤

δ

ρ(1 − CC−1
1 )
.
δ

ρ
,

for C1 sufficiently large. Consequently

|v| = |v| + |u| − |u| ≥ C−1θ − Cδ/ρ ≥ (C−1 − CC−1
1 )θ & δ,

for C1 large enough.
Now let y = (yi) ∈ Πδ1 ∩Π

δ
2 ∩ B(a, 2ρ). Then there exist z1 = (s1, t1, s1u +

t1v) ∈ Π1, z2 = (s2, t2, 0) ∈ Π2 such that |y − z1| . δ, |y − z2| . δ. Therefore

|s1u + t1v| . δ, |s1| ≤ |z1| ≤ |z1 − y| + |y| . δ + ρ . ρ.
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It follows that

|t1| ≤
|s1u + t1v| + |s1u|

|v|
.
δ + ρ(δ/ρ)
θ

.
δ

θ
.

Hence

dist(y, x1-axis) ≤ |y − (s1, 0, 0)| ≤ |y − z1| + |t1| + |s1u + t1v|

. δ + δ/θ + δ . δ/θ.

We conclude that

dist(y, Le(0)) ≤ |y − y1b−1
1 b| ≤ dist(y, x1-axis) + |y1||b1|

−1|b|

. δ/θ + δ . δ/θ.

�

4. P  T 1.1

Let E ⊂ Rn, 0 < λ ≤ 1, and

Aλ = {Π ∈ An,2 :MδχE(Π) ≥ λ}.

By the standard interpolation theorems, it is enough to prove the following
restricted weak-type estimate at the endpoint.

γn,2(Aλ) ≤ Cε

(

1
δ

)ε (
|E|

λ(n+1)/3δ(n−2)/3

)3

. (4.1)

Now, let {Π j}
M
j=1 be a maximal δ-separated subset of Aλ. Then proving (4.1)

amounts to proving

|E| ≥ C−1
ε δ
ελ(n+1)/3M1/3δn−2. (4.2)

Since Π j ∈ Aλ, there exists Πδj such that

|Πδj ∩ E| ≥
3
4
λ|Πδj |. (4.3)

Put γ = λ1/2(log(1/δ))−1/2 and note that (4.2) is trivial if 4δ ≥ γ. Indeed,
(4.3) implies

|E| & λδn−2
= λ(n+1)/3λ−(n−2)/3δn−2

& λ(n+1)/3(δ2 log(1/δ))−(n−2)/3δn−2

= (log(1/δ))−(n−2)/3λ(n+1)/3((1/δ)2(n−2))1/3δn−2

≥ C−1
ε δ
ελ(n+1)/3 M1/3δn−2.

We may therefore assume that 4δ ≤ γ.
Now, let δ0 be a small constant to be determined later. Then for δ ≥ δ0,

we have M . 1, and so (4.3) trivially implies (4.2) as before. Hence we can
also assume that δ ≤ δ0.

After these preliminary reductions, we can proceed with the proof of
(4.2). First, we find a large number of sets Πδj so that the measure of their
intersection with E is concentrated in annuli of fixed dimensions. More
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precisely, we claim that there exist a number ρ ≥ γ and a set C ⊂ {Πδj}
M
j=1

with
|C| & (log(C/γ))−2M, (4.4)

so that for each Πδj ∈ C there is a set P j ⊂ Π
δ
j of measure

|P j| & (log(C/γ))−2λ|Πδj | (4.5)

such that for each z ∈ P j
∣

∣

∣

∣

Π
δ
j ∩ E ∩ B(z, 2ρ) ∩ (T (4r)(γ2/r)

e (z)){
∣

∣

∣

∣

& λ|Πδj |, (4.6)

for all e ∈ S n−1, γ ≤ r ≤ 1, and

|Πδj ∩ E ∩ A(z, ρ)| & (log(C/γ))−1λ|Πδj |. (4.7)

To see this, note that for all z ∈ Rn, e ∈ S n−1 and r > 0 with γ ≤ r ≤ 1 we
have

∣

∣

∣

∣

Π
δ
j ∩ E ∩ (T (4r)(γ2/r)

e (z)){
∣

∣

∣

∣

= |Πδj ∩ E| − |Πδj ∩ E ∩ T (4r)(γ2/r)
e (z)|

≥
3
4

(

λ|Πδj | − Cr
γ2

r
|Πδj |

)

=
3
4
λ(1 − C(log(1/δ))−1)|Πδj |

≥
λ

2
|Πδj |,

for δ0 small enough.
Now, for each 1 ≤ j ≤ M, z ∈ Πδj ∩ E, i ∈ N, consider the quantity

Q( j, z, i) = inf
r:γ≤r≤1
e∈S n−1

∣

∣

∣

∣

Π
δ
j ∩ E ∩ B(z, γ2i) ∩ (T (4r)(γ2/r)

e (z)){
∣

∣

∣

∣

.

Then

Q( j, z, 0) ≤ Cγ2δn−2
= Cλ(log(1/δ))−1δn−2 ≤

λ

10
|Πδj |,

provided that δ0 has been chosen small enough. On the other hand

Q( j, z, log(C/γ)) ≥
λ

2
|Πδj |.

Therefore, there exists i j,z with 1 ≤ i j,z ≤ log(C/γ), such that

Q( j, z, i j,z) ≥
λ

4
|Πδj |, and Q( j, z, i j,z − 1) <

λ

4
|Πδj |.

Since there are at most log(C/γ) possible i j,z, there is an i j and a set P′j ⊂
Π
δ
j ∩ E of measure

|P′j| & (log(C/γ))−1λ|Πδj |

such that for each z ∈ Π′j

Q( j, z, i j) ≥
λ

4
|Πδj |, and Q( j, z, i j − 1) <

λ

4
|Πδj |.
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Since there are M setsΠδj and at most log(C/γ) possible i j, there is an i0 and
a subset C′ ⊂ {Πδj}

M
j=1 such that

|C′| & (log(C/γ))−1 M,

and for each Πδj ∈ C
′ and each z ∈ Π′j

∣

∣

∣

∣

Π
δ
j ∩ E ∩ B(z, γ2i0) ∩ (T (4r)(γ2/r)

e (z)){
∣

∣

∣

∣

≥
λ

4
|Πδj |,

for all e ∈ S n−1, γ ≤ r ≤ 1, and
∣

∣

∣

∣

Π
δ
j ∩ E ∩ B(z, γ2i0−1) ∩ (T (4r j,z)(γ2/r j,z)

e j,z (z)){
∣

∣

∣

∣

<
λ

4
|Πδj |,

for some e j,z ∈ S n−1, γ ≤ r j,z ≤ 1. It follows that

λ

4
|Πδj | ≤

∣

∣

∣

∣

Π
δ
j ∩ E ∩ (T (4r j,z )(γ2/r j,z)

e j,z (z)){
∣

∣

∣

∣

−

∣

∣

∣

∣

Π
δ
j ∩ E ∩ B(z, γ2i0−1) ∩ (T

(4r j,z)(γ2/r j,z)
e j,z (z)){

∣

∣

∣

∣

=

∣

∣

∣

∣

Π
δ
j ∩ E ∩ (B(z, γ2i0−1)){ ∩ (T

(4r j,z)(γ2/r j,z)
e j,z (z)){

∣

∣

∣

∣

≤

∣

∣

∣

∣

Π
δ
j ∩ E ∩ (B(z, γ2i0−1)){

∣

∣

∣

∣

=

log(C/γ)
∑

k=0

|Πδj ∩ E ∩ A(z, γ2i0+k−1)|.

Therefore, there is a k j,z such that

|Πδj ∩ E ∩ A(z, γ2i0+k j,z−1)| & (log(C/γ))−1λ|Πδj |.

Repeatedly using the pigeonhole principle as before, we conclude that there
is a number ρ = γ2i0+k0−1 and a set C ⊂ C′ with

|C| & (log(C/γ))−2M,

so that for each Πδj ∈ C, there is a subset P j ⊂ P′j of measure

|P j| & (log(C/γ))−2λ|Πδj |

such that for each z ∈ P j
∣

∣

∣

∣

Π
δ
j ∩ E ∩ B(z, 2ρ) ∩ (T (4r)(γ2/r)

e (z)){
∣

∣

∣

∣

& λ|Πδj |,

for all e ∈ S n−1, γ ≤ r ≤ 1, and

|Πδj ∩ E ∩ A(z, ρ)| & (log(C/γ))−1λ|Πδj |,

proving the claim.
This construction will allow us to carry out a “high-low multiplicity seg-

ment” argument as follows. We fix a number N and consider two cases.

CASE I. ∀a ∈ Rn |{ j : a ∈ P j}| ≤ N.
CASE II. ∃a ∈ Rn |{ j : a ∈ P j}| ≥ N.
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F 1. High multiplicity line segment

In case I we have

|E| ≥
∣

∣

∣

∣

⋃

j:Πδj∈C

P j

∣

∣

∣

∣

≥
1
N

∑

j:Πδj∈C

|P j|

&
1
N
|C|

(

log(C/γ)
)−2
λδn−2

&
M
N

(

log(C/γ)
)−4
λδn−2, (4.8)

where we have used (4.4) and (4.5).

In case II, we fix a number µ and consider two subcases.

(II)1. ∀b ∈ A(a, ρ) |{ j : a ∈ P j, b ∈ Πδj}| ≤ µ.
(II)2. ∃b ∈ A(a, ρ) |{ j : a ∈ P j, b ∈ Πδj}| ≥ µ (see Figure 1).

In subcase (II)1 we have

|E| ≥
∣

∣

∣

∣

⋃

j:a∈P j

Π
δ
j ∩ E ∩ A(a, ρ)

∣

∣

∣

∣

≥
1
µ

∑

j:a∈P j

|Πδj ∩ E ∩ A(a, ρ)|

&
N
µ

(

log(C/γ)
)−1
λδn−2, (4.9)

where the last inequality follows from (4.7).

In subcase (II)2 let B be a maximal C1ρδ/γ
2-separated subset of {Π j :

a ∈ P j, b ∈ Πδj}. Then for C1 large enough, C1ρδ/γ
2 ≥ Cδ/ρ. Therefore by

9



Lemma 3.1
|B| & µγ2(n−2).

Note that if Π j,Πk ∈ B then by Lemma 3.2

Π
δ
j ∩ Π

δ
k ∩ B(a, 2ρ) ⊂ T

(4ρ)(CC−1
1 γ

2/ρ)
e (a) ⊂ T (4ρ)(γ2/ρ)

e (a),

where e = (a − b)/|a − b|, provided that C1 has been chosen large enough.
Therefore the family

{

Π
δ
j ∩ E ∩ B(a, 2ρ) ∩ (T (4ρ)(γ2/ρ)

e (a)){ : Π j ∈ B
}

is disjoint. Consequently

|E| ≥
∣

∣

∣

∣

⋃

j:Π j∈B

Π
δ
j ∩ E ∩ B(a, 2ρ) ∩ (T (4ρ)(γ2/ρ)

e (a)){
∣

∣

∣

∣

=

∑

j:Π j∈B

∣

∣

∣

∣

Π
δ
j ∩ E ∩ B(a, 2ρ) ∩ (T (4ρ)(γ2/ρ)

e (a)){
∣

∣

∣

∣

& |B|λδn−2

& γ2(n−2)µλδn−2, (4.10)

where we have used (4.6). So, in case II we see that choosing

µ = N1/2 (

log(C/γ)
)−1/2
γ−(n−2),

(4.9) and (4.10) imply that

|E| &
(

log(C/γ)
)−1/2
γn−2λN1/2δn−2. (4.11)

Choosing
N = M2/3 (

log(C/γ)
)−7/3
γ−2(n−2)/3,

(4.8) and (4.11) yield

|E| &
(

log(C/γ)
)−5/3
γ2(n−2)/3λM1/3δn−2

=

(

log
C

λ1/2(log(1/δ))−1/2

)−5/3

(λ1/2(log(1/δ))−1/2)2(n−2)/3λM1/3δn−2

& C−1
ε δ
ελ(n+1)/3M1/3δn−2,

which is (4.2). The proof is complete.
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