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Abstract
We show that the sharp integral form on the isoperimetric inequal-
2

ity holds for those orientation preserving mappings f € W, "t (Q,R™)

loc
whose Jacobians obey the rule of integration by parts.

1 Introduction

The familiar geometric form of the isoperimetric inequality reads as
i, AU < OUT, 1)

where |U| stands for the volume of a domain U C R" and |0U]| is its
(n — 1)-dimensional surface area. Now, if f : B, — U is a diffeomorphism
of a ball B, = B(xzg,7) C R" onto U, then |U| = ‘fBr J(z, f)dx
0U| <[5, |D*f(z)| dz. Here D*f(z) stands for the cofactor matrix of the

differential matrix Df(x). In this way, we obtain what is known as the

, while

integral form of the isoperimetric inequality, namely

<1 ( | DG ) a @)

with I(n) = (n »</w,_1)~!. Above, we used the operator norm of the cofactor
matrix, defined by |D*f(x)| = sup{|D*f(z)h| : |h| = 1}.

/ J(z, f)dx

T
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Reshetnyak proved in [14] the sharp Hélder-continuity for a mapping of
bounded distortion by extending certain ideas of Morrey’s [10]. This required
him to prove the isoperimetric inequality (2) for mapping in the Sobolev class
Whn [15] (also see [2, Theorem 4.5.9 (31)]) that has been later explored for
example in non-linear elasticity [11], [12]. One can check using a standard
approximation argument that it suffices to prove the isoperimetric inequality
(2) for all smooth mappings. The sharp constant I(n) in inequality (2) plays
a very crucial role in Reshetnyak’s argument (also see [6, Chapter 7.7]).

The Sobolev regularity W™ cannot be substantially relaxed. Indeed, the

mapping
)= ios (1) 3)

|z |z
belongs to Ny, WHP(B(0,1),R™) but (2) fails for all 0 < r < 1.

For example in non-linear elasticity (see [1], [16] and [12]) it is natural to
assume that the Jacobians of the mappings in consideration are positive a.e.,
because a deformation of an elastic body should be orientation preserving.
Recently, a generalization of mappings of bounded distortion, the theory of
mappings of finite distortion, has emerged, partially motivated by non-linear
elasticity. We refer the interested reader to the monograph [6] by Iwaniec
and Martin. This theory assumes that f € W2 (Q,R"), J(z, f) > 0 a.e.,

loc

[DfI™ € Lige(9) (4)
where
the function t — P(¢7+1) is increasing for large values of t, (5)
> P)
/1 3 dt = 0o (6)

and P is an Orlicz-function (see [6, Chapter 4.12]). One can improve example
(3) and find, for each given function P for which the integral (6) converges,
a radial stretching f so that (4) holds and (2) fails ([9]). We proved in [5]
that, under the above assumptions, the isoperimetric inequality holds, with
some constant, depending only on the dimension n. In this paper, we will
give a simple limiting argument to show that, under the above assumptions,
the isoperimetric inequality (2) holds with the sharp constant I(n). Actually

this is a simple case of our more general theorem.

2



n2
Let f € Wl’m(Q,R”). We say that the Jacobian J(-, f) of f obeys the

loc

rule of integration by parts if the equation

/ (@) (z, f) dz = — / FA@)T(@, fro o s @ forts o o) e (7)
Q Q

is valid for every test function ¢ € C5°(2) and each index ¢ = 1,...,n. Under
2

the assumption f € Wl’m(Q,R"), different choices of indices ¢ yield the

loc

same value of the integral, see [3]. It is important to note that the right hand
2

side is well defined for mappings lying in the Sobolev space VVZZC"_“(Q,R")
and so equation (7) implies, when the Jacobian does not change the sign,

that
T(s f) € Lipe(9). (8)
As an example, the Jacobian of a mapping of finite distortion, see (4)-(6),

obeys the rule of integration by parts ([4], [9], [3] and [6, Theorem 7.2.1]; also

see the fundamental paper [7] by Iwaniec and Sbordone).

n2
Theorem 1.1 Suppose that the Jacobian of f € W'ZIOC”TI(Q,R”) is non-
negative a.e. and the mapping [ obeys the rule (7) of integration by parts.
Then f satisfies the isoperimetric inequality (2) for every xy € Q and almost

every radius r € (0, dist(xg, 02)).

The question of the sharp constant is motivated by the study of sharp mod-
ulus of continuity properties for mappings of finite distortion, see the forth-

coming papers [8] and [13].

2 Proof of Theorem 1.1

Let Br = B(z, R) C Q be a ball such that By C Q. We approximate f in
Wl’gl_fl(BR,R”) by mappings f € C>(Bg,R"). Since the functions |DFf¢|
converge to |D*f| in L'(Bg) (observe that the cofactor matrix is made up
from (n — 1)-subdeterminants of the differential matrix and n”—jl >n—1), we
find by Fubini’s theorem that | D¥ f¢| converges to | D* f| in L' (9B, for almost
every radius r € (0, R). Fix r € (0, R) so that the functions | D* | converge
to |D*f| in L'(8B,). Pick 0 < € < £. We take a convolution approximation
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ug to the characteristic function xp, . of the ball B,_. by using the standard
mollifiers ®; (see [6, Formula (4.6)]) where ¢ is chosen to be so small that
u; € C°(B,). Then 0 < uf <1 and so

S g yio < 1) ([ Do)l de) T

Applying Stokes’ theorem for the smooth mapping f; we find that

| @i fyde == [ f@IG e ) de (10

[ i)y de <

. B, B,

The telescoping decomposition of the Jacobian (cf. [6, Section 8]) leads the

equation

; filz)J (z,ug, fo, ..., frn) dx — ; fi@)J(z,us, fa, .., f1) da
= [ (@)= @)@ o ) o

+)° i Fu@) T (s, fas o foys fo = fis frsts ooy fu) do. (11)
k=2 T

Combining Hadamard’s inequality with Holder’s inequality we find that

; fi(x)J(z,ug, fo, ..., fn) dx — ; ff(x)J(a:,ui,fg, o [ da

< [ n=gI9aipsr -+ Y [ 1#IVaiDs DS - DrDf
Br k=2 Br

uiluann ([ 15-5)" ([ 1001)

By By

reiVailima ([ 160°)" ([ (pri+ s
B B

([ or-pp) " (12)

By the Sobolev-Poincare inequality we see that the right hand side of inequal-

IN

2

ity (12) tends to zero as i goes to infinity. Combining this with inequality
(9) and equation (10) we find that

- BTfl(x)J(x,ui,fg,...,fn)dxSI(n) (/6 |D”f(:c)|dx)”nl. (13)

B
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Applying the assumptions u§ € C§°(B,) and (7) we conclude that

_n_
n—1

/r ul(z)J(z, f)de < I(n) </aB |D*f ()] dx) : (14)

Since uf(z)J (z, ) < x5, (x)J(z, f) and J(-, f) € Li,.() by (8), we can use

loc

the Dominated convergence theorem. Letting first ¢ — 0 and then ¢ — 0,

the claim follows.
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