MILTON’S CONJECTURE ON THE REGULARITY OF
SOLUTIONS TO ISOTROPIC EQUATIONS

DANIEL FARACO

ABSTRACT. We present examples showing that the threshold for
the integrability of the gradient of solutions to planar isotropic
equations is I?—Ifl The main tools are p-laminates and Beltrami
Operators.

1. INTRODUCTION

In this paper we investigate the regularity of solutions to the isotropic
equation

(1.1) div(p(z)Vu(z)) = 0, z€Q

where @ is a cube in the plane R?, v € WY3(Q,R) and p €
L*=(Q, [, K1) is real valued. Through the whole paper K is an arbi-
trary constant greater than one. In [PS] Piccinini and Spagnolo proved
that the solutions of (1.1) are locally Hélder continuous with exponent
%Arctan(%). This shows that in this regard isotropic equations differ
drastically from general linear elliptic equations,

(1.2) div(o(2)Vu(z)) = 0, z €Q,

where o(z) € M?*2 with o(2) = 0(z)" and £[£]> < (€,0(2)€) < K|E[?
for every £ € R? and a.e.z in . As in the isotropic case we require
u e WhH(Q,R).

It goes back to Morrey [Mo] that the threshold for the Hélder regu-
larity of the solution in the anisotropic case is only % Thus, in terms
of Hélder continuity, solutions to the isotropic equation belong to a
more regular class of functions than in the general case.

The regularity of solutions to a P.D.E is also studied in terms of the
integrability of the gradient. By the Sobolev Embedding Theorem if
the gradient is integrable with exponent p > 2, the function is Hélder
continuous with exponent 1— %. A crucial phenomenon in elliptic PDFE

is that weak solutions which are a priory only in VV;S(Q) automatically
belong to W,-7(Q) for some p > 2 (see [Bo] for n = 2 and [Me] for

loc
arbitrary n). More precisely the gradients satisfy the so-called reverse
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Hoélder inequalities, that is, for every ball B(a, ) such that B(a, 2r) is
compactly included in @ there exists a constant C'(K,p) such that

(1.3) /B( | |\Vu|Pdz < C(K,p)(/ Vu(z)[?dz)>.

B(a,2r)

In understanding the properties of a given subclass of elliptic PDE
is important to find the supremum of those exponents p for which
gradients of weak solutions satisfy reverse Holder inequalities. This
supremuin is called the threshold exponent of that class. The value of
the threshold exponent is relevant in applications, because it measures
“the highest possible concentration of the field” ( See, for example,
[Mi] [LN] and the references therein for the relation of the threshold to
several questions in physics.)

The threshold for anisotropic equations like (1.2) in the plane was
established by Astala, Leonetti and Nesi to be equal to I?—I_{l The
result was obtained by Leonetti and Nesi in [LN] as a consequence of
the higher integrability results for gradients of quasiregular mappings
due to Astala [Asl]. In the proofs in [Asl] the complex structure of
R? is essential and hence, the higher dimensional case remains as a
challenging open problem. We see that in the anisotropic case the
threshold for the integrability of the gradient % and the Sobolev
embedding yield the “right” Holder regularity, % (up to the end point).
In fact, the example showing the sharpness of both results is the same:
the real part of the radial stretching f(z) = z|z|x L.

The search for the threshold for the integrability of the gradient in
the isotropic case has also drawn the attention of the researchers, see
for example [AN] and [LN]. A natural question is if also here the
bounds for the Holder continuity and the integrability of the gradient
are related by the Sobolev embedding Theorem.

The situation in the anisotropic case and the results in [PS] indicate
that the higher integrability threshold for the isotropic equations might
be larger than I?—I_(l However, the intuition coming from physics, led
Graeme Milton to conjecture the opposite. The underlying physical
problem relies on the fact that the matrix valued function o in (1.2)
can be thought of as to express the electric conductivity properties of
certain material. In [Mi] Milton suggested conductivity matrices p;I
where the concentration of the related fields Vu; should be high enough
to prevent any uniform integrability better than 13—1—(1 However since
his remarkable work appeared in 1986, a mathematical proof of this fact
was lacking to the best of our knowledge. In this work we rigorously
prove Milton assertion showing that his physical intuition led him to

the right answer. We present the result in the following form.
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Theorem 1.1. Let K > 1. There exist sequences of functions {p,} €
L>(Q,{K, +}) and {u;} € W2(Q,R) with ||u;||w12 < 1, such that

(1.4) div(p;j(z)Vu,(z)) =0, a.ez €Q,

and for every compact set R of positive measure contained in ()

2K
lim / |Vu,(z)|*-1dz = oo.
j—oo Jp

In fact our construction gives that the sequence {u;} is uniformly
bounded in W'?(Q,R) with 1 < p < 2%, This must be the case,
since the result of Astala-Leonetti-Nesi states that the bounds on the
W12 norm imply bounds on the W1? norm for the above range of p.

Weak reverse Holder inequalities imply also sharp regularity results
for the Dirichlet problem

(1.5) div (0(2)Vu(z)) =div F 2z €Q,

where o is as in (1.2) and F' € L? (see [IS]). In this regard the theo-
rem 1.1 is easily seen to imply the following corollary.

Corollary 1.2. There exist functions p € L*(Q,{K, %}), u €
W2(Q,R) and a vector field F € L®(Q,R?) such that

(1.6) div (p(z)Vu(z)) = div F,

and
2K
K—

/Q \Vu(z)|%-T1dz = oc.

Our approach to study the equation (1.1) is based upon considering
the flow p(z)Vu(z) as a rotated potential. Most of the notation used
below is standard and explained in section 2. However we need to
introduce immediately the following sets. Let us associate to every
positive number p a 2-dimensional subspace E, of the space of 2 x 2
matrices M2%2 as follows:

X 0 -1
(1.7) E”:{<JpX) where X € R? andJ:(1 0 )}

Denote
(1.8) E=FExUPFEg-1.

Then it can be seen that u is a solution to a linear isotropic equation
(1.1) with p(z) = {K, K~'} almost everywhere if and only if u is the
real part of a function f € W2(Q,R?) such that

Df(z) e E

for almost every z € Q. Moreover, set k = £—. Then Df(z) € E if
and only if there exists yu € L>°(Q, {—k, k}) such that

(1.9) Of — udf = 0.
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The function p is called the second complex dilatation of the mapping
f- It gives information about how the linear map D f(z) distorts discs
into ellipses. The modulus of i expresses the maximal stretching of the
ellipses, and its argument the direction of maximal stretching of these
ellipses.

For the sake of completeness the relation between the equations (1.1)
and (1.9) is discussed in section 6.

Next we observe that the integrability properties of Df are com-
pletely encoded in its distributional measure Df,L¢ (c.f section 2)
since,

ﬁ /Q DfGIPdz= [ APADA(LHN.

Thus our strategy will be the following: Firstly we construct a proba-
bility measure v € M(FE) such that

/ A FTdy(N) = oco.
M2x%x2

Since v has support in E, if it was the distribution of the gradient of
some Sobolev function the problem would be concluded. This need not
be the case, but using the theory of laminates (See section 3) we can
at least show the existence of a sequence {f;} uniformly bounded in
each W'P(Q,R™), 2 < p < £% such that

(1.10) Df;,(L3) = v in M(M?*2).

Whenever (1.10) holds we say that the sequence {Df;} generates
the measure v. The last difficulty is that a priory the sequence {Df;}
does not stay in E almost everywhere. This can be handled by several
means. One option is based in adapting the recent new methods for
solving partial differential inclusions (see [DM],[K],[MS]) and in par-
ticular Proposition 4.42 in [K]) to our situation. However, the proof
would be more technical and specific. We have chosen to follow a
somehow more direct (familiar) and general route based on the so-
called Beltrami Operators. Using them we can find another sequence
{g;} such that Dg;(z) € E almost every z € () and it also generates
v. The latter argument is related to those of [AF], where the Beltrami
Operators were applied to analyze the so-called Quasiregular Gradient
Young measures. These operators have turned out to be an efficient
tool in clarifying a wealth of questions concerning the study of the best
exponents in planar P.D.E and related topics [As2],[F],[AF]. Their in-
vertibility properties and other issues are described in the recent work
of Astala, Iwaniec and Saksman [AIS].

Once a sequence {g,} as above is obtained, an easy argument shows
that the real parts of g; and the conductivity coefficients {p,} associ-
ated to the second complex dilatations of g; prove the Theorem 1.1 to
be true.
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2. NOTATION

Let @ denote the n dimensional unit square Q = {z € R" : |z;| < 1},
B(a,7) ={z € R" : |z—a| < r} and R € () means that R is a compact
subset of ). Concerning matrices, M™*™ is the space of m xn matrices.
The tensor product a ® d with @ € R™ and d € R" denotes the rank-
one matrix (a;d;). It maps v € R* to (v, d)a. Here, (-, -) represents the
Euclidean scalar product. Unless otherwise indicated for a matrix A,
|A| represents the euclidean norm of A. We denote closed balls in the
space of matrices M™*™ by B(r), i.e B(r) = {A € M™*" : |A] < r}.
Similarly, By(r) = {A € M™ ™ : |A| > r}. The plane of diagonal
matrices in M2*2 is denoted by D. We will use the notation

(2.1) ( ‘él 32 ) = (dy, dy).

For a matrix A € M?*? we will also use complex coordinates A =
(A;, Az). Here, A, € C and A; € C satisfy the following relation:
Let us identify a vector w = (z,y) € R?® with the complex number
w = & + 7y. Then it holds that for every vector w € R?
Aw=A, - w+ A5 - w,
where w denotes the complex conjugate of w. Using this notation
Ex ={A=(A,, A7) e M?*2: A, = kA,} and

(2.2) Ey ={A=(4,,4;) e M*?: Az = —kA.},
where the sets E, were introduced in (1.7) and k = ﬁ—:& We use also

complex coordinates for the differential of a mapping f € W'?(Q, R?),
Q C R?;
Df(z) = (0f(2),0/(2)).

Concerning measures M(M?*2) stands for the set of Radon measures
in M2%2 §, is a Dirac delta at A, spt v stands for the support of v
and = means convergence in the weak star topology. For a set E, |E|
denotes its Lebesgue measure. Let (2 be a bounded measurable set.
Then L§ stands for the normalized Lebesgue measure restricted €2 so
that £3(Q2) = 1. Let f be a measurable function f : Q — R™ and N a
Borel set in R™. Then the push-forward £¢ under f is given by

F(LR)(N) = L5(f (V).

We call fi(£$) the distribution measure of f. Finally the threshold

% is denoted by pg.
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3. LAMINATES

In this section we describe a process to build probability measures
which arise as weak star limits of distribution measures of gradients of
Sobolev functions. The class of probability measures obtained by this
process, named as laminates, were introduced in [P1] to provide exam-
ples of the so-called Homogeneous Gradient Young measures. In the
setting of homogenization, lamination of materials has been present
from the very beginning, since it provides one of the few situations
where the relation Microstructure-Macrostructure is relatively well un-
derstood. We recall the basics of Laminates, referring to [P], [K] for
further details. The reader familiar with Gradient Young measures will
recognize features of this theory in the discussion below.

Let us start with a matrix A € M™*™, Suppose that there exist
matrices B,C € M™*"  a real parameter A € [0,1] and vectors a €
R™,d € R* such that

A=)\B+(1-))C,

(3.1) B-C=a®d;

Whenever (3.1) is satisfied we say that B and C are rank-one con-
nected and that [B,C] is a rank-one segment. Therefore using this
jargon, A is supposed to belong to certain rank-one segment.

Let h be the saw-tooth function on the real line, obtained as the
periodic extension of

h(x):{)\x ifo<z<1l-—2)\
—1I-=-XNz+(1-=-)) fl-A<z<l.
We define
f(z) = Az — ah((z,d))

for z in the unit cube Q. Clearly f € WH®(Q,R™) and Df,(Lp) is
equal to the measure v = Adp+(1—A)d¢c. Unfortunately, to iterate this
process in order to obtain less trivial laminates we would need that f
had affine boundary values. Hence to avoid the problem we consider the
sequence {f;}22,, fj(z) = % f(jz). For each j the distribution measure
D f;,(L3) is still equal to v . Moreover, we have obtained the following
advantages. Firstly, if R € Q has positive measure we get that

ijn(ly}lz) =,

Secondly, the above property still holds when instead of { f;} we put
another sequence {f;} such that lim; .., |2 € Q : Df; # Df;| = 0.
This modification can be made so that the boundary values of every fj
are equal to A and |2 € Q : Df;(2) # Df;(2)| < 7 (see the picture 1
and for example lemma 3.2 in [K] for a proof).
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FIGURE 1. If a piecewise affine mapping f has gradient
equal to A in a certain region and A belongs to a rank-
one segment [B,C], we can replace A by layers where
the gradient is equal to B and C' and an interface region.
The size of the interface is controlled by the number of
layers we take.

Lastly, it is clear that arguing by means of similarities, we can replace
the unit cube @ in the above argument by an arbitrary cube Q.

Therefore, this procedure associates to every cube Q C R a sequence
{f;} bounded in W'>°(Q, R™) such that for every R € Q with positive
measure

(3.2) Dfj,(L%) = v

and fi(z) — Az € Wy (Q,R™). We say that we have splitted the
measure 64 as Ao + (1 — A)dc.

Next, suppose that B belongs to a rank-one segment [D, E], B =
XD 4+ (1 = X\)E, 0 < Ay < 1. The idea is to substitute every layer
where the gradient of f; was equal to B by finer layers of D and FE.
It is important that the scale of the layers of D and E must be small
enough in relation with the scale of the layers of B and C'. Formally,
denote Q; = {z € Q : Dfj(z) = B} and take a finite collection of
dyadic cubes {Q;}fvzjl C Q; such that [Q; \ UZNJ'Q;| <

Inside of each of the cubes Q% we construct the sequence {ff;}7>, €
Wheo(Q%, R™) obtained as in (3.2) replacing A by B, v by Aydp + (1 —
X2)dp and @ by Q. We choose k(j) = jN; to have that u¥ |z e Q5 :

i
Df;” #{D.E} < ;.
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Due to the affine boundary values of each ff’i we can weld them
together and define

(2 = { fiP(2) ifzeq,

J fi(2) otherwise.

A direct computation shows that for every R € () with positive
measure, the weak star limit of the sequence of measures {D ffﬂ(ﬁ’}z)}
is 2 = M Xadp + (1 — X\2)dg) + (1 — M\)d¢ . Clearly, we can iterate this
construction as long as we have enough relations in term of rank-one
connections. The obtained measures will be generated by gradients in
the sense of (1.10). We arrive to the class of prelaminates.

Definition 3.1. The family of prelaminates PL is the smallest family
of probability measures on M™*™ such that

(1) PL contains all Dirac masses in M™*™.

(2) Letv = 3% . \ida, € PLand let 4 = AB+(1—\)C where \ €
[0,1] and [B,C] is a rank-one segment. Then the probability
measure ¢, \ida, + M (Mg + (1= N\)de) € PL.

Theorem 3.2. Let v be a prelaminate supported in the ball B(r) C

M™*®  Then there ezists a sequence {f;} € WhH*(Q,R™) such that
for every R @ Q with positive measure

(1) 1l < O,
(2) Dfy(Ch) = v.

Proof:

This theorem can be found in many places in the literature since it
follows from the fact that laminates are homogeneous Gradient Young
measures, [P1]. The interested reader can complete a proof using the
above scheme and an induction argument. O

Finally laminates are defined as weak(x) limits of prelaminates in
M(M™*m) A laminate which is not a prelaminate is called an infinite-
rank laminate.

Definition 3.3. Let v be a probability measure on M™*" and 1 <
p < 0o. Then v is said to be a p — laminate if there exists a sequence
of prelaminates v; such that

a) Sup; [ymxn [APAV;(A) < 00,
b) v; 2 v in M(M™*®),

Theorem 3.4. Let v a p — laminate. Then there exists a sequence
{f;} uniformly bounded in W'?(Q,R?) such that

iju(‘c?z) S

for every compact subset R of Q) with positive measure.
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Proof:

In the case of compactly supported laminates this theorem is proved
in the literature (See [P], chapter 9). The proof follows from The-
orem 3.2 and a diagonalization argument. For the case of finite p
let us apply Theorem 3.2 to each prelaminate v;. For each j we ob-
tain a sequence {f;}2°, uniformly bounded in W*(Q,R™) such that

Df]’-'ﬂ(ﬁ?%) X y; as i tends to co. The uniform bound on the W'

norms of the f7 gives that

tim [ Df@Pde= [ Py,
11— 00 Q MmXn

Putting this together with the assumption a) in the definition of p
laminate gives the uniform bounds for the p-norms of the {f;}£5_; and
thus for the generating subsequence. O

The following remark, on the particular nature of the laminate we
are going to deal with, will simplify the proofs in section 5.

Remark 3.5. If the structure of an infinite-rank laminate is sufficiently
simple it behaves essentially as a prelaminate in the following sense.
Let v be a prelaminate and f; the generating sequence described in
Theorem 3.2. Set ; = {z € Q : Df;(z) ¢ spt(v)}. Then it follows
from the construction that

(3.9 lim (9] = 0.

It is easy to see that if a p-laminate v is purely atomic and
lim;_, v(spt(v) \ spt (v;)) = 0, v; as in Definition 3.3 b), the sequence
{f;} obtained from Theorem 3.4 satisfies property (3.3) as well.

4. THE STAIRCASE-LAMINATE

This section will be devoted to constructing a laminate v supported
in the set E presented in formula (1.8), and satisfying

(4.1) / IAPXdyv(A) = oo and / |APdv < o0
M2Xx2

M2x2
for every p < pg. In fact, we will not need the whole set F since
the laminate v will live on the intersection of E with the plane of all
diagonal matrices D = (di, dz); c.f.(2.1). Recall that in this plane the
only rank-one directions are horizontal and vertical lines. Moreover
using notation (2.1) we have that

ExnND={(a,Ka):a €R} and Ex-1 N D = {(a, K 'a) : a € R}.

The condition (4.1) can only be achieved if the support of v is un-
bounded, thus v must be an infinite-rank laminate. Hence we will
construct a sequence of prelaminates v", such that

V" 5 v in M(M?¥3),
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(aKa) y

(Kaa)

FIGURE 2. “Steps” 1 and n. Black dots denote the sup-
port of the measure, the cross is the centre of mass, and
white dots are auxiliary matrices.

For v to be a probability measure we need that lim,,_,, 1" (B (R)) = 0
for every positive R. In fact the integrability of the measure v depends
on the rate at which v(By(R)) goes to 0 when R tends to oco. The
opening of the cone Q,

Q={(z,y)eD: K< % < K},
determines if it is possible to find a laminate v supported in @ such
that v(Bw(R)) converges to 0 slowly enough for (4.1) to hold.

We will firstly describe how certain sequences of matrices in Q give
naturally rise to infinite rank-laminates and after that we will choose
an appropriate sequence to create the measure v.

Our construction will resemble an staircase (see figure 3). Thus, we
start by describing how to build its steps. Take two diagonal matrices

A; = (A}, A?), Ay = (A}, A2) € Q. We will use the partial ordering,

(4.2) A <Ay < A} < Ajand A7 < 4.

Given such a pair of matrices, the matrices B = (A}, #A}) € Ex-1,
D = (A}, A%) and C = (A?%,Ag) € Fyx satisfy that A; € [B, D],
D € [C, Ay]. In addition, [B, D] is a vertical segment and [C, A, is
an horizontal segment i.e they are rank-one segments. (For a quick
illustration see figure 2. Observe that although in the figure A} = A2,
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this is not required in the general construction). Let A; and Ay € [0, 1]
be parameters such that

Ay =MB+(1-\)D,
and

D = XC + (1 = A\g)As.
Plugging the latter expression into the former we obtain that
(4.3) A= MB 4 (1= M) (XC + (11— X)A,).

In the language of measures, (4.3) means

A = / b (2),
M2x2

where v, is the measure
(44) vy = )\153 + (1 - )\1)()\250 + (1 — )\2)5A2).

The figure 2 shows how this construction looks like if the matrices
are near the origin, (A; as the center of mass of a measure supported
on B,C and A,), or if they are relatively far away (A, as the center of
mass of a measure supported on B, C,, and A4,1).

Now let us suppose that we are given a sequence of matrices
{4}, € Q ordered as in (4.2), A, < A4, for every n. We can
repeat the explained construction with A; = A, and Ay = A, ;. This
yields a sequence of step measures {v,}>° ;. We would like to paste
the measures v, together to obtain a new measure v. Let us sketch
the idea that will be made rigorous below for a concrete choice of the
matrices A,. Consider the measure v, as in (4.4). Replace d4, in the
definition of v; by the measure v,. This defines a new measure

1/2 — )\153+(1—)\1) (/\250+(1—/\2) ()\3532+(1—/\3)(/\4502+(1—)\4)5A3))> .

Here the new parameters and matrices come from the definition of the
step measure v,. Since v? has an atom §,4,, we proceed by replacing
it by the step measure v3 to obtain a new measure v with an atom
at A;. We continue iteratively obtaining a sequence of probability
measures {v"}. Finally the measure v is defined as the weak star
limit of this sequence. Besides the condition on the ordering (4.2), the
only restriction on the sequence {A,} is that v should have finite p**-
moment for some 1 < p < co. We further observe that we have only
used rank-one segments at every step of the construction, so it follows
that if v has finite pth moment for some p > 1, v is a laminate. The
figure 3 helps to understand the process just loosely explained, which
will be completely understood by analogy with the concrete example
explained below these lines.

Let us concentrate now in obtaining the measure v such that (4.1)
holds. We consider the sequence A, = {(n + 1,n)}%, ,ng > .

n=ng’ — K-1
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(Kaa)

FIGURE 3. The staircase at level n.

Since {A,} is well ordered and contained in Q we can use the scheme
indicated above to construct prelaminates v with centre of mass 4,,,
and supported on the set £ U {A4,,1}. To avoid keeping track of ng
everywhere we assume without loss of generality that ny = 1.

Let start with the measure J4,. Clearly the following relations hold,

(4.5) (2,1) = 5152 %) + (1 = 55 (2,2),
(4.6) (2,2) = setiyir (70 2) + (1= 5etyy7) (3,2)-

Thus, in the above notation, B = (2, 2), D = (2,2) and C = (%, 2).
Hence A; is the centre of mass of the probability measure v, defined
by

_ _K K
= 2(1@1)5(2,%) +(1- 2(K71))( K1 +K5( 2) T

K
(1- 2(K71)+K)6(3a2))’
which is a prelaminate. Furthermore it can be expressed as v1 = py; +
A1d4,, where pq is a new measure supported in the set E N B(2Ck).
The constant Ck is equal to |B| = |C], explicitly Cx = [(1,%)| =
—Vl}m It will appear often below since it is a natural parameter in our
construction. We say that we are one “step” up in the staircase.
The construction gives that v1(By(2Ck)) = v1(A42) = Ay where

K K

M=y T s )
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We can repeat the same operation at level n since,

The structure relations in terms of rank-one connections are the same
as in (4.5) and (4.6). Hence A, can be expressed as the center of mass
of the laminate v,, defined by

K K

— K
Vn = (n+1)(K—1)5(n+1,"T+1) +(1- (n—|—1)(K—1))((n+1)(K—1)+K5(nT+1,n+1) +

(1 = erp=n7r)dn+2n+1) -
As before there exists a measure p, supported in £ N B((n + 1)Ck)
such that v, splits as v, = pp +Apda, ., and vu(Bx((n+1)Ck)) = An.
The value of A\, will be important:
. )
n+1)(K-1)+K (n+1)(K-1)"
Next, we paste the steps together to obtain a truncated staircase.

The formal procedure is done by induction. Let us start with n = 1.
Remember that

A7) da=(1-

V= U + )\15,42-
We define

V2= 1+ Aiis.
Declare p? = V\QB(?,CK)' Then v? splits in the form v? = p? + A\ Apd4,
and p? is supported in E N B(3C}). Since Aj is the center of mass of
vy, we defined v® = p2 + A\ M\yv3. Now we can find 3 as before and
continue inductively. The previous procedure gives the definitions:

V"=t (I v,

and

K= ViB((nt1)0x)-
This defines the truncated staircases. Observe that it follows from the
construction that

(4.8) V™(Buo((n+1)Ck) = V" (Boo((n + 1)Ck) = V" (Ans1) = I N
for every m > n. Finally, we let the staircase grow infinitely and obtain:
Definition 4.1. (The staircase-laminate) Let v™ be as above. Then

the staircase-laminate v is defined by:

(49)  v= lim " in the weak star topology of M(M?*?),

n—00

Next thing we need to guarantee is that v is a probability measure
and that it has the appropriated growth.
First we observe that by the Cavalieri principle,

/M APdv(d) =p /0 ) P~ (Boo(t))dt.
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Dividing M2*2 into rings we obtain:
1 o (n+1)C’K
a10) L / Apdv(y) =3 / 10 ( B (1)) dt.
M2x2

p nCg
By (4.8), (4 10) is less than

n 1 f(”"‘l CK 1)CK)p71V(BOO(TLCK))dt =
PP 1((n+ DCxP~ " (An),

n=1

and bigger than
S0 [O R (O )P 1w (Boo((n + 1)C) )t =

Yo (O )P (Anya).
Therefore we have obtained that for every p, there are constants, C;, Cs,

depending on K, such that

o0

cgznp (A </ APdp(N) < 003 (n+ 1P (A,
M2)<2

n=1
We compare the above sums with >, L. Thus, if
lim inf,, o nPEV™ (A1) > 0
(4.11) limsup,,_,,, "PXv™(A,41) < 00

it follows that [\ 2. |[APX¥dv(A) = oo and for every p < pg,
fM2><2 |A[Pdv (M) < 0.

After plugging the value of " (A, 1) into (4.11) we are led to study
the behavior of the sequence, a,, = II} ; \;. The following basic manip-
ulation show that it behaves like n™P%. Firstly we handle the product
by using (4.7) and taking logarithms. This gives

og(an) + 32 jg{ 1 < el

where sup, c(n) < C' < oo. Since px = =7 and |log(n) =>_" Z%ﬂ <
cy, We arrive to

| log(an) + pxc log(n)| < ¢1 < oo

for every n € N.

Therefore, (4.11) is satisfied and the staircase laminate v verifies
(4.1).
Remark 4.2. It is the fact that the auxiliary values {4, } are asymp-
totically closed to the set Fy N D = {(a,a) : a € R} that characterizes
the integrability of the measure v. Generally let {ffn} C Q be a se-
quence of auxiliary matrices ordered as in (4.2) and such that
A
lim —
n—0oo An

=1.
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Then it can be shown that if we perform the above scheme to obtain a
laminate 7, the threshold for the integrability of 7 is equal to

K K
EDE)

t

5. CORRECTING SEQUENCES VIA BELTRAMI OPERATORS

Consider the staircase-laminate v. By the construction it is a p-
laminate in the sense of definition 3.3 for every 1 < p < px. Hence by
Theorem 3.4 there exists a sequence {f;} € W'?(Q,R?) such that

(1) Dfjy(L) 5 v

for every R € @ with positive measure and {f;} is uniformly bounded
in Wi?(Q,R?) for every 1 < p < px. In addition, the measure v
satisfies the requirements of the Remark 3.5 and is supported on the
set £\ B(0,¢) for some ¢ > 0. Thus,

(62)  Jim[{z€Q:Dfi(:) € Eor Dfy(2) = 0} =0.

The fact that E is related to an elliptic equation allows one to “project”
the sequence {f;} to a sequence {g;} such that {Dg;} take values in F
and converges to D f; in LP.

Proposition 5.1. Let v be the staircase laminate and {f;} the gen-

erating sequence with the properties 5.1 and 5.2. Let k = g—: Then

there exists a sequence of Beltrami coefficients p; € L™(Q,{k, —k})
and a sequence {g;} € WHP(Q,R™) for all 2 < p < px such that:

(5.3) 99i(2) — pj(2)9g;(2) = 0

for a.e.z in Q), and

(5.4) Jlim [|Df; — Dgjllzr@) — 0.
Proof:

Declare Q; = {z € Q : Df;(z) € E and Df;(z) # 0}. Then property
(5.2) reads as

(5.5) lim [Q\ %[ = 0.

Define

~—

pi() = a1 EE
k if z € Q \ Q]
It is easy to see from the expression of the set F in complex coordinates
(2.2) that p; € L®(Q, {k, —k}). The key point in the proof is that (5.5)
implies that each {f;} satisfies a non homogeneous Beltrami equation
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with right hand side going to zero in L? for every p < px. The argument
is the following: By the definition of y;

(5.6)  0fi(2) — 1i(2)0f;(2) = (0f;(2) — kOf;(2))xq\0, ()
in Q. Let h;(z) = (9f;(2) — kOf;(2))xo\a, (2) and consider exponents

2 < p < p < pg. Then Hélder’s inequality with exponents %’, p,p_'p
implies that [ |h;[Pdz < C||ij||L,,f(Q)|Qj|pp—7p. By the definition of v,

|D f;]| is uniformly bounded and hence

(5.7) lim / |h;|Pdz — 0.

J—00 C
for every p < pg. Here after, the argument is similar to those in
[AF]. We sketch the proof, that goes in the same way that the proof of
Theorem 1.2 in [AF]. First we extend pu; to the whole complex plane
as;

69 i) ={ 7

Now we use the two integral operators naturally related to the theory
of quasiconformal mappings; The Cauchy transform P,

ifze@
otherwise.

Pf(z) = -1 de

2 Jez—w
and the Beurling-Ahlfors transform S
1 f(w)
S =—— [ ————=dw.
(S)(z) 271 /(C (z —w)? v

For definitions and proofs of their properties see [Al]. These operators
satisfy that for smooth compactly supported h,

(5.9) P(h) =h, OP(h) = S(h).

Moreover both operators are continuous from LP(C) into itself thus
continuous from LP(C) into itself if 1 < p < co. Therefore the above
equalities (5.9) extend to L?,p > 1 in the distributional sense.

Then if we consider the sequence {F}}

Fy = P((I - p;5) ' (b))
it is easy to see that g; = (F; — f;)xo satisfies the equation

(5.10) 3g; — 1,09 = 0 in Q.

Furthermore by (5.7), {h;} tends to zero in LP. Recall that through
the whole proof we are assuming that 2 < p < px. Hence by Theorem
3in [AIS] (I —i;S) ! is a bounded operator from L? into itself ([ALS]).
It follows that {(I — /i;S)~'h;} tends to zero in LP(C) as well. This
fact together with (5.9) and the boundness of S imply that {DF;} also
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converges to zero in L?(C). We have proved that {g,} satisfy (5.3) and
(5.4).0

We will need that the convergence in LP implies that the limit of the
distributional measures are the same, i.e (5.4) implies that for every
R € () with positive measure

(5.11) lim DJ;,(£3) = lim Dgy,(£3)

in the weak star topology of M (M?2*2). Actually convergence in mea-
sure is enough for (5.11) to hold.

Remark 5.2. The above Proposition holds for every W'*-GYM sup-
ported in E with 1 + k£ < p. In this case we do not know if prop-
erty 5.2 holds since a priory the generating sequence only converges
to the set in measure. Therefore, a more subtle argument is needed
to choose the Beltrami coefficients. One option is using the so-called
Measurable Selection Lemma, to find a projection of the generating se-
quence to the set. Other is noticing that £ = F~'(0) with F(A4) =
min{|A; — kA,|?, |A; + kA, [P}. Then the fact that [, F(A\)dv(\) =0
gives a choice of appropriate Beltrami coefficients.

6. PROOF OF THE THEOREM 1.1

We start with the staircase-laminate v constructed in section 3.
Firstly, by Theorem 3.4 applied to v we obtain a generating sequence
{f;}. Then Proposition 5.1 provides a generating sequence {g;} and a
sequence of Beltrami coefficients {u;} € L>(Q, {k, —k}) such that

(6.1) 9g;(2) — pi(2)0g;(2) = 0
a.e.z in . Next, let us recall that if ¢;(2) = u;(2) + v;(2) for u; and

vj € VVllof(Q), it is an algebraic computation to show that

(62 div(p;(2)Vus(2) = 0
in @, where p;(z) = ;Z j 8 For the sake of completeness we show the

calculation. First we observe that

20g,(z) = Vu,(z) + JVv;(2)
20g;(z) = Vu;(z) — JVv;(2).
Thus, (6.1) becomes
Vu,(2) + JVi(z) = 1i(2)(Vu;(2) — IV;(2)).
a.e.z in (). After rearranging this equation we obtain
1 — p(2)

(03 T (2)

Vu;(z) = =JVv;(z).
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We obtain (6.2) by recalling that J is the Hodge x operator in dimension
2, this is it sends curl free vector fields to divergence free vector fields.
Now, when p;(2) =k, pj(2) = L’L—’; = & and when p;(2) = —k p;(z) =
4k — K so (6.2) is an elliptic isotropic equation like (1.1). Moreover,
the bounds on the p; and (6.3) imply that for every 1 < p < oo

(6.4) /R Vu,(2)Pdz < /R Dg;(2)|Pd < C(K) /R Vu,(2)Pdz.

To conclude we use the following basic consequence of monotone
convergence theorem.

Lemma 6.1. ([BDF] Proposition 2.15) Let v; = v in M(M?*?) and
f be a continuous function on M2*2. Then,

/ FO)du(N) < lim inf / FO)dv; (V).
M2Xx2 J70 Jnvp2x2

Take v equal to the staircase laminate, v; = Dg;,(L%) and f(A) =
|A[P% in the lemma. The left hand side is equal to oo by (4.1) which
yields that

j—o0

1
(6.5) lim inf —/ |Dg;[P¥ = o0,
1B Jr
and by (6.4) that
j—o0

lim inf / |V, [PX = oco.
R

Moreover since {Dg;} is uniformly bounded in LP(Q) for every p < px
(6.4) implies, after normalization, that
|luj(2)|lwr2Qr)y < 1.

1—p;(2)
T+pj(2)

Therefore, p;(z) =
prove Theorem 1.1.0

Proof of the Corollary 1.2

Consider a union of disjoint balls {B;(a;,7)}2, € Q. Let n €
C§°(B(0,1)) be a cut-off function such that n(z) = 1 if |z| < 5. For
every i let T;, Ti(z) = £, be a similarity satisfying 7;(B;) = B(0, 1).
Define then, n;, = rn(T;(z)) € C(B;). Use now (6.5) with R =
B(a;, %) to select j(i) such that

and u;(z) equal to the real part of g;(z)

1
(6.6) /( B |Dgjiy(2)|PFdz > o

B ai,f) ?

Setting g;i;) = g; gives sequences {g;}3°, {1 }2,. Let

(6.7) p=>_ pixs +kxous,s

i=1



MILTON’s CONJECTURE 19

and
(6.8) 9= 9
i=1
Then we have that
(6.9) 0g(z) — pdg(z) = F

in Q. Explicitly the vector field F' is given by
F = "(0n:(2) — p:0mi(2))g;
=1

Thus, we can use the Sobolev embedding for the g; and that || V7;||e =
IVn||oo to see that F' € L®°(Q). Regarding the integrability of |Dg|[P¥

we have that
/ |Dg[P¥dz > ZT/ | Dgi[P¥,

auz

which, after plugging (6.6), implies that

(6.10) / |Dg(2)|PXdz =
Finally as in the homogeneous case we look at the equation satisfied
by the real part of g. Namely if g = u + iv, (6.9) read as
Vu(z) + JVo(z) = u(z)(Vu(z) — JVo(z)) + 2F.

and after rearrangement

1 — p(z) V(s 1
1+M(Z)Vu(z)— JVu(z) + 1+u(z)2F'

Therefore we conclude that if p(z) = =42

1+u(2)

1
i = div———2F.
div(pVu) d1v1 e

This together with (6.10) proves the corollary. [

Remark 6.2. From the viewpoint of physics, the exponent px being
low means that there areas where the concentration of the electric field
is quantitatively high. In [Mi] is purposed to investigate whether there
are areas where the electric field is especially feeble. For this question
we search for the largest exponent g such that for every q < qx

/R Vu(2)|"%dz < C(R, p).

where u is a solution to (1.1). To avoid technical problems with the
singular set we assume that the quasiregular mapping f such that D f =
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( JZgu ) is a a local homeomorphism everywhere. This for example

is guaranteed if we assume affine boundary values for u (see [LN]).

Essentially the same example shows that qx = % We consider
the same laminate v and a generating sequence {f;}. We define the
same sequence of Beltrami coefficients {/i;} as in (5.8). The difference
is that this time we correct the sequence f; with the Beltrami operator
(I —4i;S)™! to obtain a sequence {g;} of solutions of

(6.11) 9g;(2) — #i;(2)9g;(2) = 0

in ). Observe that we are not taking the conjugate of Jg;(z) so fi;
are standard complex dilatations ([Al]). Assume for a moment that
the functions g; are injective. Then, the composition rule for Beltrami
coefficients ([Al]) shows that the functions g;* satisfy the equations

(6.12) dg; 1 (2) + fi;(9; ' (2))dg; 1 (2) = 0
on g;(Q).

Therefore, by the discussion in section 6, the real parts of g;l satisfy
an isotropic equation like (1.1). Now, a change of variables gives that
i) o(® Jor! (2)-1dz = s (w) %=1 dw for every R compactly contained
in ). Notice that at this point one have to be careful because the
domains g;(Q) are not the same. However, by the quasisymmetry
of g; we can find a domain @Q, such that {g;(Q)} converges in the
Hausdorff metric to Q. In turn this observation yields the result. If
the g; are not injective (and they need no to be) we have to use another
result from [AF], Theorem 1.5. In our setting that result implies that
there exists another sequence {F}} of injective solutions of (6.11) which
generate the staircase laminate v and hence, whose pg-norm blows up.

It follows that the sequence {ReFj_1| Q} prove that ¢gx < z*. The

other inequality follows from [Asl], [LN].

Remark 6.3. In the sequence we have obtained we have no control in
the boundary values. This can be fixed in the following way. Firstly,
it is clear that the generating sequence {f;} for the Laminate can be
assumed to have affine boundary values. Then once we have our choice
of Beltrami coefficients {y;} we can associate to them the right scalars
{p;} as above. Then we look at the following boundary value problem

div (p;Vu;) =0
(613) Uj — Re(fj) € WOLZ(Q)
Then it can be shown (but it is a lengthier computation that the
one we have presented) that since {Re(f;)} solves an isotropic equa-

tion with right hand side going to zero ||Vu; — V(Re(f;))|lr2 —
0. It is not hard to see that this it is enough to guarantee that
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lim; o0 [ |Vu;[PXdz = oo where R is a compact set with positive
measure.
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