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Abstract. We show that, in dimensions n ≥ 3, the metric boundary of a conformal

deformation of the unit ball is pathwise connected, and even of bounded turning, provided

the conformal scaling factor satisfies a Harnack inequality and the volume growth of the

deformed space is at most euclidean.

Following [1] we consider conformal deformations of the unit ball of R
n, n ≥ 2, of

the following type. Let ρ : B
n → (0,∞) be a continuous function satisfying for some

constants A ≥ 1 and B > 0,

HI(A) 1/A ≤ ρ(x)
ρ(y)

≤ A whenever x, y ∈ Bz = B(z,
1
2
(1 − |z|)) for any z ∈ B

n,

and

V G(B) µρ(Bρ(x, r)) ≤ Brn for all x ∈ B
n, and r > 0.

Here µρ(E) =
∫

E
ρndmn and Bρ(x, r) is a ball center centered at x with radius r with

respect to the metric dρ, defined for x, y ∈ B
n by the formula

dρ(x, y) = inf
γ

∫
γ

ρds,

where the infimum is taken over all curves in B
n with endpoints x and y. We will call a

function ρ satisfying both HI(A) and V G(B) for some constants A and B a conformal

density. Notice that HI(A) requires that the density ρ satisfies a Harnack inequality

and V G(B) that the volume growth is at most euclidean. The ρ-boundary of the unit
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ball, ∂ρB
n, is defined as (Bn, dρ) \ (Bn, dρ). Here we take the abstract closure of the

metric space (Bn, dρ). The metric dρ then extends in a natural way to this boundary.

Thanks to [1], ∂ρB
n can be identified with the set of those points ς ∈ ∂B

n for which the

integral of ρ along the ray [0, ς) is finite. It was shown in [1] that many of the properties

of quasiconformal images of balls are shared by the metric space (Bn, dρ), and the size

of ∂ρB
n in the metric dρ was further examined in [2].

The study of the connectivity properties of ∂ρB
n was initiated in [7]. In particular, it

was shown that, in dimensions n ≥ 3, for all ς, ϑ ∈ ∂ρB
n outside a small exceptional set,

there exists a path, i.e. a continuous mapping, γ : ([0, 1], |.|) → (∂ρB
n, dρ) that connects

ς and ϑ. In fact, γ can be taken to be Hölder continuous. It remained however open if

(∂ρB
n, dρ) is pathwise connected when n ≥ 3; it is easy to give examples in dimension

two where this fails.

In this note, we show that (∂ρB
n, dρ) is indeed pathwise connected for n ≥ 3 by

establishing the following theorem.

Theorem A. Let n ≥ 3, and assume that ρ is a conformal density on B
n. Then

(∂ρB
n, dρ) is pathwise connected. Moreover, any pair ς, ϑ of points in ∂ρB

n can be

joined by a path γ in ∂ρB
n with diamρ(γ) ≤ C(A, B)dρ(ς, ϑ).

Here diamρ(γ) refers to the diameter of the image of γ in the ρ-metric. It is then

natural to inquire if we could replace the diameter by length in Theorem A. This turns

out not to be the case, as is easily seen by taking, for example, ρ(t) = (1 − t)−1/2.

Then there are no non-trivial rectifiable paths on ∂ρB
n. See [1] for the fact that this ρ

satisfies our assumptions; examples of this type can even be realized as quasiconformal

mappings [3]. Thus our metric space is, in the lingo of quasiconformal mappings, of

bounded turning but not quasiconvex. When ρ arises from a quasiconformal mapping,

the bounded turning condition translates to a property of the boundary of image domain

in the internal metric. The results by Gehring [4] show that the complement of the image

domain is bounded turning in the euclidean metric, but our conclusion appears to be

new even in this setting.
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It would be interesting to know if, in dimensions n ≥ 4, one has even stronger

connectivity properties, say, if the boundary is then simply connected. Furthermore, it

is not clear to us to what extent the underlying metric space (Bn, |.|) can be replaced

with a more general space; for an extension of a large part of [1] to a more general

setting see [5].

1. Preliminaries

We denote by C(α, β, ...) a positive constant whose value can be chosen in a way that

is dependent only on quantities α, β, ... and nothing else. By writing [x, y) we mean the

set {ty + (1 − t)x : 0 ≤ t < 1}. Given ς ∈ ∂ρB
n, λ ∈ (0, 1), and r ∈ (0, 1] we set

Cone(ς, λ, r) =
⋃

{B
(
tς, λ(1 − t)

)
: 1 − r ≤ t < 1}.

We need the following version of a density estimate originally proven in [7]. In the

original version, the radius of the euclidean ball is r, and instead of 4
5 , the constant in

the definition of δ is 5
9 . However, by HI(A) and Lemma 1.3 in [7], the argument in the

proof of Theorem 3.1 in [7] applies with these modifications. The version stated below

can also be obtained by combining 2.1 and Lemma 3.2 in [1] with Proposition 4.3 in [6]

and using an auxiliary Möbius transformation.

We formulate the estimate in terms of the Hausdorff content H∞
α (of a set E) by

which we mean the number

H∞
α (E) = inf{

∞∑
k=1

rα
k : E ⊂

∞⋃
k=1

B(xk, rk)}.

Lemma 1.1. Let ς ∈ ∂ρB
n and 0 < r ≤ 1. Set δ = diamρ(Cone(ς, 4

5 , r)). Then there

exists a constant C = C(B, n) > 0 such that

H∞
1 (

(
B(ς,

3
2
r) ∩ ∂B

n
)
\Bρ(ς, r̂)) ≤

Cr(
log(1 + r̂

2δ )
)n−1

for r̂ ≥ 2δ.
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We will also repeatedly use the Gehring-Hayman theorem from [1].

Theorem 1.2. (Gehring-Hayman Theorem) If γ is hyperbolic geodesic in B
n, then

∫
γ

ρds ≤ Cdρ(x, y),

where C = C(A, B, n).

2. Pathwise connectivity of the boundary

In the thesis [7, Theorem 3.1], the following result was established.

Theorem 2.1. Let 0 < α ≤ 1 and n ≥ 3. There is a set E ⊂ ∂B
n such that

H∞
α (E) = 0 with the following property. For every pair of points ς, ω ∈ ∂ρB

n\E, there

exists a euclidean path γ ⊂ ∂ρB
n\E that connects ς and ω, and and so that the identity

mapping id : (γ, |.|) → (γ, dρ) is Hölder continuous with exponent α/n along γ.

Examples show that one cannot take E = ∅. In order to prove Theorem A, we must

thus give up Hölder continuity.

We split the proof into lemmas. To simplify our notation, from now on, the balls

we are dealing with in both metrics are supposed to be contained as sets in ∂B
n, if not

stated otherwise. Recall here that ∂ρB
n can be identified as a subset of ∂B

n.

Lemma 2.2. Let ς ∈ ∂ρB
n and 0 < r ≤ 1. Then there exists a constant C =

C(A, B, n) > 0 and j ≥ 1 so that

H∞
1 (B(ς,

3
2
r) \ Ej) <

r

100
,

where

Ej = {ω ∈ ∂ρB
n ∩ Bρ(ς, Cr̂) : ρ(tw) ≤ (1 − t)−1+1/n for all t ∈ [1 − 1/j, 1)}

and r̂ = diamρ(Cone(ς, 4
5 , r)).
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Proof. It follows from Lemma 1.1 that there is a constant C = C(B, n) > 0 such that

H∞
1 (B(ς,

3
2
r)\Bρ(ς, Cr̂)) <

r

200
.

Thus it is enough to show that we have an appropriate growth estimate for ρ(tω) on

sufficiently many radii.

Define

Dj = {ω ∈ Bρ(ς, Cr̂) : ρ(tω) > (1 − t)
1
n−1 for some t ∈ [1 − 1

j
, 1)}.

It suffices to show that there exists j0 ∈ N such that

H∞
1 (B(ς,

3
2
r) ∩ Dj0) <

r

200
.

For that purpose, fix j and consider points ω ∈ B(ς, 3
2r) ∩ Dj such that

(2.3) ρ(tωω) > (1 − tω)
1
n−1 for some tω ∈ [1 − 1

j
, 1).

From HI(A) it follows that there exists a constant C = C(A, n) such that

∫
Btωω

ρndmn ≥ Cρ(tωω)n(1 − tω)n

≥ C(1 − tω)1−n(1 − tω)n = C(1 − tω).

Write also

F =
⋃

ϕ∈B(ς, 3
2 r)∩Bρ(ς,Cr̂)

Cone(ϕ,
1
2
, 1).

Then F is open and, by the Gehring-Hayman theorem, there is a finite l such that

lengthρ[0, ϕ) ≤ l for every ϕ. Thus by HI(A) (cf. Lemma 1.3 in [7]), diamρ(F ) < ∞.

Moreover, from V G(B) it follows that

µρ(F ) =
∫

F

ρndmn < ∞.

Define u(x) = ρ(x)n for x ∈ F and u(x) = 0 elsewhere. Then u ∈ L1(Rn).
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For each ω ∈ B(ς, 3
2r) ∩ Dj , pick a closed ball B̄ω = B̄(ω, 3

2 (1 − tω)) ⊂ R
n so that

the inequality in (2.3) holds. By the Besicovitch covering theorem, there is a constant

C ′ = C ′(n), and a cover of B(ς, 3
2r) ∩ Dj by countably many of these balls, call them

B̄i, which cover also the Whitney balls B̂i = B(tωiωi,
1
2 (1 − tωi)), such that

H∞
1 (B(ς,

3
2
r) ∩ Dj) ≤

∑
i

(
3
2
(1 − tωi

))

≤ (3/2)
C

∑
i

∫
B̂i

ρndmn

≤ (3/2)C ′

C

∫
∪iBi

udmn

= C ′′
∫
∪iBi

u dmn.

Since u ∈ L1(Rn) and tωi ∈ [1− 1
j , 1), the last integral above can be made, by enlarging

j, as small as we wish. �

Given a 2-sphere S ⊂ ∂B
n, ς ∈ ∂B

n, and r > 0 we write

S1(ς, r) = {ω ∈ ∂B
n ∩ S : |ς − ω| = r}.

Our next lemma shows that the sets Ej from Lemma 2.3 contain suitable circles and

circular arcs.

Lemma 2.4. Let ς ∈ ∂ρB
n, 0 < r ≤ 1. Suppose that S ⊂ ∂B

n is a 2-sphere with ς ∈ S.

Then there is j ≥ 1, a radius
√

2r < r′ < 3
2r, and a spherical arc J ⊂ S that joins

S1(ς, r
2 ) to S1(ς, 3

2r) so that J ∪ S1(ς, r′) ⊂ Ej .

Proof. By Lemma 2.2,

H∞
1 (B(ς,

3
2
r) \ Ej) <

r

100
,

when j is sufficiently large. Let P be the projection from S ∩ (B(ς, 3
2r) \ B(ς, r

2 )) to

S1(ς, r). Then P is Lipschitz continuous with constant 2. Thus

H∞
1 (P (S ∩ (B(ς,

3
2
r) \ B(ς,

r

2
)) \ Ej)) ≤ 2H∞

1 (B(ς,
3
2
r) \ Ej).

Because H∞
1 (S1(ς, r)) ≥ r/

√
2, we conclude that there is a circular arc J ⊂ S ∩ Ej ,

contained in B(ς, 3
2r) \ B(ς, r

2 ), which joins S1(ς, r
2 ) to S1(ς, 3

2r). The existence of a
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desired radius
√

2r < r′ < 3
2r follows by similar reasoning as above. Observe that

S ∩ (B(ς, 3
2r) \ B(ς,

√
2r)) can be projected into J using a Lipschitz mapping with

constant 1. Moreover, H∞
1 (J ∩ (B(ς, 3

2r) \ B(ς,
√

2r))) ≥ (3/2 −
√

2)r/4. �

Lemma 2.5. Let Ej be as above, and let γ : ([0, 1], |.|) → (Ej , |.|) be continuous. Then

id ◦ γ : ([0, 1], |.|) → (Ej , dρ) is continuous and

diamρ(γ) + dρ(γ, ς) ≤ 3Cdiamρ(Cone(ς,
4
5
, r)),

where C is the constant in Lemma 2.2.

Proof. Let 0 < ε < 1/j and t0 ∈ [0, 1]. Write ϕ = γ(t0). Choose δ > 0 so small that for

every t ∈ [0, 1] with |t − t0| < δ,

|γ(t) − γ(t0)| ≤ ε.

Write ϕ = γ(t0) and φ = γ(t).

Now, since ϕ, φ ∈ Ej and ε < 1/j,

(2.6)
lengthρ[(1 − ε)ϕ, ϕ) =

∫ 1

1−ε

ρ(tϕ)dt

≤
∫ 1

1−ε

(1 − t)
1
n−1dt = nε1/n.

By (2.6) and HI(A) (cf. Lemma 1.3 in [7]), there is a constant C = C(A) > 0 such that

diamρ(Cone(ϕ,
1
2
, ε)) ≤ Cnε1/n.

This estimate also holds for φ. Since the cones at ϕ and φ intersect, ϕ and φ can be

joined in B
n with a path whose ρ-length is at most 2Cnε1/n. In other words,

dρ(ϕ, φ) ≤ 2Cnε1/n.

The continuity of id ◦ γ follows. The last assertion of the lemma follows from the

definition of Ej and the triangle inequality. �
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Proof of Theorem A. Given ς, ϑ ∈ ∂ρB
n, pick a 2-sphere S ⊂ ∂B

n so that ς, ϑ ∈ S. Let

r = |ς−ϑ|/2. Using Lemma 2.4 and Lemma 2.5 we find circles Sς,1 and Sϑ,1 centered at ς

and at ϑ of radii
√

2r < r1
ς < 3

2r and
√

2r < r1
ϑ < 3

2r and corresponding circular arcs J1
ς ,

J1
ϑ so that all these sets are the images of ρ-paths and contained in Bρ(ς, r1)∪Bρ(ϑ, r1),

where

r1 = C max{diamρ(Cone(ς,
4
5
, r)),diamρ(Cone(ϑ,

4
5
, r))},

in which C is the constant of Lemma 2.2. By elementary geometry, (Sς,1 ∪J1
ς )∩ (Sϑ,1 ∪

J1
ϑ) �= ∅. Therefore, Sς,1 ∪ Sϑ,1 ∪ J1

ς ∪ J1
ϑ is connected.

We continue by repeating the use of Lemma 2.4 and Lemma 2.5 for r
2 . We obtain

analogous sets Sς,2, Sϑ,2, J2
ς , J2

ϑ, contained in Bρ(ς, r2) ∪ Bρ(ϑ, r2), where

r2 = C max{diamρ(Cone(ς,
4
5
,
r

2
)),diamρ(Cone(ϑ,

4
5
,
r

2
))}.

The union of these new sets together with the sets from the first step is again connected.

Continue in this manner inductively. The desired ρ-path γ is now obtained by gluing

together suitable pieces of the arcs and circles; notice that diamρ(Cone(ω, 4
5 , 2−ir))

tends to zero when i → ∞ and ω ∈ ∂ρR
n.

To see that diamρ(γ) ≤ C(A, B)dρ(ς, ϑ), notice first that the image of γ is contained

in Bρ(ς, r1) ∪ Bρ(ϑ, r1), and

Cone(ς,
4
5
, r) ∩ Cone(ϑ,

4
5
, r) �= ∅.

On the other hand, it follows from HI(A) and the Gehring-Hayman theorem that

r1 ≤ Cdρ(ς, ϑ), where C = C(A, B, n) (cf. Lemma 1.7 in [7]). The claim follows. �
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