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Abstract. We study the visible parts of subsets of n-dimensional Euclidean space:

a point a of a compact set A is visible from an affine subspace K of R
n, if the

line segment joining PK(a) to a only intersects A at a (here PK denotes orthogonal

projection onto K). The set of all such points visible from a given subspace K is

called the visible part of A from K.

We prove that if the Hausdorff dimension of a compact set is at most n− 1, then

the Hausdorff dimension of a visible part is almost surely equal to the Hausdorff

dimension of the set. On the other hand, provided that the set has Hausdorff dimen-

sion larger than n − 1, we have the almost sure lower bound n − 1 for the Hausdorff

dimensions of visible parts.

We also investigate some examples of planar sets with Hausdorff dimension bigger

than 1. In particular, we prove that for quasi-circles in the plane all visible parts

have Hausdorff dimension equal to 1.

1. Introduction

The visible part of a set A from an affine subspace of R
n consists of those points

of A that one can see from the subspace when looking perpendicularly away from
it (for the exact definition, see Definition 2.1). In particular, in the extreme case
when the affine subspace is just a point, the visible part consists of those points of
the set that one sees when turning around at that point. This is similar to what
we see when looking at stars whilst standing on the earth.

Visibility has been used in convex analysis for the study of star-like sets (see for
example [B], [Ce], and [F]). There one is interested in the dimension of the visibility
kernel, that is, the size of the set of points from which all the points of a given set
can be seen. It has also been studied in the context of lattices (see for example
[AC]). There is also a measure-theoretic definition for visibility (see [Cs]).
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The paper is organized as follows. In Section 2, we introduce some basic notation
and describe a general projection theorem of Peres and Schlag (Theorem 2.6) which
is our tool for studying small sets. In Section 3, we use it to prove that if a set
has Hausdorff dimension no bigger than n−1, then the Hausdorff dimensions of its
visible parts are almost surely equal to the Hausdorff dimension of the original set
(Theorem 3.1). For sets that have dimension strictly greater than n − 1, we show
that the visible parts are almost surely at least n−1 dimensional (Proposition 3.2).
For such sets the visible parts have almost surely zero measure for any measure
which has dimension greater than n − 1 and which gives positive measure to the
original set (Proposition 3.3). In the last section, we investigate some examples
of plane sets with dimension bigger than n − 1. In particular, we show that the
visible parts of a quasi-circle are always one-dimensional (Proposition 4.4). Finally,
we observe that if there exists an almost sure value for the dimension of the visible
parts for all sets with dimension larger than n − 1, then this value must be equal
to n − 1 (Remark 4.2).

Our interest in the subject is partially motivated by a problem from cosmol-
ogy: namely the basic assumption in cosmological models of the homogeneity and
isotropy of galaxy distribution. This is usually interpreted as saying that the (spa-
tial) dimension of galaxy distribution is three. To justify this assumption, one would
like to measure the dimension of the Universe (see for example [D] and [PMS]). The
aim of this paper is to find out whether one can conclude something about the di-
mension of a set only using information obtained via direct measurements from a
given point or plane. This corresponds to the fact that our measurements are taken
from a single base point; our solar system.

Our results suggest that if the dimension of the Universe is less than 2, then
direct measurement from the earth should give the correct answer. However, if the
dimension of the universe is larger than 2 and the examples in Section 4 correctly
indicate the general behaviour of sets with dimension larger than 2, then it is
impossible to measure the dimension of the Universe using only direct methods.
And if, instead, our examples do not illustrate the general behaviour of sets, then
Remark 4.2 suggests that direct measurements can only ever give lower bounds for
dimension and it will be impossible to decide whether this lower bound is a good
approximation or not (unless it is equal to 3).

2. Preliminaries and notation

We start this section by giving the definition of the visible part of a set from an
affine plane and by making some basic observations that we will need later.

Let 0 ≤ k ≤ n− 1 be integers. We use the notations A(n, k) and G(n, k) for the
space of affine k-dimensional subspaces of R

n and for the Grassmann manifold of
linear k-dimensional subspaces of R

n, respectively. By a 0-plane we mean a point.
For V ∈ G(n, k), let V ⊥ ∈ G(n, n− k) be the orthogonal complement of V , and let
PV : R

n → V be the orthogonal projection onto V .
Let K, L ∈ A(n, k). Using the unique representations K = V +a and L = W +b

where V , W ∈ G(n, k), a ∈ V ⊥, and b ∈ W⊥, we metricize A(n, k) as follows:

d(K, L) = ‖PV −PW ‖ + |a − b|.

The standard Radon measures on G(n, k) and A(n, k) are denoted by γn,k and
Γn,k, respectively (see [Mat 3.9]). For all Borel sets A ⊂ A(n, k) we have [Mat,
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3.16]

Γn,k(A) =
∫

Hn−k({a ∈ V ⊥ | V + a ∈ A} dγn,k(V )

where Hn−k is the n−k-dimensional Hausdorff measure (for the definition see [Mat,
4.3]). Since A(n, k) is a countable union of sets with finite Γn,k-measure, after a
suitable restriction we may assume that Γn,k is a finite Radon measure.

2.1. Definition. Let 0 ≤ k ≤ n − 1 be integers. Let A ⊂ R
n be compact and let

K ∈ A(n, k) with A ∩ K = ∅. The visible part of A from the affine subspace K is

VK(A) = {x ∈ A | [PK(x), x] ∩ A = {x}}

where PK(x) is the closest point to x on K (meaning that PK(x) = PV (x) + a is
the projection of x to the affine plane K = V + a, where V ∈ G(n, k) and a ∈ V ⊥)
and [x, y] is the line segment between x and y.

2.2. Remarks. (a) For any compact set A ⊂ R
n and for any affine subspace

K ∈ A(n, k) with A ∩ K = ∅, the visible part VK(A) is a Borel set as the graph of
a lower semi-continuous function.

(b) In Section 4 Definition 2.1 will be used for subsets of affine subspaces in the
following sense: Let A ⊂ R

n be compact, K ∈ A(n, k), and S ⊂ K. The visible
part of A from S is

VS(A) = {x ∈ A | PK(x) ∈ S and [PK(x), x] ∩ A = {x}}.

It is possible to extend the definition of visibility so that it makes sense for all
affine subspaces including those that intersect A, namely by defining

VK(A) = (A ∩ K) ∪ {x ∈ A | [PK(x), x] ∩ (A \ K) = {x}}.

For simplicity of the exposition, we shall assume throughout that A ∩ K = ∅.
For the purpose of adapting the general formulation of the projection theorem

due to Peres and Schlag [PS], we recall the following notation from [PS].

2.3. Definition. Let (X, d) be a compact metric space, Q ⊂ R
n an open connected

set, and Π : Q × X → R
m a continuous map with n ≥ m. For any multi-index

η = (η1, . . . , ηn) ∈ N
n, let |η| =

∑n
i=1 ηi denote its length, and

∂η =
∂|η|

(∂λ1)η1 . . . (∂λn)ηn

where λ = (λ1, . . . , λn) ∈ Q. Let L be a positive integer and δ ∈ [0, 1). We say that
Π ∈ CL,δ(Q) if for any compact set Q′ ⊂ Q and for any multi-index η with |η| ≤ L
there exist constants Cη,Q′ and Cδ,Q′ such that

|∂ηΠ(λ, x)| ≤ Cη,Q′ and sup
|η′|=L

|∂η′
Π(λ, x) − ∂η′

Π(λ′, x)| ≤ Cδ,Q′ |λ − λ′|δ

for all λ, λ′ ∈ Q′ and x ∈ X.

We continue by defining a subclass of CL,δ(Q) consisting of regular functions on
a region of transversality of certain order.
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2.4. Definition. Let Π ∈ CL,δ(Q) for some L and δ. Define for all x �= y ∈ X

Φx,y(λ) =
Π(λ, x) − Π(λ, y)

d(x, y)
.

Let β ∈ [0, 1). The set Q is a region of transversality of order β for Π if there
exists a constant Cβ such that for all λ ∈ Q and for all x �= y ∈ X the condition
|Φx,y(λ)| ≤ Cβd(x, y)β implies

det(DΦx,y(λ)(DΦx,y(λ))T ) ≥ C2
βd(x, y)2β .

Here the derivative with respect to λ is denoted by D and AT is the transpose of a
matrix A. Further, Π is (L, δ)-regular on Q if there exists a constant Cβ,L,δ and
for all multi-indices η with |η| ≤ L there exists a constant Cβ,η such that, for all
λ, λ′ ∈ Q and for all distinct x, y ∈ X,

|∂ηΦx,y(λ)| ≤ Cβ,ηd(x, y)−β|η|

and
sup

|η′|=L

|∂η′
Φx,y(λ) − ∂η′

Φx,y(λ′)| ≤ Cβ,L,δ|λ − λ′|δd(x, y)−β(L+δ).

After defining Sobolev norms and Sobolev dimension of a measure we are ready
to state the result from [PS] that we will need in Section 3.

2.5. Definition. Let µ be a finite, compactly supported Borel measure on X and
α ∈ R. The α-energy of µ is

Eα(µ) =
∫

X

∫
X

d(x, y)−αdµ(x)dµ(y).

In the case X = R
m we define the Sobolev norm ‖ · ‖2,γ for γ ≥ 0 by

‖µ‖2
2,γ =

∫
Rm

|µ̂(ξ)|2|ξ|2γdHm(ξ)

where

µ̂(ξ) =
∫

Rm

e−iξ·xdµ(x)

is the Fourier transform of µ. The Sobolev dimension of µ is

dimS(µ) = sup{α ∈ R |
∫

Rm

|µ̂(ξ)|2(1 + |ξ|)α−mdHm(ξ) < ∞}.

The following theorem from [PS] gives a relation between energies of a given
measure and Sobolev-norms of image measures under CL,δ(Q)-mappings. We use
the notation f∗µ for the image of a measure µ under a map f : X → Y , that is,
f∗µ(A) = µ(f−1(A)) for all A ⊂ Y .
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2.6. Theorem. Assume that Q ⊂ R
n and Π ∈ CL,δ(Q) such that L + δ > 1. Let

β ∈ [0, 1). Assume that Q is a region of transversality of order β for Π and that Π
is (L, δ)-regular on Q. Let µ be a finite Borel measure on X such that Eα(µ) < ∞
for some α > 0. Then there exists a constant a0 depending only on m, n, and δ
such that for any compact Q′ ⊂ Q

(2.1)
∫

Q′
‖(Πλ)∗µ‖2

2,γdHn(λ) ≤ CγEα(µ)

for some constant Cγ provided that 0 < (m+2γ)(1+ a0β) ≤ α and 2γ < L+ δ− 1.
Moreover, for any σ ∈ (0,min{α, m}] we have

(2.2) dimH{λ ∈ Q | dimS((Πλ)∗µ) ≤ σ} ≤ n + σ − min{ α

1 + a0β
, L + δ}.

Here the Hausdorff dimension is denoted by dimH (for the definition see [Mat, 4.8])
and Πλ = Π(λ, ·).
Proof. See [PS, Theorem 7.3]. �

3. Visible parts and general projection formalism

We begin this section by considering visible parts of compact sets in R
n with

Hausdorff dimension at most n−1. According to the following theorem, from typical
affine subspaces visible parts have in this case the same Hausdorff dimension as the
set itself.

3.1. Theorem. Let 0 ≤ k ≤ n − 1. Assume that A ⊂ R
n is a compact set with

dimH(A) ≤ n − 1. Then

dimH(VK(A)) = dimH(A)

for Γn,k-almost all K ∈ A(n, k) not intersecting A.

Proof. Since for all r > 0 we have VW+ra(rA) = r(VW+a(A)) for all W ∈ G(n, k)
and a ∈ W⊥ with A ∩ (W + a) = ∅ and since Hausdorff dimension is preserved
under homotheties and translations, we may assume that A ⊂ B(0, 1

2 ).
For all δ > 0 and K ∈ A(n, k), define

A(δ) = {x ∈ R
n | dist(x, A) < δ}

and
Sδ(K) = {x ∈ R

n | dist(x, K) = δ}.
Here the distance of a point x ∈ R

n from a set B ⊂ R
n is denoted by dist(x, B).

Fix 0 < c < 1
2 . Let K̃ ∈ A(n, k) such that dist(K̃, A) ≥ 3c. Clearly it is sufficient

to prove the claim for Γn,k-almost all K ∈ Nc(K̃) where

Nc(K̃) = {K ∈ A(n, k) | d(K, K̃) < c}.

For this purpose, we construct for all K ∈ Nc(K̃) a map g(K, ·) : A( c
10 ) → Sc(K)

such that

(3.1) g(K, A) = g(K, VK(A))
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for all K ∈ Nc(K̃), and furthermore,

(3.2) dimH(g(K, A)) = dimH A

for Γn,k-almost all K ∈ Nc(K̃).
For all K ∈ Nc(K̃) and x ∈ A( c

10 ) define

g(K, x) = y where {y} = [PK(x), x] ∩ Sc(K).

Now g is a well-defined Lipschitz function since dist(K, A) ≥ 2c for all K ∈ Nc(K̃).
Moreover, property (3.1) follows directly from the definition.

For the purpose of proving (3.2), we may assume that diam(A) < c
10 where

the diameter of the set A is denoted by diam(A). To adapt Theorem 2.6 involves
technical arguments using the mapping Π = f ◦g : Nc(K̃)×A( c

10 ) → R
n−1 where f

(which depends smoothly on K) is a smooth diffeomorphism from a neighbourhood
of g(K, A( c

10 )) on Sc(K) to R
n−1. Note that f is well-defined since diam(A) < c

10 .
After having proved that for Γn,k-almost all K ∈ Nc(K̃) we have

(3.3) dimH(Π(K, A)) = dimH(A),

equality (3.2) follows since f preserves Hausdorff dimension.
To verify (3.3) we first show that the function Π satisfies the assumptions of

Theorem 2.6 with L = ∞ and β = 0. Indeed, the smoothness assumptions are
clear. Note that δ plays no role in the case L = ∞. What is left is to show that Π
satisfies the following transversality condition: there exists ε > 0 such that for all
K ∈ Nc(K̃) and y �= z ∈ A( c

10 )

(3.4) |Φy,z(K)| ≤ ε =⇒ det(DΦy,z(K)(DΦy,z(K))T ) ≥ ε2,

where

Φy,z(K) =
Π(K, y) − Π(K, z)

d(y, z)
.

Taking ε > 0 sufficiently small, we may assume that the piece of Sc(K) we are
considering is almost flat, that is, the difference between the projection to the
cylinder and to a hyper-plane is negligible. Including this error in the term O(ε2)
below, we conclude that it is sufficient to study the orthogonal projection to a
hyper-plane. Given two points y, z ∈ R

n, the problem reduces to the study of the
projection of x = (0, . . . , 0, xn) to hyperplanes close to the orthogonal complement
of (0, . . . , 0, 1), since projection is linear. Here xn = d(y, z). We parametrize the

hyper-planes by their orthogonal complements ε = (ε1, . . . , εn−1,
√

1 −
∑n−1

i=1 ε2
i )

where |ε1|, . . . , |εn−1| < ε for some small ε. Thus

Φy,z(ε) = −(ε1, . . . , εn−1) + O(ε2)

giving
det(DΦy,z(ε)DΦy,z(ε)T ) = 1 + O(ε).

This completes the proof of (3.4).
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Now assume that dimH(A) = s ≤ n− 1. Let α < s. By Frostman’s lemma [Mat,
Theorem 8.8] there is a Radon measure µ on A with Eα(µ) < ∞. According to
(2.2) we have for Γn,k-almost all K ∈ Nc(K̃)

dimS((ΠK)∗µ) ≥ α

where ΠK = Π(K, ·). (Note that Γn,k is a uniformly distributed Radon measure,
and hence it is a constant multiple of the d-dimensional Hausdorff measure for
d = dimA(n, k).) Observing that for any compactly supported Radon measure ν
on R

m and β < m there exist constants C and D such that

Eβ(ν) = C

∫
Rm

|ν̂(ξ)|2|ξ|β−mdHm(ξ) ≤ D

∫
Rm

|ν̂(ξ)|2(1 + |ξ|)β−mdHm(ξ)

(for the equality see [Mat, Lemma 12.12]), [Mat, Theorem 8.9] implies that

dimH(Π(K, A)) ≥ α

for Γn,k-almost all K ∈ Nc(K̃). Taking an increasing sequence αi → s we conclude
that (3.3) holds since Π cannot increase the dimension.

To complete the proof, (3.1) and the fact that the map g(K, ·) does not increase
dimension give

(3.5) dimH(g(K, A)) ≤ dimH(VK(A)) ≤ dimH(A).

This implies the claim by (3.2). �
The same method gives the almost sure lower bound n − 1 for visible parts of

compact sets in R
n having Hausdorff dimension greater than n − 1.

3.2. Proposition. Let A ⊂ R
n be compact with dimH(A) > n− 1 and let 0 ≤ k ≤

n − 1. Then
dimH(VK(A)) ≥ n − 1

for Γn,k-almost all K ∈ A(n, k) not intersecting A.

Proof. We proceed as in the proof of Theorem 3.1; the only difference being that
under the assumption dimH(A) > n − 1 we have

(3.6) dimH(g(K, A)) = n − 1

for Γn,k-almost all K ∈ Nc(K̃). Indeed, Frostman’s lemma and (2.1) imply that
(ΠK)∗µ is absolutely continuous with respect to the (n− 1)-dimensional Hausdorff
measure for Γn,k-almost all K ∈ Nc(K̃), and has therefore Hausdorff dimension
equal to n − 1. This in turn gives (3.6) since dimH(Π(K, A)) = dimH(g(K, A)) for
all K ∈ Nc(K̃). Finally, the claim follows from the first inequality in (3.5). �

We continue studying visible parts of compact sets in R
n having Hausdorff di-

mension greater than n − 1. Given such a set A, there is a compactly supported
Radon measure µ on A with 0 < µ(A) < ∞ and dimH(µ) > n − 1 [Cu, Theorem
1.5]. Recall that

dimH(µ) = µ- ess inf
x∈Rn

lim inf
r→0

log µ(B(x, r))
log r

where B(x, r) is the closed ball with radius r centred at x. In a forthcoming paper
[JJN] we will prove the following proposition. According to it, the visible parts of
A are almost surely smaller than the set A itself, that is, almost all visible parts
have µ-measure zero. The proof is based on an extension of the results of [JM]
concerning dimensional properties of sliced measures.
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3.3. Proposition. Assume that A ⊂ R
n is a compact set and µ is a Radon

measure with compact support such that µ(A) > 0 and dimH(µ) > n − 1. Then
µ(VK(A)) = 0 for Γn,k-almost all K ∈ A(n, k) where 0 ≤ k < n.

3.4. Remark. A consequence of Proposition 3.3 is that any attempt to construct
a measure with Hausdorff dimension greater than n − 1, giving non-trivial values
for positively many visible parts, fails. More precisely, let D ⊂ A(n, n − 1) with
Γn,n−1(D) > 0, A ⊂ R

n be a compact set, and B = ∪K∈DVK(A). Proposition 3.3
implies that for any compactly supported Radon measure µ with µ(B) > 0 we have
either dimH(µ) ≤ n − 1 or µ(VK(A)) = 0 for Γn,n−1-almost all K ∈ D.

4. Examples: Quasi-circles and Cantor sets

In this section we concentrate on plane sets and visible parts from affine lines.
We begin by constructing a set for which the Hausdorff dimension of the visible
part from countably many lines has any value between 1 and 2. The construction
is based on the following example.

4.1. Example. Let A ⊂ R
2 be the attractor of the iterated function system fi :

[0, 1] × [0, 1] → [0, 1] × [0, 1], i = 1, 2, 3, 4, where f1(x, y) = (x/4, y/2), f2(x, y) =
(x/4+1/4, y/2+1/2), f3(x, y) = (x/4+1/2, y/2), and f4(x, y) = (x/4+3/4, y/2+
1/2). Then dimH(VL(A)) = 3/2 for the affine line L = {(t,−1) | t ∈ R} ∈ A(2, 1).

Proof. Noting that any vertical line not having quadratic rational x-coordinate
intersects the set A in at most one point, we obtain

dimH(VL(A)) = dimH(A).
Since at the nth level of the construction there are 4n rectangles of width 4−n and
of height 2−n one needs 4n2−n/4−n squares of side length 4−n to cover the set A.
Thus dimH(VL(A)) = dimH(A) = 3/2. �

One can easily modify the above construction to obtain an example where the
visible part from a fixed affine line has any dimension between 1 and 2. For fixed
1 ≤ s ≤ 2 this in turn can be modified to show the existence of a compact set
A ⊂ R

2 with dimH(A) = s such that the Hausdorff dimensions of the visible parts
from countably many (even dense set of) lines are equal to dimH(A).

In [DF] Davies and Fast constructed a compact set A ⊂ R
n such that its Haus-

dorff dimension equals n and the set of directions of lines which intersect A at most
at one point is a dense Gδ-set. Clearly this set has the property that the visible
parts from uncountably many hyperplanes have Hausdorff dimension n. The ques-
tion whether there can be positively many planes (or lines in the plane) with this
property remains open. We do not know the affirmative answer but we give some
examples which all support the negative answer.

4.2. Remark. Note that n − 1 is the only possible constant value for Hausdorff
dimensions of visible sets of large sets. More precisely, let 0 ≤ k ≤ n − 1. If for
all compact sets A ⊂ R

n with dimH(A) > n − 1 there exists c = c(A, k) such that
dimH(VK(A)) = c(A, k) for Γn,k-almost all K ∈ A(n, k), then c(A, k) = n − 1.

Proof. Assume to the contrary that c(A, k) > n − 1 for some k and A ⊂ R
n. Let

B be the union of A and a piece of a suitable hyper-plane disjoint from A. Then
dimH(B) > n − 1. Moreover, there are E, F ⊂ A(n, k) with Γn,k(E) > 0 and
Γn,k(F ) > 0 such that dimH(VK(A)) = c(A, k) for all K ∈ E and dimH(VK(A)) =
n − 1 for all K ∈ F . This leads to a contradiction. �
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4.3. Example. Let A be the graph of a continuous function f : [0, 1] → [0, 1].
Then dimH(VL(A)) = 1 for all affine lines L which do not intersect A with the
possible exception of one direction.

Proof. This follows easily from the fact that at every point of VL(A) the open
cone determined by the line perpendicular to L and the line parallel to y-axis is
in the complement of VL(A). According to [Mat, Lemma 15.13] the set VL(A) is
1-rectifiable. �

Note that unlike the previous example, visible parts are not necessarily rectifi-
able. For example, the von Koch curve is a purely 1-unrectifiable set having purely
1-unrectifiable visible parts. The following proposition implies that all of its visible
parts have Hausdorff dimension 1. In fact, Proposition 4.4 gives a stronger conclu-
sion according to which all visible parts of any quasi-circle have upper box counting
dimension 1. We say that A ⊂ R

2 is a quasi-circle of distortion M ≥ 1 if A is a
homeomorphic image of the unit circle into the plane such that for all x, y ∈ A with
d(x, y) < M−1 diam(A), we can join x to y by a (necessarily unique) sub-arc

arc(x, y) ⊂ A ∩ B(x, Md(x, y)).

Recall that the upper box counting dimension, dimB, is defined as follows

dimB(A) = lim sup
r→0

log P (A, r)
− log r

where P (A, r) is the greatest number of disjoint r-balls with centres in A (see [Mat,
5.3]).

4.4. Proposition. Let A ⊂ R
2 be a quasi-circle of distortion M ≥ 1. Then

dimB(VL(A)) = 1 for all affine lines L not meeting A.

Proof. Since A is a quasi-circle, we easily deduce that dimB(VL(A)) ≥ 1 for all
affine lines L not meeting A. Without loss of generality we may assume that L
is the x-axis, A lies in the upper half-plane, and that A projects vertically onto
[−1, 1]. We let Px and Py denote the orthogonal projection onto the x- and y-axis,
respectively.

Given 0 < r < min{1,diam(A)/(2M)}, we will show that if z1, . . . , zN ∈ VL(A)
with

(4.1) d(zi, zj) > r for i �= j

then

(4.2) N ≤ −c log r

r

where c is a constant depending on M . This immediately implies the theorem.
From now on we fix 0 < r < min{1,diam(A)/(2M)} and points z1, . . . , zN ∈

VL(A) satisfying (4.1). We make a series of observations which will ultimately let
us count how many points zj there can be.
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4.5. Observation. Suppose that z, w ∈ VL(A). Then for u ∈ VL(A) ∩ arc(z, w)
such that Px(u) is between Px(z) and Px(w), we find

min{Py(z),Py(w)} − Py(u) ≤ M |Px(z) − Px(w)|.

Proof. Without loss of generality we may assume that Py(u) ≤ Py(z) ≤ Py(w).
Since z, w ∈ VL(A) the arc arc(u, w) cannot intersect the vertical lines x = Px(z)
and x = Px(w) below Py(z) and Py(w), respectively. Thus there exists v ∈ arc(u, w)
with Py(v) = Py(z) and |Px(v)−Px(z)| ≤ |Px(z)−Px(w)|. This implies the claim,
since u ∈ arc(z, v) ⊂ B(v, M |Px(v) − Px(z)|). �

To each zj we associate the closed vertical half-line Hj consisting of a half-
line descending vertically downwards from zj together with a ‘head’ of height r/2
extending vertically upwards from zj . Set

H =
N⋃

j=1

Hj and G = H ∪ {x = −2} ∪ {x = 2}.

The extra lines are introduced for technical convenience only. Define Ij to be the
closed horizontal line segment in the plane whose endpoints lie in G and for which

(4.3) G ∩ Int(Ij) = {zj},

where Int(Ij) is the open horizontal line segment obtained from Ij by removing its
endpoints. Clearly diam(Ij) ≤ 4 for all j. (This is the reason why we added the
lines x = −2 and x = 2 to G.)

4.6. Observation. For all j = 1, . . . , N ,

diam(Ij) ≥
r

2M
.

Proof. Suppose, instead, that there is a j for which diam(Ij) < r/(2M). Then the
endpoints of Ij must both lie in H and for i �= j zi �∈ B(zj , r) by (4.1). Thus the
endpoints of Ij must belong to Hm, Hn ∈ H, say, where both zm and zn lie above
zj , and where, without loss of generality, we may assume that Py(zm) ≤ Py(zn).
By our assumption on the length of Ij

|Px(zm) − Px(zn)| <
r

2M

and so

|Py(zm) − Py(zj)| ≥ r(1 − 1/(4M2))1/2 > r/2 ≥ M |Px(zm) − Px(zn)|

contradicting Observation 4.5. �
We define Rj to be the open rectangle whose top edge is Int(Ij) and whose height

is r/2. Notice that for i �= j, zi �∈ Rj . We also let Sj be the open half-strip whose
top edge is also Int(Ij). Notice that

(4.4) if zi ∈ Sj then Ri ∩ Rj = ∅.

Finally, we let hj = Py(Ij), the height of Ij above the x-axis, and Pj = Px(Int(Ij)),
the projection of Int(Ij) onto the x-axis.
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4.7. Observation. If i �= j and hi ≤ hj then either
(a) Hi contains an endpoint of Ij,
(b) Si ⊂ Sj, or
(c) Si ∩ Sj = ∅.
Proof. We denote the closure of a set B by B and its boundary by ∂B. If zi �∈ Sj

then Si ∩Sj = ∅. If zi ∈ Sj then Si ⊂ Sj . And if zi ∈ ∂Sj then zi �∈ Int(Ij). Hence
zi is in one of the vertical edges of Sj and thus Hi contains an endpoint of Ij . �

We note that at most two of the half-lines Hi can satisfy (a) for a given j.

4.8. Observation. We have
N∑

j=1

1Rj ≤ 2,

where the characteristic function of a set B is denoted by 1B.

Proof. Without loss of generality suppose that z ∈ R1 ∩ R2 ∩ R3 and that h1 ≥
max{h2, h3}. As z ∈ R1 ∩R2 ⊂ S1 ∩ S2, we conclude that S1 ∩ S2 �= ∅. If S2 ⊂ S1,
then z2 ∈ S1 and thus, by (4.4), R1 ∩ R2 = ∅ which is impossible. Hence, by
Observation 4.7, H2 contains an endpoint of I1. Similarly, H3 contains an endpoint
of I1. We may assume that H2 contains the left endpoint and H3 the right one. But
then I2 lies to the left of H1 and I3 to the right of H1 which implies R2 ∩ R3 = ∅
leading to a contradiction. �

We set for all integers k

(4.5) Ik = {Ij | 1
28−k < diam(Ij) ≤ 1

281−k}.

Then I0 contains those intervals with endpoints on the lines x = ±2 and for k >
0 the condition I ∈ Ik means that the endpoints of I lie in H. Note that by
Observation 4.6

(4.6) Ik = ∅ if k < 0 or k ≥ − log r
8M

log 8
.

We now estimate the cardinality of the sets Ik, as N = card(∪∞
k=0Ik).

4.9. Observation. We have

card(I0) ≤ 40 diam(A)r−1.

Proof. For each I ∈ I0 the associated rectangle R has area at least r
2 · 1

2 = r
4 . Since

the quasi-circle A lies in a horizontal strip of height at most diam(A), the rectangles
all lie in a region of area at most 4(diam(A) + r

2 ) < 5 diam(A). Observation 4.8
thus allows us to estimate that

card(I0) r
4 ≤ 2 · 5 diam(A),

from which the result follows. �
The corresponding bound on the cardinality of Ik for k > 0 is slightly trickier

to obtain.
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4.10. Observation. If k > 0, Ii, Ij ∈ Ik, and Pi ∩Pj �= ∅, then

|hi − hj | ≤ 8 · 8−kM.

Proof. Without loss of generality we assume that hj ≥ hi. Suppose that

hj − hi > 8 · 8−kM

and thus, as Ii, Ij ∈ Ik,
hj − hi > r

by Observation 4.6. In particular Hi does not contain endpoints of Ij . Since we
also know that Pi ∩Pj �= ∅, we deduce that Si ∩ Sj �= ∅ and hence, by Observation
4.7, Si ⊂ Sj . Consequently zi ∈ Sj .

Since k > 0, the endpoints of Ij are in H and we can find m and n for which the
endpoints of Ij lie in Hm and Hn. Since

min{Py(zm),Py(zn)} − Py(zi) ≥ hj −
r

2
− hi

and Observation 4.5 implies that

min{Py(zm),Py(zn)} − Py(zi) ≤ M diam(Ij),

we conclude by the fact Ij ∈ Ik and Observation 4.6 that

hj − hi ≤
r

2
+ 4M8−k ≤ 8M8−k

which is a contradiction. �
4.11. Observation. There exists c > 0 such that for all k ≥ 0

∑
I∈Ik

1Px(I) ≤ c8−kr−1.

Proof. Without loss of generality suppose that u ∈ P1 ∩ · · ·∩Pm where I1, . . . , Im ∈
Ik. It follows that I1 ∪ · · · ∪ Im lies in a vertical strip of width at most 81−k.
Observation 4.10 implies that I1 ∪ · · · ∪ Im lies in a horizontal strip of height at
most 8M8−k. Using Observation 4.6 we see that R1 ∪ · · · ∪ Rm lies in a rectangle
of area 81−k(8M8−k + r

2 ) ≤ 96M8−2k. But, by Observation 4.8, the rectangles Ri

can overlap at most twice and so

m 1
28−k r

2 ≤ 192M8−2k.

We conclude that
m ≤ 768M8−kr−1

as required. �
We now estimate the cardinality of Ik for k > 0.
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4.12. Observation. There exists C > 0 such that for k > 0

card(Ik) ≤ Cr−1.

Proof. Integrating over the interval [−2, 2] both sides of the inequality in Observa-
tion 4.11 yields ∑

I∈Ik

diam(Px(I)) ≤ 4c8−kr−1.

But diam(Px(I)) = diam(I) ≥ 1
28−k as I ∈ Ik and so

card(Ik) 1
28−k ≤ 4c8−kr−1

which rearranges to give the estimate we require. �
Observation 4.12 and (4.6) immediately imply (4.2) and thus prove Proposition

4.4. �
Next we will consider λ-Cantor sets with λ ≤ 1/2. Such sets are generated by

four similitudes which contract the unit square Q0 = [0, 1] × [0, 1] by λ and then
translate these smaller squares to the corners of Q0.

4.13. Example. Let C be the λ-Cantor set in the plane with 1/3 ≤ λ ≤ 1/2.
Then dimH(VL(C)) ≤ 1 for all affine lines L which do not meet C.

Proof. We parametrize the lines lα′ through the origin by the angle 0 ≤ α′ < π
that they make with the negative x-axis. It is clearly enough to consider affine
lines Lα′ that are parallel to lα′ with π/2 ≤ α′ ≤ 3π/4 and do not meet Q0. To all
such affine lines we associate half-lines Rα starting from Lα′ and perpendicular to
it (that is α = α′ − π/2).

Let α1 be the angle determined by the negative x-axis and the line which goes
through points (1, λ) and (0, 1−λ). Consider a half-line Rα with α1 ≤ α ≤ π/4. If
Qn is a square at the nth level of the construction such that Rα ∩ Qn �= ∅, then

(4.7) Rα ∩ C ∩ Qn �= ∅.

For, assuming that Rα ∩ Qn �= ∅, the choice of α1 implies the existence of squares
Qn ⊃ Qn+1 ⊃ . . . such that Qi is a square at the ith level of the construction and
Rα ∩Qi �= ∅ for all i. Since Rα ∩C is closed, one obtains a Cauchy sequence which
converges to a point in x ∈ Rα ∩ C giving (4.7). Applying this argument to Q0 we
find

PLα′ (C) = PLα′ (Q0).

We show that for some constant c,

(4.8) H1(VLα′ (C)) ≤ cH1(PLα′ (C)).

Let
PLα′ (C) ⊂

⋃
I∈I

I

where I is a collection of pairwise disjoint subintervals of Lα′ . For fixed I ∈ I, let
k be the largest integer with λk ≥ (

√
2 cos(π/4 − α))−1 diam(I). Let Qk be the
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kth level square that is closest to I among those kth level squares Q′
k for which

Rα ∩ Q′
k �= ∅ for Rα starting from I. Note that the uniqueness of Qk follows from

the choice of α′. We divide I into two parts I = I1 ∪ I2 such that for half-lines
Rα starting from I1 we have Rα ∩ Qk �= ∅ and those starting from I2 we have
Rα ∩ Qk = ∅. If I2 = ∅, then by (4.7)

VI(C) = VI1(C) ⊂ Qk,

where VJ(C) is the set that is visible from J ⊂ Lα′ . If I2 �= ∅, then all the rays
Rα starting from I2 pass Qk either below the lower left corner or above the upper
right corner. This is implied by the choice of k since

H1(PLα′ (Qk)) ≥ λk
√

2 cos(π/4 − α) ≥ diam(I).

Now VI1(C) can be covered by either a square in the lower left corner or one in the
upper right corner with side length at most ((1 − λ) sinα)−1 diam(I1). Note that
this is true also in the case that I1 is a single point. Applying the same procedure
for I2 we see that VI(C) can be covered by a countable family of cubes Cl such
that ∑

l

diam(Cl) ≤
√

2((1 − λ) sinα)−1 diam(I)

implying (4.8). Observe that for each I there are at most three points which are
covered by a square of zero side length.

Now consider angles α2 ≤ α ≤ α1 where α2 is the angle determined by the
negative x-axis and the line which goes through points (1, λ2) and (0, λ − λ2). For
a fixed ith level square Qi we say that a half-line Rα starting from Lα′ hits Qi if
it is closest to Lα′ among those ith level squares Q′

i for which Q′
i ∩ Rα �= ∅. Let

Hα′(Qi) be the subinterval of Lα′ such that all half-lines Rα starting from Hα′(Qi)
hit Qi. The choice of α2 guarantees that

VHα′ (Qi)(C) ⊂ A1(Qi)

where A1(Qi) is the first ancestor of Qi, that is, the (i−1)th level square containing
Qi. This follows from the fact that if Rα hits Qi, then there exists a square
Qi+1 ⊂ A1(Qi) at the (i + 1)th level such that Rα hits Qi+1. The above reasoning
guarantees now the validity of (4.8) with a different constant. We continue by
considering a sequence of angles αk determined by the negative x-axis and the
line which goes through points (1, λk) and (0, λk−1 − λk) and by proving that for
αk ≤ α ≤ αk−1 and for a fixed ith level square Qi we have

(4.9) VHα′ (Qi)(C) ⊂ Ak−1(Qi)

where Ak−1(Qi) is the (k − 1)th ancestor of Qi, that is, the (i − (k − 1))th level
square containing Qi. In this way one goes through all angles except zero for which
the visible part is the one dimensional λ-Cantor set. �

One can also apply the method of Example 4.13 to Cantor sets for 1/4 < λ < 1/3
but it covers only positively many lines L, not all of them. The reason is that the
proof of (4.9) above depends on the choice of λ.
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4.14. Example. Let Q0 = [0, 1] × [0, 1]. Consider a connected self-similar set A
generated by finitely many contracting similitudes fi = Q0 → Q0 none of which
contains a rotation. Then dimH(VL(A)) = 1 for all affine lines L not meeting A
(unless A is an interval or one point).

Proof. Fix an affine line L which does not meet A. Let Qi = fi(Q0) for all i. Let

α = min
i

diam(PL(Qi) \ ∪j �=i PL(Qj))/ diam(Qi)

where the minimum is taken over such i for which the denominator is not zero. Let
β = mini |f ′

i | and γ = diam(PL(A))/
√

2 where |f ′
i | is the norm of the derivative of

fi. Note that, since A is connected, PL(A) is an interval. We may assume that
γ > 0. Cover PL(A) by disjoint intervals and fix one of them, say I.

Let Q be the smallest construction square such that diam(PL(A∩Q)) ≥ diam(I)
and such that Q minimizes the distance

distL(Q, I) = inf dist(R ∩ I, R ∩ Q),

where the infimum is taken over all half-lines R starting from I and being perpen-
dicular to L such that R∩Q �= ∅. Then either VI(A) ⊂ Q or a part of the half-lines
starting from I pass Q either above or below it (but not both). In the first case we
have

diam(I) ≥ β diam(PL(A ∩ Q)) ≥ βγ diam(Q).

Suppose that a part of the half-lines starting from I pass Q above it. If the remain-
ing half-lines hit more than one sub-square of Q then

diam(PL(VI(A) ∩ Q)) ≥ αβ diam(Q).

Otherwise, let Q′ be the largest sub-square of Q such that the half-lines R starting
from I with VR∩I(A) ∈ Q intersect more than one sub-square of Q′. Then again

diam(PL(VI(A) ∩ Q)) = diam(PL(VI(A) ∩ Q′)) ≥ αβ diam(Q′).

Note that Q′ exists unless the intersection is only one point (see Example 4.13).
Applying the same procedure to those rays which pass Q we conclude that

H1(PL(A)) ≤ (αβ)−1 diam(PL(A))

where we used the fact that α ≤ γ. �
4.15. Remark. One can replace the unit square in Example 4.14 by any other
reasonable seed set. One can also allow rational rotations in fi’s since these induce
only finitely many directions and the definition of positive α is possible. Irrational
rotations induce directions such that α becomes zero. This phenomenon is best
demonstrated by projecting an interval onto line L. As L tends to the line perpen-
dicular to the interval, α tends to zero.
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16 E. and M. Järvenpää, P. MacManus, T. C. O’Neil

References

[AC] S. D. Adhikari and Y.-G. Chen, On a question regarding visibility of lattice points. II, Acta

Arith. 89 (1999)), 279–282.

[B] M. Breen, Improved Krasnoselskii theorems for the dimension of the kernel of a starshaped

set, J. Geom. 27 (1986), 174–179.

[Ce] J. Cel, An optimal Krasnoselskii-type theorem for an open starshaped set, Geom. Dedicata

66 (1997), 293–301.

[Cs] M. Csörnyei, On the visibility of invisible sets, Ann. Acad. Sci. Fenn. Math. 25 (2000),

417–421.

[Cu] C. D. Cutler, Strong and weak duality principles for fractal dimension in Euclidean space,

Math. Proc. Cambridge Phil. Soc. 118 (1995), 393–410.

[DF] R. Davies and H. Fast, Lebesgue density influences Hausdorff measure; large sets surface-

like from many directions, Mathematika 25 (1978), 116–119.

[D] F. Davis, Is the universe homogeneous on large scales?, in Critical Dialogues in Cosmology,

Ed: N. Turok, Singapore, World Scientific (1997).

[F] K. J. Falconer, The dimension of the convex kernel of a compact starshaped set, Bull.

London Math. Soc. 9 (1977), 313–316.
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