MAPPING PROPERTIES OF THE MAXIMAL AVERAGING OPERATOR ASSOCIATED TO THE 2-PLANE TRANSFORM

THEMIS MITSIS

Abstract. We extend Christ’s estimate for the 2-plane transform to a maximal operator setting.

1. Introduction

Let \(G_{n,2} \) be the Grassmannian manifold of all 2-dimensional linear subspaces of \(\mathbb{R}^n \) equipped with the unique invariant probability measure \(\gamma_{n,2} \). For a function \(f \) satisfying the appropriate integrability conditions, the 2-plane transform \(T_{n,2}f \) is defined by

\[
T_{n,2}f(\Pi, y) = \int_{\Pi} f(x + y) d\mathcal{L}^2(x),
\]

where \(\mathcal{L}^2 \) is 2-dimensional Lebesgue measure on the plane \(\Pi \in G_{n,2} \).

The following mixed-norm estimate was proved by Christ [2].

\[
\|T_{n,2}f\|_{L^q(L^r')} \leq C_{n,p,q,r}\|f\|_p
\]

where

\[
\frac{n}{p} - \frac{n - 2}{r} = 2, \quad 1 \leq p \leq \frac{n + 1}{3}, \quad q \leq (n - 2)p',
\]

and

\[
\|T_{n,2}f\|_{L^q(L^r')}^q = \int_{G_{n,2}} \left(\int_{\Pi} |T_{n,2}f(\Pi, y)|^r d\mathcal{L}^{n-2}(y) \right)^{q/r} d\gamma_{n,2}(\Pi),
\]

\(\Pi^\perp \) being the orthogonal complement of \(\Pi \), \(\mathcal{L}^{n-2} \) \((n - 2)\)-dimensional Lebesgue measure on \(\Pi^\perp \), and \(p' \) the conjugate exponent of \(p \).

It is unlikely that this estimate is sharp. For example, it does not imply full Hausdorff dimension for \((n, 2)\)-sets, a fact which was proved by the author in [3]. Actually, Christ conjectured that (1.1) should hold with

\[
\frac{n}{p} - \frac{n - 2}{r} = 2, \quad 1 \leq p < \frac{n}{2}, \quad q \leq (n - 2)p'.
\]

Notice that in the above conjectured range of boundedness, \(r \) approaches \(\infty \) as \(p \) approaches the endpoint \(n/2 \). It is therefore natural to consider the corresponding maximal averaging operator which is analogous to the

\[2000\text{ Mathematics Subject Classification.} \quad 42B25.\]

This research has been supported by a Marie Curie Fellowship of the European Community programme “Improving Human potential and the Socio-economic Knowledge Base” under contract number HPMFCT-2000-00442.
Kakeya maximal function introduced by Bourgain [1]. To do this, we need some further notation. For $\Pi \in \mathcal{G}_{n,2}$, $a \in \mathbb{R}^n$, $\delta \ll 1$, we denote by $\Pi^\delta(a)$ the $\delta/2$-neighborhood of the intersection of $\Pi + a$ with the ball of radius $1/2$ centered at a, and define

$$M_\delta f : \mathcal{G}_{n,2} \to \mathbb{R}$$

by

$$M_\delta f(\Pi) = \sup_{a \in \mathbb{R}^n} \frac{1}{|\Pi^\delta(a)|} \int_{\Pi^\delta(a)} |f(y)| dy,$$

where $|\Pi^\delta(a)|$ is the volume of $\Pi^\delta(a)$, and $f : \mathbb{R}^n \to \mathbb{R}$ any locally integrable function.

We are interested in proving $L^p \to L^q(\mathcal{G}_{n,2}, \gamma_{n,2})$ estimates for this operator. To find the optimal range for p and q we argue as follows.

If f is the characteristic function of a ball of radius δ, then $\|f\|_p$ is comparable to $\delta^{n/p}$, and $\|M_\delta f\|_{L^q(\mathcal{G}_{n,2}, \gamma_{n,2})}$ is comparable to δ^2. Therefore, the best possible bound is

$$\|M_\delta f\|_{L^q(\mathcal{G}_{n,2}, \gamma_{n,2})} \leq C_{n,p,q} \delta^{2-n/p} \|f\|_p, \quad p < n/2, \quad q \geq 1.$$

On the other hand, if f is the characteristic function of a rectangle of dimensions $1 \times 1 \times \delta \times \cdots \times \delta$, then $\|f\|_p = \delta^{(n-2)/p}$ and $\|M_\delta f\|_{L^q(\mathcal{G}_{n,2}, \gamma_{n,2})}$ is, up to a multiplicative constant, greater than $\delta^{2(n-2)/q}$. It follows that if the above estimate is true, we must have

$$\delta^{2(n-2)/q} \leq C_{n,p,q} \delta^{2-n/p} \delta^{(n-2)/p},$$

which forces q to be less than $(n-2)p'$.

These examples suggest the following conjecture which, if true, would imply the result in [3].

For every $\varepsilon > 0$ there exists a constant $C_{p,q} > 0$ such that

$$\|M_\delta f\|_{L^q(\mathcal{G}_{n,2}, \gamma_{n,2})} \leq C_{\varepsilon,p,q} \delta^{2-n/p-\varepsilon} \|f\|_p,$$

where

$$1 \leq p \leq \frac{n}{2}, \quad q \leq (n-2)p'.$$

The purpose of this paper is to give a geometric proof of the following partial result, which may be thought of as a stronger version of Christ’s estimate.

Theorem 1.1. For every $\varepsilon > 0$ there exists a constant $C_{\varepsilon,p,q} > 0$ such that

$$\|M_\delta f\|_{L^q(\mathcal{G}_{n,2}, \gamma_{n,2})} \leq C_{\varepsilon,p,q} \delta^{2-n/p-\varepsilon} \|f\|_p,$$

where

$$1 \leq p \leq \frac{n+1}{3}, \quad q \leq (n-2)p'.$$
In an attempt to prove an estimate like (1.2) which is insensitive to \(\delta^{-e} \) factors, it would seem reasonable to try to modify or refine the nearly optimal argument of Mitsis [3]. However, that argument is based, in part, on a discretization of the sharp bound for the Radon transform due to Oberlin and Stein [4], which yields a distributional-type inequality with the “wrong” exponent for the \(\lambda \)-parameter. This defect is of no consequence, as far as the geometric problem considered in [3] is concerned, but makes the approach of that paper inapplicable in the present context. Therefore, we have to use a more direct, but less efficient, high-low multiplicity argument. It is the author’s impression that any improvement on (1.2) would require a complete understanding of the geometry of the Radon transform, and so, an alternative, purely geometric proof of the result in [4] would be a valuable contribution.

2. Preliminaries

Throughout this paper, the capital letter \(C \), subscripted or otherwise, will denote various constants whose values may change from line to line. \(x \lesssim y \) means \(x \leq Cy \), and similarly with \(x \gtrsim y \) and \(x \approx y \). Also, we will use the notation \(\Pi^\delta \) for any set \(\Pi^\delta(a) \), since the basepoint \(a \) is irrelevant in all our arguments. Further notational conventions follow below.

\(S^{n-1} \) is the \((n-1)\)-dimensional sphere.
\(B(a, r) \) is the ball of radius \(r \) centered at \(a \).
\(A(a, r) \) is the annulus \(B(a, 2r) \setminus B(a, r) \).
\(L_e(a) \) is the line in the direction \(e \in S^{n-1} \) passing through the point \(a \), i.e. \(L_e(a) = \{ a + te : t \in \mathbb{R} \} \).
\(T_e^{(r)\beta}(a) \) is the tube of length \(r \), cross-section radius \(\beta \), centered at \(a \), and with axis in the direction \(e \in S^{n-1} \), i.e. \(T_e^{(r)\beta}(a) = \{ x \in \mathbb{R}^n : \text{dist}(x, L_e(a)) \leq \beta \text{ and } |\text{proj}_{L_e(a)}(x) - a| \leq r/2 \} \),

where \(\text{proj}_{L_e(a)}(x) \) is the orthogonal projection of \(x \) onto \(L_e(a) \).
\(\chi_E \) is the characteristic function of the set \(E \).
\(| \cdot | \) denotes Lebesgue measure or cardinality, depending on the context.
If \(\Pi_1, \Pi_2 \in \mathcal{G}_{n,2} \), then their distance \(\theta \) is defined by
\[
\theta(\Pi_1, \Pi_2) = ||\text{proj}_{\Pi_1} - \text{proj}_{\Pi_2}||,
\]
where \(|| \cdot || \) is the operator norm. \(\gamma_{n,2} \) is a \(2(n-2) \)-dimensional regular measure with respect to this distance, in the sense that
\[
\gamma_{n,2}(\{ \Pi \in \mathcal{G}_{n,2} : \theta(\Pi, \Pi_0) \leq r \}) \approx r^{2(n-2)}, \ \forall \Pi_0 \in \mathcal{G}_{n,2}, r < 1.
\]

A finite subset of \(\mathcal{G}_{n,2} \) is called \(\delta \)-separated if the distance between any two of its elements is at least \(\delta \). So, if \(\mathcal{B} \) is a maximal \(\delta \)-separated subset of \(\mathcal{A} \subset \mathcal{G}_{n,2} \), then
\[
\gamma_{n,2}(\mathcal{A}) \lesssim |\mathcal{B}| \delta^{2(n-2)}.
\]
Moreover, if \(\mathcal{A} \subset \mathcal{G}_{n,2} \) is \(\delta \)-separated, and \(\mathcal{B} \) is a maximal \(\eta \)-separated subset of \(\mathcal{A} \) with \(\eta \geq \delta \), then
\[
|\mathcal{B}| \geq |\mathcal{A}|(\delta/\eta)^{2(n-2)}.
\]

For technical reasons, we introduce the following subsets of \(\mathcal{G}_{n,2} \).
\[
\mathcal{A}_{n,2} := \{ \Pi \in \mathcal{G}_{n,2} : \theta(\Pi, x_1x_2\text{-plane}) \leq 1/4 \},
\]
\[
\mathcal{B}_{n,2} := \{ \Pi \in \mathcal{G}_{n,2} : \theta(\Pi, x_1x_2\text{-plane}) \leq 1/2 \}.
\]

Notice that by invariance, it is enough to prove Theorem 1.1 for \(\mathcal{M}_\delta \) restricted to \(\mathcal{A}_{n,2} \).

We finally note the following fact which can be proved by fairly elementary arguments.

Lemma 2.1. Let \(\Pi \in \mathcal{B}_{n,2} \). Then there exist unique \(\overline{u}, \overline{v} \in \mathbb{R}^{n-2} \) with \(|u|, |v| \leq 1 \) such that \(\Pi = \{(s, t, s\overline{u} \pm \overline{v}) : s, t \in \mathbb{R} \} \). Further, for any \(\Pi_j = \{(s, t, s\overline{u}_j \pm t\overline{v}_j) : s, t \in \mathbb{R} \} \in \mathcal{B}_{n,2}, \ j = 1, 2 \), we have \(\theta(\Pi_1, \Pi_2) \approx |\overline{u}_1 - \overline{u}_2| + |\overline{v}_1 - \overline{v}_2| \).

3. **Geometric Lemmas**

In this section we prove two technical results that will allow us to control the cardinality and the intersection properties of a family of sets \(\Pi^\delta \) containing a fixed line segment.

Lemma 3.1. Let \(\{\Pi_j\}_{j=1}^M \) be a \(\delta \)-separated set in \(\mathcal{A}_{n,2} \). Suppose that there exist points \(a, b \in \mathbb{R}^n \) and a number \(\rho \geq 4\delta \) such that \(|a - b| \geq \rho \), and for each \(j \) there is a \(\Pi^\delta_j \) with \(a, b \in \Pi^\delta_j \). Further, suppose that \(\mathcal{B} \) is a maximal \(\zeta \)-separated subset of \(\{\Pi_j\}_{j=1}^M \) with \(\zeta \geq C\delta/\rho \). Then \(|\mathcal{B}| \geq M(\rho\delta/\zeta)^{n-2} \).

Proof. After rotating and translating, we may assume that \(\Pi_1 \) is the \(x_1x_2 \)-plane, \(\Pi_j \subset \mathcal{B}_{n,2}, a = 0 \) and \(b = (b_1, 0, \overline{b}) \), for some \(\overline{b} \in \mathbb{R}^{n-2} \). Then, by Lemma 2.1, there exist unique \(u_j, v_j \in \mathbb{R}^{n-2} \) such that
\[
\Pi_j = \{(s, t, su_j + tv_j) : s, t \in \mathbb{R} \}
\]
and
\[
\theta(\Pi_j, \Pi_k) \approx |u_j - u_k| + |v_j - v_k|.
\]
Therefore, we can think of \(\{\Pi_j\}_{j=1}^M \) as a set of points in \(\mathcal{B}(0, C) \subset \mathbb{R}^{2(n-2)} \) under the identification \(\Pi_j \leftrightarrow (u_j, v_j) \). We claim that \(\{\Pi_j\}_{j=1}^M \) is contained in a rectangle \(R \) of sidelength, up to constants, \(\delta/\rho \) in \(n - 2 \) dimensions and \(C \) in the remaining \(n - 2 \) dimensions. To see this, note that since \(b \in \Pi^\delta_j \), there exists
\[
w_j = (s_j, t_j, sju_j + tv_j) \in \Pi_j
\]
with
\[
|w_j - b| = |(s_j - b_1, t_j, sju_j + tv_j - \overline{b})| \leq \delta.
\]
Therefore
\[
|s_j - b_1| \leq \delta, \quad |t_j| \leq \delta, \quad |sju_j + tv_j - \overline{b}| \leq \delta.
\]
In particular \(|\overline{b}| \leq \delta \), and so
\[
|s_j| \geq |b_1| - \delta \geq |b| - 2\delta \geq \rho - 2\delta \geq \rho/2.
\]
On the other hand

$$|s_j u_j| \leq \delta + |t_j v_j| + |\overline{b}| \leq \delta.$$

Consequently $|u_j| \leq \delta / \rho$, proving the claim.

Now, for appropriately chosen constants C_1, C_2, C_3, we have

$$\{B(\Pi_j, C_1^{-1} \delta)\}_{j=1}^M$$

is a disjoint family,

$$B(\Pi_j, C_1^{-1} \delta) \subset C_2 R$$ (the dilate of R around its center),

$$\bigcup_{j=1}^M B(\Pi_j, C_1^{-1} \delta) \subset \bigcup_{\Pi \in B} (B(\Pi_j, C_3 \zeta) \cap C_2 R),$$

and $B(\Pi_j, C_3 \zeta) \cap C_2 R$ is contained in a rectangle of sidelength, up to constants, δ / ρ in $n - 2$ dimensions and ζ in the remaining $n - 2$ dimensions. Therefore, by volume counting

$$M \delta^{2(n-2)} \leq |B|(\delta / \rho)^{n-2} \zeta^{n-2}.$$

We conclude that

$$|B| \geq M(\delta / \rho)^{n-2}.$$

\[\square \]

Lemma 3.2. Let $\Pi_1, \Pi_2 \in G_{n,2}$ be such that $\theta(\Pi_1, \Pi_2) \leq 1/2$. Suppose that there exist $a, b \in \Pi_1^i \cap \Pi_2^j$, $\rho > 0$ with $\rho \leq |a - b| \leq 2 \rho$. Then

$$\Pi_1^i \cap \Pi_2^j \cap B(a, 2 \rho) \subset T_{e}^{(4 \rho)}(a),$$

where $e = (a - b)/|a - b|$ and $\beta = C \delta / \theta(\Pi_1, \Pi_2)$.

Proof. Let $\theta = \theta(\Pi_1, \Pi_2)$. If $\rho \leq C \delta / \theta$ then $B(a, 2 \rho) \subset T_{e}^{(4 \rho)}(a)$, so we may assume that $\rho \geq C \delta / \theta$. We can also assume that Π_2 is the x_1, x_2-plane, $a = 0$, $b = (b_1, 0, b_2)$, $\overline{b} \in \mathbb{R}^{n-2}$. Since $\theta \leq 1/2$, by Lemma 2.1, we can write $\Pi_1 = \{(s, t, \overline{s} \overline{u} + \overline{v}) : s, t \in \mathbb{R}\}$, where $\overline{s}, \overline{v} \in \mathbb{R}^{n-2}$, $|\overline{s}|, |\overline{v}| \leq 1$, and $\theta \geq |\overline{s}| + |\overline{v}|$. Since $b \in \Pi_1^i \cap \Pi_2^j$, there exists $(s, t, \overline{s} \overline{u} + \overline{v}) \in \Pi_1$ such that

$$|b_1 - s| \leq \delta, |t| \leq \delta, |s \overline{u} + v| \leq \delta, |\overline{b}| \leq \delta.$$

Hence

$$|\overline{u}| \leq \frac{|s \overline{u} + \overline{v} - \overline{b}| + |s \overline{u}| + |\overline{b}|}{|s|} \leq \frac{\delta}{|b| - |\overline{b}| - |b_1 - s|} \leq \frac{\delta}{\rho - C \delta} \leq \frac{\delta}{\rho(1 - C C^{-1})} \leq \frac{\delta}{\rho},$$

for C_1 sufficiently large. Consequently

$$|\overline{v}| = |\overline{u}| + |\overline{b}| - |\overline{u}| \geq C^{-1} \theta - C \delta / \rho \geq (C^{-1} - C C^{-1}) \theta \geq \delta,$$

for C_1 large enough.

Now let $y = (y_i) \in \Pi_1^i \cap \Pi_2^j \cap B(a, 2 \rho)$. Then there exist $z_1 = (s_1, t_1, s_1 \overline{u} + t_1 \overline{v}) \in \Pi_1$, $z_2 = (s_2, t_2, \overline{b}) \in \Pi_2$ such that $|y - z_1| \leq \delta$, $|y - z_2| \leq \delta$. Therefore

$$|s_1 \overline{u} + t_1 \overline{v}| \leq \delta, |s_1| \leq |z_1| \leq |z_1 - y| + |y| \leq \delta + \rho \leq \rho.$$
It follows that
\[|t_1| \leq \frac{|s_1 u + t_1 v| + |s_1 u|}{|v|} \leq \frac{\delta + \rho(\delta/\rho)}{\theta} \leq \frac{\delta}{\theta}. \]

Hence
\[\text{dist}(y, x_1\text{-axis}) \leq |y - (s_1, 0, \vec{u})| \leq |y - z_1| + |t_1| + |s_1 u + t_1 v| \leq \delta + \delta/\theta + \delta \leq \delta/\theta. \]

We conclude that
\[\text{dist}(y, L_\alpha(0)) \leq |y - y_1 b_1^{-1} b| \leq \text{dist}(y, x_1\text{-axis}) + |y_1||b_1|^{-1}|\vec{b}| \leq \delta/\theta + \delta \leq \delta/\theta. \]

\[\square \]

4. Proof of Theorem 1.1

Let \(E \subset \mathbb{R}^n \), \(0 < \lambda \leq 1 \), and
\[A_\lambda = \{ \Pi \in \mathcal{A}_{n,2} : M_{b_\lambda}E(\Pi) \geq \lambda \}. \]
By the standard interpolation theorems, it is enough to prove the following restricted weak-type estimate at the endpoint.
\[\gamma_{n,2}(A_\lambda) \leq C\varepsilon \left(\frac{1}{\delta} \right)^{\frac{n}{3}} \left(\frac{|E|}{\lambda^{(n+1)/3} \delta^{(n-2)/3}} \right)^{\frac{3}{n}}. \] (4.1)

Now, let \(\{\Pi_j\}_{j=1}^M \) be a maximal \(\delta \)-separated subset of \(A_\lambda \). Then proving (4.1) amounts to proving
\[|E| \geq C^{-1}_\varepsilon \lambda^{(n+1)/3} M^{1/3} \delta^{n-2}. \] (4.2)

Since \(\Pi_j \in A_\lambda \), there exists \(\varepsilon \Pi_j^\delta \) such that
\[||\varepsilon \Pi_j^\delta \cap E|| \geq \frac{3}{4} \lambda ||\Pi_j^\delta||. \] (4.3)

Put \(\gamma = \lambda^{1/2} (\log(1/\delta))^{-1/2} \) and note that (4.2) is trivial if \(4\delta \geq \gamma \). Indeed, (4.3) implies
\[|E| \geq \lambda_0 \delta^{n-2} = \lambda^{(n+1)/3} \lambda^{-(n-2)/3} \delta^{n-2} \geq \lambda^{(n+1)/3} \delta^2 \log(1/\delta) \lambda^{-(n-2)/3} \delta^{n-2} = (\log(1/\delta))^{-(n-2)/3} \lambda^{(n+1)/3} \delta^{2(n-2)/3} \delta^{n-2} \geq C^{-1}_\varepsilon \delta \lambda^{(n+1)/3} M^{1/3} \delta^{n-2}. \]

We may therefore assume that \(4\delta \leq \gamma \).

Now, let \(\delta_0 \) be a small constant to be determined later. Then for \(\delta \geq \delta_0 \), we have \(M \leq 1 \), and so (4.3) trivially implies (4.2) as before. Hence we can also assume that \(\delta \leq \delta_0 \).

After these preliminary reductions, we can proceed with the proof of (4.2). First, we find a large number of sets \(\Pi_j^\delta \) so that the measure of their intersection with \(E \) is concentrated in annuli of fixed dimensions. More
precisely, we claim that there exist a number \(\rho \geq \gamma \) and a set \(C \subset \{ \Pi_j \}_{j=1}^M \) with
\[
|C| \gtrsim (\log(C/\gamma)^{-2}M,
\]
so that for each \(\Pi_j^\rho \in C \) there is a set \(P_j \subset \Pi_j^\rho \) of measure
\[
|P_j| \gtrsim (\log(C/\gamma))^{-2} \lambda |\Pi_j^\rho|,
\]
such that for each \(z \in P_j \)
\[
|\Pi_j^\rho \cap E \cap B(z, 2\rho) \cap (T_e^{(4r)(\gamma^2/r)}(z))C| \gtrsim \lambda |\Pi_j^\rho|,
\]
for all \(e \in S^{n-1}, \gamma \leq r \leq 1, \) and
\[
|\Pi_j^\rho \cap E \cap A(z, \rho)| \gtrsim (\log(C/\gamma))^{-1} \lambda |\Pi_j^\rho|.
\]
To see this, note that for all \(z \in \mathbb{R}^n, e \in S^{n-1} \) and \(r > 0 \) with \(\gamma \leq r \leq 1 \) we have
\[
\left| \Pi_j^\rho \cap E \cap (T_e^{(4r)(\gamma^2/r)}(z))C \right|
\]
\[
\geq \frac{3}{4} \lambda |\Pi_j^\rho| \geq C \lambda |\Pi_j^\rho|
\]
for \(\delta_0 \) small enough.
Now, for each \(1 \leq j \leq M, z \in \Pi_j^\rho \cap E, i \in \mathbb{N}, \) consider the quantity
\[
Q(j, z, i) = \inf_{r, \gamma \leq r \leq 1} \left| \Pi_j^\rho \cap E \cap B(z, 2^i) \cap (T_e^{(4r)(\gamma^2/r)}(z))C \right|.
\]
Then
\[
Q(j, z, 0) \leq C \gamma^2 \delta_0 \delta_0 \leq C \lambda (\log(1/\delta))^{-1} \delta_0 \leq \frac{\lambda}{10} |\Pi_j^\rho|
\]
provided that \(\delta_0 \) has been chosen small enough. On the other hand
\[
Q(j, z, \log(C/\gamma)) \geq \frac{\lambda}{2} |\Pi_j^\rho|
\]
Therefore, there exists \(i_{jz} \) with \(1 \leq i_{jz} \leq \log(C/\gamma) \), such that
\[
Q(j, z, i_{jz}) \geq \frac{\lambda}{4} |\Pi_j^\rho|, \quad \text{and} \quad Q(j, z, i_{jz} - 1) < \frac{\lambda}{4} |\Pi_j^\rho|
\]
Since there are at most \(\log(C/\gamma) \) possible \(i_{jz} \), there is an \(i_j \) and a set \(P_j^\prime \subset \Pi_j^\rho \cap E \) of measure
\[
|P_j^\prime| \gtrsim (\log(C/\gamma))^{-1} \lambda |\Pi_j^\rho|
\]
such that for each \(z \in P_j^\prime \)
\[
Q(j, z, i_j) \geq \frac{\lambda}{4} |\Pi_j^\rho|, \quad \text{and} \quad Q(j, z, i_j - 1) < \frac{\lambda}{4} |\Pi_j^\rho|
\]
Since there are M sets Π_j^ε and at most $\log(C/\gamma)$ possible i_j, there is an i_0 and a subset $C' \subseteq \{\Pi_j^\varepsilon\}_{j=1}^M$ such that

$$|C'| \geq (\log(C/\gamma))^{-1} M,$$

and for each $\Pi_j^\varepsilon \in C'$ and each $z \in \Pi_j^\varepsilon$

$$|\Pi_j^\varepsilon \cap E \cap B(z, \gamma 2^{i_0}) \cap (T_{e^{(4r)}}(\gamma^2/r)^{(z)})^C| \geq \frac{\lambda}{4} |\Pi_j^\varepsilon|,$$

for all $e \in S^{n-1}$, $\gamma \leq r \leq 1$, and

$$|\Pi_j^\varepsilon \cap E \cap B(z, \gamma 2^{i_0-1}) \cap (T_{e^{(4r)}}(\gamma^2/r)^{(z)})^C| < \frac{\lambda}{4} |\Pi_j^\varepsilon|,$$

for some $e_{jz} \in S^{n-1}$, $\gamma \leq r_{jz} \leq 1$. It follows that

$$\frac{\lambda}{4} |\Pi_j^\varepsilon| \leq |\Pi_j^\varepsilon \cap E \cap (T_{e^{(4r)}}(\gamma^2/r)^{(z)})^C|$$

$$- |\Pi_j^\varepsilon \cap E \cap B(z, \gamma 2^{i_0-1}) \cap (T_{e^{(4r)}}(\gamma^2/r)^{(z)})^C|$$

$$= |\Pi_j^\varepsilon \cap E \cap (B(z, \gamma 2^{i_0-1}))^C \cap (T_{e^{(4r)}}(\gamma^2/r)^{(z)})^C|$$

$$\leq |\Pi_j^\varepsilon \cap E \cap (B(z, \gamma 2^{i_0-1}))^C|$$

$$= \sum_{k=0}^{|\log(C/\gamma)|} |\Pi_j^\varepsilon \cap E \cap A(z, \gamma 2^{i_0+k-1})|.$$

Therefore, there is a k_{jz} such that

$$|\Pi_j^\varepsilon \cap E \cap A(z, \gamma 2^{i_0+k_{jz}-1})| \geq (\log(C/\gamma))^{-1} \lambda |\Pi_j^\varepsilon|.$$

Repeatedly using the pigeonhole principle as before, we conclude that there is a number $\rho = \gamma 2^{i_0+k_{jz}-1}$ and a set $C \subseteq C'$ with

$$|C| \geq (\log(C/\gamma))^{-2} M,$$

so that for each $\Pi_j^\varepsilon \in C$, there is a subset $P_j \subset P_j^\varepsilon$ of measure

$$|P_j| \geq (\log(C/\gamma))^{-2} \lambda |\Pi_j^\varepsilon|$$

such that for each $z \in P_j$

$$|\Pi_j^\varepsilon \cap E \cap B(z, \gamma 2\rho) \cap (T_{e^{(4r)}}(\gamma^2/r)^{(z)})^C| \geq \lambda |\Pi_j^\varepsilon|,$$

for all $e \in S^{n-1}$, $\gamma \leq r \leq 1$, and

$$|\Pi_j^\varepsilon \cap E \cap A(z, \rho)| \geq (\log(C/\gamma))^{-1} \lambda |\Pi_j^\varepsilon|,$$

proving the claim.

This construction will allow us to carry out a “high-low multiplicity segment” argument as follows. We fix a number N and consider two cases.

CASE I. $\forall a \in \mathbb{R}^n \ |\{j : a \in P_j\}| \leq N$.

CASE II. $\exists a \in \mathbb{R}^n \ |\{j : a \in P_j\}| \geq N$.

8
In case I we have
\[|E| \geq \left| \bigcup_{j \in \Pi_j \subseteq C} P_j \right| \geq \frac{1}{N} \sum_{j \in \Pi_j \subseteq C} |P_j| \]
\[\geq \frac{1}{N} |C| (\log(C/\gamma))^{-2} \lambda \delta^{n-2} \]
\[\geq \frac{M}{N} (\log(C/\gamma))^{-4} \lambda \delta^{n-2}, \quad (4.8)\]
where we have used (4.4) and (4.5).

In case II, we fix a number \(\mu\) and consider two subcases.

(II) \(1\). \(\forall b \in A(a, \rho) \ || \{j : a \in P_j, b \in \Pi_j^b\} \| \leq \mu. \)

(II) \(2\). \(\exists b \in A(a, \rho) \ || \{j : a \in P_j, b \in \Pi_j^b\} \| \geq \mu \) (see Figure 1).

In subcase (II) \(1\) we have
\[|E| \geq \left| \bigcup_{j \in \Pi_j} \Pi_j^b \cap E \cap A(a, \rho) \right| \]
\[\geq \frac{1}{\mu} \sum_{j \in \Pi_j} |\Pi_j^b \cap E \cap A(a, \rho)| \]
\[\geq \frac{N}{\mu} (\log(C/\gamma))^{-1} \lambda \delta^{n-2}, \quad (4.9)\]
where the last inequality follows from (4.7).

In subcase (II) \(2\) let \(B\) be a maximal \(C_1 \rho \delta/\gamma^2\)-separated subset of \(\{\Pi_j : a \in P_j, b \in \Pi_j^b\}\). Then for \(C_1\) large enough, \(C_1 \rho \delta/\gamma^2 \geq C \delta/\rho\). Therefore by
Lemma 3.1

\[|B| \geq \mu \gamma^{2(n-2)}. \]

Note that if \(\Pi_j, \Pi_k \in B \) then by Lemma 3.2

\[\Pi_j^\delta \cap \Pi_k^\delta \cap B(a, 2\rho) \subset T_{e^{(4\rho)(4\gamma^2/\rho)}}(a) \cap T_{e^{(4\rho)(\gamma^2/\rho)}}(a), \]

where \(e = (a - b)/|a - b| \), provided that \(C_1 \) has been chosen large enough.

Therefore the family

\[\left\{ \Pi_j^\delta \cap E \cap B(a, 2\rho) \cap (T_{e^{(4\rho)(\gamma^2/\rho)}}(a))^\complement : \Pi_j \in B \right\} \]

is disjoint. Consequently

\[|E| \geq \sum_{j: \Pi_j \in B} \left| \Pi_j^\delta \cap E \cap B(a, 2\rho) \cap (T_{e^{(4\rho)(\gamma^2/\rho)}}(a))^\complement \right| \]

\[\geq |B| \lambda \delta^{n-2} \]

\[\geq \gamma^{2(n-2)} \mu \lambda \delta^{n-2}, \quad (4.10) \]

where we have used (4.6). So, in case II we see that choosing

\[\mu = N^{1/2} (\log(C/\gamma))^{-1/2} \gamma^{-(n-2)}, \]

(4.9) and (4.10) imply that

\[|E| \geq (\log(C/\gamma))^{-1/2} \gamma^{-n} \lambda N^{1/2} \delta^{n-2}. \quad (4.11) \]

Choosing

\[N = M^{2/3} (\log(C/\gamma))^{-7/3} \gamma^{-2(n-2)/3}, \]

(4.8) and (4.11) yield

\[|E| \geq (\log(C/\gamma))^{-5/3} \gamma^{2(n-2)/3} \lambda M^{1/3} \delta^{n-2} \]

\[= \left(\frac{C}{\lambda^{1/2} (\log(1/\delta))^{-1/2}} \right)^{-5/3} \left(\lambda^{1/2} (\log(1/\delta))^{-1/2} \right)^{2(n-2)/3} \lambda M^{1/3} \delta^{n-2} \]

\[\geq C^{-1} \delta^\epsilon \lambda^{(n+1)/3} M^{1/3} \delta^{n-2}, \]

which is (4.2). The proof is complete.

REFERENCES