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Abstract

We show that the sharp integral form on the isoperimetric inequal-

ity holds for those orientation preserving mappings f ∈ W
n2

n+1

loc (Ω, Rn)
whose Jacobians obey the rule of integration by parts.

1 Introduction

The familiar geometric form of the isoperimetric inequality reads as

nn−1ωn−1|U |n−1 ≤ |∂U |n, (1)

where |U | stands for the volume of a domain U ⊂ R
n and |∂U | is its

(n − 1)-dimensional surface area. Now, if f : Br → U is a diffeomorphism

of a ball Br = B(x0, r) ⊂ R
n onto U , then |U | =

∣∣∣∫Br
J(x, f) dx

∣∣∣, while

|∂U | ≤
∫

∂Br
|D	f(x)| dx. Here D	f(x) stands for the cofactor matrix of the

differential matrix Df(x). In this way, we obtain what is known as the

integral form of the isoperimetric inequality, namely

∣∣∣∣
∫

Br

J(x, f) dx

∣∣∣∣ ≤ I(n)

(∫
∂Br

|D	f(x)| dx

) n
n−1

(2)

with I(n) = (n n−1
√

ωn−1)
−1. Above, we used the operator norm of the cofactor

matrix, defined by |D	f(x)| = sup{|D	f(x)h| : |h| = 1}.
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Reshetnyak proved in [14] the sharp Hölder-continuity for a mapping of

bounded distortion by extending certain ideas of Morrey’s [10]. This required

him to prove the isoperimetric inequality (2) for mapping in the Sobolev class

W 1,n [15] (also see [2, Theorem 4.5.9 (31)]) that has been later explored for

example in non-linear elasticity [11], [12]. One can check using a standard

approximation argument that it suffices to prove the isoperimetric inequality

(2) for all smooth mappings. The sharp constant I(n) in inequality (2) plays

a very crucial role in Reshetnyak’s argument (also see [6, Chapter 7.7]).

The Sobolev regularity W 1,n cannot be substantially relaxed. Indeed, the

mapping

f(x) =
x

|x| log

(
e

|x|

)
(3)

belongs to ∩p<nW
1,p(B(0, 1), Rn) but (2) fails for all 0 < r < 1.

For example in non-linear elasticity (see [1], [16] and [12]) it is natural to

assume that the Jacobians of the mappings in consideration are positive a.e.,

because a deformation of an elastic body should be orientation preserving.

Recently, a generalization of mappings of bounded distortion, the theory of

mappings of finite distortion, has emerged, partially motivated by non-linear

elasticity. We refer the interested reader to the monograph [6] by Iwaniec

and Martin. This theory assumes that f ∈ W 1,1
loc (Ω, Rn), J(x, f) ≥ 0 a.e.,

|Df |n ∈ LP
loc(Ω) (4)

where

the function t → P (t
n

n+1 ) is increasing for large values of t, (5)∫ ∞

1

P (t)

t2
dt = ∞ (6)

and P is an Orlicz-function (see [6, Chapter 4.12]). One can improve example

(3) and find, for each given function P for which the integral (6) converges,

a radial stretching f so that (4) holds and (2) fails ([9]). We proved in [5]

that, under the above assumptions, the isoperimetric inequality holds, with

some constant, depending only on the dimension n. In this paper, we will

give a simple limiting argument to show that, under the above assumptions,

the isoperimetric inequality (2) holds with the sharp constant I(n). Actually

this is a simple case of our more general theorem.
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Let f ∈ W
1, n2

n+1

loc (Ω, Rn). We say that the Jacobian J(·, f) of f obeys the

rule of integration by parts if the equation∫
Ω

ϕ(x)J(x, f) dx = −
∫

Ω

fi(x)J(x, f1, ..., fi−1, ϕ, fi+1, ..., fn) dx (7)

is valid for every test function ϕ ∈ C∞
0 (Ω) and each index i = 1, ..., n. Under

the assumption f ∈ W
1, n2

n+1

loc (Ω, Rn), different choices of indices i yield the

same value of the integral, see [3]. It is important to note that the right hand

side is well defined for mappings lying in the Sobolev space W
1, n2

n+1

loc (Ω, Rn)

and so equation (7) implies, when the Jacobian does not change the sign,

that

J(·, f) ∈ L1
loc(Ω). (8)

As an example, the Jacobian of a mapping of finite distortion, see (4)-(6),

obeys the rule of integration by parts ([4], [9], [3] and [6, Theorem 7.2.1]; also

see the fundamental paper [7] by Iwaniec and Sbordone).

Theorem 1.1 Suppose that the Jacobian of f ∈ W
1, n2

n+1

loc (Ω, Rn) is non-

negative a.e. and the mapping f obeys the rule (7) of integration by parts.

Then f satisfies the isoperimetric inequality (2) for every x0 ∈ Ω and almost

every radius r ∈ (0, dist(x0, ∂Ω)).

The question of the sharp constant is motivated by the study of sharp mod-

ulus of continuity properties for mappings of finite distortion, see the forth-

coming papers [8] and [13].

2 Proof of Theorem 1.1

Let BR = B(x0, R) ⊂ Ω be a ball such that BR ⊂ Ω. We approximate f in

W 1, n2

n+1 (BR, Rn) by mappings f i ∈ C∞(BR, Rn). Since the functions |D	f i|
converge to |D	f | in L1(BR) (observe that the cofactor matrix is made up

from (n−1)-subdeterminants of the differential matrix and n2

n+1
≥ n−1), we

find by Fubini’s theorem that |D	f i| converges to |D	f | in L1(∂Br) for almost

every radius r ∈ (0, R). Fix r ∈ (0, R) so that the functions |D	f i| converge

to |D	f | in L1(∂Br). Pick 0 < ε < r
2
. We take a convolution approximation
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uε
t to the characteristic function χBr−ε of the ball Br−ε by using the standard

mollifiers Φt (see [6, Formula (4.6)]) where t is chosen to be so small that

uε
t ∈ C∞

0 (Br). Then 0 ≤ uε
t ≤ 1 and so

∫
Br

uε
t(x)J(x, f i) dx ≤

∫
Br

J(x, f i) dx ≤ I(n)

(∫
∂Br

|D	f i(x)| dx

) n
n−1

. (9)

Applying Stokes’ theorem for the smooth mapping fi we find that∫
Br

uε
t(x)J(x, f i) dx = −

∫
Br

f i
1(x)J(x, uε

t, f
i
2, ..., f

i
n) dx. (10)

The telescoping decomposition of the Jacobian (cf. [6, Section 8]) leads the

equation ∫
Br

f1(x)J(x, uε
t, f2, ..., fn) dx −

∫
Br

f i
1(x)J(x, uε

t, f
i
2, ..., f

i
n) dx

=

∫
Br

(f1(x) − f i
1(x))J(x, uε

t, f2, ..., fn) dx

+
n∑

k=2

∫
Br

f1(x)J(x, uε
t, f

i
2, ..., f

i
k−1, fk − f i

k, fk+1, ..., fn) dx. (11)

Combining Hadamard’s inequality with Hölder’s inequality we find that∣∣∣∣
∫

Br

f1(x)J(x, uε
t, f2, ..., fn) dx −

∫
Br

f i
1(x)J(x, uε

t, f
i
2, ..., f

i
n) dx

∣∣∣∣
≤

∫
Br

|f1 − f i
1||∇uε

t||Df |n−1 +
n∑

k=2

∫
Br

|f1||∇uε
t||Df i|k−2|Df − Df i||Df |n−k

≤ |∇uε
t|L∞(Br)

(∫
Br

|f1 − f i
1|n

2

) 1
n2

(∫
Br

|Df | n2

n+1

)n2−1

n2

+C(n)|∇uε
t|L∞(Br)

(∫
Br

|f1|n
2

) 1
n2

(∫
Br

(|Df i| + |Df |) n2

n+1

)n2−n−2

n2

(∫
Br

|Df − Df i| n2

n+1

)n+1

n2

. (12)

By the Sobolev-Poincarè inequality we see that the right hand side of inequal-

ity (12) tends to zero as i goes to infinity. Combining this with inequality

(9) and equation (10) we find that

−
∫

Br

f1(x)J(x, uε
t, f2, ..., fn) dx ≤ I(n)

(∫
∂Br

|D	f(x)| dx

) n
n−1

. (13)
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Applying the assumptions uε
t ∈ C∞

0 (Br) and (7) we conclude that

∫
Br

uε
t(x)J(x, f) dx ≤ I(n)

(∫
∂Br

|D	f(x)| dx

) n
n−1

. (14)

Since uε
t(x)J(x, f) ≤ χBr(x)J(x, f) and J(·, f) ∈ L1

loc(Ω) by (8), we can use

the Dominated convergence theorem. Letting first t → 0 and then ε → 0,

the claim follows.
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