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Abstract. We consider quasiconformal mappings in the upper
half space Rn+1

+ of Rn+1, n ≥ 2, whose almost everywhere defined
trace in Rn has distributional differential in Ln(Rn). We give both
geometric and analytic characterizations for this possibility, resem-
bling the situation in the classical Hardy space H1. More generally,
we consider certain positive functions defined on Rn+1

+ , called con-
formal densities. These densities mimic the averaged derivatives of
quasiconformal mappings, and we prove analogous trace theorems
for them. The abstract approach of general conformal densities
sheds new light to the mapping case as well.
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1. Introduction

A quasiconformal mapping that is defined in the upper half space
Rn+1

+ of Rn+1 has an almost everywhere defined trace on Rn via its
radial (angular) limits. In this paper, we study what happens when
this trace possesses some degree of regularity. More specifically, we
consider the case when the distributional differential of the trace is in
Ln(Rn) for n ≥ 2. It turns out that this case admits interesting charac-
terizations. For example, we shall show that the averaged derivative of
a quasiconformal mapping satisfies a Hardy type n-summability con-
dition if and only if its radial maximal function is n-summable in Rn.
The crucial observation here is that both of these conditions are equiv-
alent to the n-summability of the differential of the trace. This result
closely resembles the situation in the holomorphic Hardy space H1.

As an application, we prove a compactness theorem for quasiconfor-
mal mappings of Rn+1

+ . This result can be applied in particular for a
family of maps for which the Hausdorff n-measure of the boundary of
the image domain has a fixed upper bound.

The characterizations that we present in this paper are not true
for quasiconformal mappings in the plane. It is crucial for all the
aforementioned results that the dimension of the boundary Rn = ∂Rn+1

+

is at least two. Ultimately, this dimensional restriction is due to the
existence of singular boundary values for quasiconformal mappings of
the upper half plane R2

+. Analytically, the failure is seen through the
mapping properties of various maximal functions on L1.

Basically our results are not really about quasiconformal mappings.
In a recent paper [BKR], the authors developed a theory of “conformal
densities” as a generalization of the theory of (quasi-)conformal map-
pings of the unit ball (alternatively, the upper half space) in Euclidean
space. It turns out that our main result for quasiconformal mappings,
Theorem 1.1, has a general formulation in terms of conformal densi-
ties. We present this generalization in Theorem 4.1, which should be
regarded as the main result of this paper.

There are two reasons for doing such a generalization. First, the
theory of conformal densities appears to be a natural tool in proving
results also about quasiconformal mappings. This principle is demon-
strated in the proof of Theorem 5.1 below, where trace results are es-
tablished (compare Corollary 5.2). Second, we believe that the use of
general densities, and its accompanying theory of Banach space-valued
Sobolev functions as in [HKST], is of independent interest, and useful
in other contexts as well.
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The work here was partly motivated by our quest to try to solve the
longstanding open problem of “inverse absolute continuity” for qua-
siconformal mappings on lower dimensional surfaces [G1], [G2], [G3],
[V2], [BM]. This problem asks whether the restriction of a quasicon-
formal mapping to a smooth (hyper)surface transforms sets of positive
surface measure to sets of positive surface measure in case the image
of the hypersurface has locally finite Hausdorff measure of the correct
dimension. A related question asks for a similar measure preservation
property for quasisymmetric mappings from Rn, n ≥ 2, onto an arbi-
trary metric space of locally finite Hausdorff n-measure [HS, Question
15]. We hope that the techniques in the present paper will be useful in
further attempts to conquer these open problems.

Before stating our results, we require some notation and terminology.

1.1. Basic notation. We denote by Rn+1
+ the open upper half space

in Rn+1 and the points in Rn+1
+ by z = (x, t). Thus,

Rn+1
+ = {z = (x, t) : x ∈ Rn and t > 0}.

Although much of the preliminary discussion remains valid whenever
n ≥ 1, our main results demand that n ≥ 2. The dimensional assump-
tions will be made precise as required.

Lebesgue n-measure is denoted by mn. For α > 0, the Hausdorff
α-dimensional measure in a metric space is written as Hα, while H∞

α

denotes the Hausdorff α-content arising in the Carathéodory construc-
tion for Hausdorff measures. See [Fe, p. 170].

Mean values of integrable functions are denoted by barred integral
signs, and the abbreviation

uE =

∫
E

u(1.1)

is used for integrable functions u and for measurable sets E of positive
measure. The measure in expressions like (1.1) is usually clear from
the context.

Whenever Q ⊂ Rn is an n-cube, we denote its edge length by �(Q),
and then set

Q̂ = Q× [�(Q), 2�(Q)] ⊂ Rn+1
+ ,(1.2)

so that Q̂ is the upper half of the (n+1)-dimensional box Q×[0, 2�(Q)].
For definiteness, we assume that cubes are closed. We denote by zQ

the center of a cube, and by Qx,t the n-cube with sides parallel to the
coordinate axes, with center x ∈ Rn and edge length �(Qx,t) = t. Thus,

Q̂x,t = Qx,t × [t, 2t].(1.3)



4 KARI ASTALA, MARIO BONK, AND JUHA HEINONEN

Note that the hyperbolic diameter of the cube Q̂ is a constant that is
independent of Q, where the hyperbolic metric in Rn+1

+ is determined
by the length element |dz|/t.

We denote by D(Rn) the countable collection of all dyadic cubes in
Rn. Thus, Q ∈ D(Rn) if and only if the corners of Q lie in 2k Zn and
�(Q) = 2k for some k ∈ Z. Similarly, if Q0 ⊂ Rn is a cube, we denote
by D(Q0) the dyadic subcubes of Q0. Finally, set

W = {Q̂ : Q ∈ D(Rn)}.(1.4)

The members of W will be referred to as (dyadic) Whitney cubes of
Rn+1

+ .
We employ throughout the notation a � b (respectively, a � b)

meaning that there is a positive constant C > 0, depending only on
some obvious data at hand, such that (1/C)a ≤ b ≤ Ca (respectively,
a ≤ Cb). We also use the phrase a � b (resp. a � b) with constants
depending only on α, β, . . . meaning that C depends only on α, β, . . . .
Alternatively, we write C = C(α, β, . . . ) in this case.

There will also be some self-explanatory notation, such as “diam”
and “dist”.

1.2. Quasiconformal mappings and averaged derivatives. For
the basic theory of quasiconformal mappings in Euclidean spaces we
refer to [V1]. We make the convention that all quasiconformal map-
pings are sensepreserving. The notation F : Rn+1

+ → Rn+1 means that
F is a mapping into Rn+1. The image D = F (Rn+1

+ ) is explicitly men-
tioned only if it is relevant to the discussion at hand. The maximal
dilatation of a quasiconformal mapping F is denoted by K(F ) (see
[V1, p. 42] for the definition).

If F : Rn+1
+ → Rn+1 is a quasiconformal mapping, then the limit

lim
t→0

F (x, t) =: f(x)(1.5)

exists for almost every x ∈ Rn with respect to Lebesgue n-measure.
In fact, the limit in (1.5) exists for x ∈ Rn outside an exceptional
set of (n + 1)-capacity zero, in particular outside a set of Hausdorff
dimension zero. (See [Zo], [Vu, Lemma 14.7 and Theorem 15.1], [BKR,
Theorem 4.4 and Remark 4.5 (b)].) For now, we understand that f is
defined almost everywhere in Rn via expression (1.5). We return to the
issue of quasieverywhere defined boundary values later in Section 5.
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The averaged derivative aF of a quasiconformal mapping F : Rn+1
+ →

Rn+1 is defined by

aF (x, t) =

(∫
Q̂x,t

JF (z) dmn+1(z)

)1/(n+1)

,(1.6)

where JF = det(DF ) designates the Jacobian determinant of F , which
exists almost everywhere in Rn+1

+ . Recall that in this article quasi-
conformal mappings are assumed to be sensepreserving, so that JF is
nonnegative.

Definition (1.6) (in an equivalent form) was first used in [AG], and it
has turned out to be a natural quasiconformal analog for the absolute
value of the derivative of a conformal mapping. We recall that quasicon-
formal mappings do not in general have pointwise defined derivatives.

The following three statements were proved in [AG]: For Q̂ ∈ W
and z ∈ Q̂ we have that

aF (z) � aF (zQ̂) =: aF (Q̂)(1.7)

and that

aF (Q̂) � diam(F (Q̂))

diam(Q̂)
� dist

(
F (Q̂), ∂D

)
diam(Q̂)

,(1.8)

where D = F (Rn+1
+ ); moreover, if Q̂, Q̂′ ∈ W are adjacent, we have

that

aF (Q̂) � aF (Q̂′),(1.9)

with constants of comparability in all three cases depending only on n
and K(F ).

Properties (1.7) and (1.9) constitute a Harnack type inequality for
aF . It was observed in [BKR] that this Harnack inequality, together
with another basic property of aF called a volume growth property,
can be abstracted and a rich function theory emerges from a study of
conformal densities satisfying these two properties. We shall discuss
this in Subsection 2.1 below.

1.3. The space Oscn,∞. Following Rochberg and Semmes [RS1], [RS2],
we next introduce a Besov type space Oscn,∞. Later in the paper, we
shall need this space for functions with values in a Banach space and
for this reason we take up the general definition here. For our first
main theorem, Theorem 1.1, one can take V = Rn+1 in what follows.

Let V = (V, | · |) be a Banach space. In the following, Q0 will either
be a cube in Rn or Q0 = Rn. We denote by L1(Q0; V ) the vector space
of integrable and by L1

loc(Q0; V ) the vector space of locally integrable
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measurable functions f : Q0 → V . Throughout, the notions involving
vector-valued integration refer to the classical Bochner integral [DU,
Chapter II], [BL, Section 5.1]. In particular, by definition functions
in L1

loc(Q0; V ) are assumed to be essentially separably valued; that is,
given f ∈ L1

loc(Q0; V ), there is a subset Z of Q0 of measure zero such
that f(Q0 \ Z) is a separable subset of V .

For a cube Q ⊂ Q0, the mean value

fQ =

∫
Q

f dmn ∈ V(1.10)

of a function f ∈ L1
loc(Q0; V ) has the property that

〈Λ, fQ〉 =

∫
Q

〈Λ, f〉 dmn(1.11)

for all elements Λ in the dual space V ∗. Throughout, we shall use the
standard pairing notation 〈Λ, v〉 = Λ(v) for v ∈ V and Λ ∈ V ∗.

We define the space Oscn,∞(Rn; V ) to consist of all functions f ∈
L1

loc(R
n; V ) for which the map

Q �→ Af (Q) =

∫
Q

|f − fQ| dmn(1.12)

belongs to the weak Lebesgue space weak-�n, uniformly over translated
families of dyadic cubes. More precisely, f ∈ L1

loc(R
n; V ) belongs to

Oscn,∞(Rn; V ) if and only if the “norm”

‖f‖Oscn,∞ = ‖f‖Oscn,∞(Rn;V ) = sup
w∈Rn

sup
λ>0

λN(f, w, λ)1/n(1.13)

is finite, where

N(f, w, λ) := #{Q ∈ D(Rn) : Af (Q− w) > λ}.(1.14)

Here # denotes cardinality, and

Q− w = {y − w : y ∈ Q}.
The expression ‖f‖Oscn,∞ given in (1.13) can be defined alternatively
as

sup
w∈Rn

sup
λ>0

λ
(
#{Q ∈ D(Rn) : Aτw(f)(Q) > λ}

)1/n
,(1.15)

where τw is the translation operator

τw(f)(x) = f(x− w).(1.16)

We also write

τw(Q̂) = Q̂− w.(1.17)
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1.4. The Riesz class. We now present our first main theorem. In
addition to the preceding discussion, recall notation from (1.6), (1.2),
and (1.4).

Theorem 1.1. Let F : Rn+1
+ → Rn+1, n ≥ 2, be a quasiconformal

mapping with the radial boundary values f(x) = limt→0 F (x, t) for a.e.
x ∈ Rn. Then the following five conditions are equivalent:

(i) a∗
F (·) := sup

t>0
aF (·, t) ∈ Ln(Rn),

(ii) ‖aF‖QHn :=

(
sup
t>0

∫
Rn

aF (x, t)n dmn(x)

)1/n

<∞,

(iii) sup
λ>0

λ
(
#

{
Q ∈ D(Rn) : diam

(
F (Q̂)

)
> λ

})1/n

<∞,

(iv) f ∈ Oscn,∞(Rn; Rn+1),

(v) f ∈ L1
loc(R

n; Rn+1) and the distributional differential Df belongs
to Ln(Rn).

Moreover, the various Lebesgue type norms appearing in conditions
(i)–(v) are equivalent with multiplicative constants only depending on
the dimension n and the dilatation K(F ).

In Section 3, we introduce a Dirichlet-Sobolev space of functions with
values in an arbitrary Banach space. We then formulate a more general
version of Theorem 1.1 in terms of conformal densities in Section 4. See
Theorem 4.1.

Observe that if F is a conformal mapping in the upper half space R2
+,

then aF (z) � |F ′(z)|. Thus, for n = 1 and F conformal, the equivalence
that is analogous to the equivalence of (i) and (ii) in Theorem 1.1
is implied by the classical fact that the radial maximal function of
a function in the Hardy space H1(R) belongs to L1(R) with bounds
[Ga, p. 57]. We find it interesting that such an analytic fact about
holomorphic functions related to the Hardy space theory has an analog
in the nonlinear theory of quasiconformal mappings. Our proofs are
necessarily different from the classical arguments.

First results about Hardy type conditions and quasiconformal map-
pings were proved in [J], [JW], [Zin], [As]. These papers mostly dealt
with Hardy type conditions for the mapping itself rather than its deriv-
ative. The question about the equivalence of (i) and (ii) in Theorem 1.1
for n ≥ 2 has been around for some time, although we have not seen
it in print. The equivalence is false for quasiconformal mappings when
n = 1, as shown by Hanson [Ha, Theorem E]. For recent studies on
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Hardy type classes, quasiconformal mappings and their derivatives, see
[AK], [BK].

To facilitate the future language, we introduce the following defini-
tion.

Definition 1.2. A quasiconformal mapping F : Rn+1
+ → Rn+1, n ≥ 2,

is said to belong to the Riesz class if F satisfies any of the equivalent
conditions (i)–(v) in Theorem 1.1.

In 1916, F. and M. Riesz [Ri] proved that the derivative of a con-
formal mapping F , defined in the upper half plane R2

+, belongs to the
Hardy space H1 if and only if the boundary of the image domain has
finite length. Moreover, as a function in H1, the boundary values of
F ′ cannot vanish in a set of positive length, and F preserves boundary
sets of zero length.

For quasiconformal mappings, we have the following interesting open
problem:

Problem 1.3. Let F : Rn+1
+ → Rn+1, n ≥ 2, be a quasiconformal

mapping in the Riesz class. Is it then true that

mn

(
{x ∈ Rn : Df(x) = 0}

)
= 0 ?(1.18)

In fact, if F is in the Riesz class, then one can show that the sets

{x ∈ Rn : Df(x) = 0} and {x ∈ Rn : lim sup
t→0

aF (x, t) = 0}(1.19)

agree up to a set of measure zero (cf. Corollary 5.2) . Moreover, if
(1.18) were true, one could infer from this and from [BK, Lemma 6.2]
that Hn(E) > 0 implies Hn

(
f(E)

)
> 0 for each Borel set E ⊂ Rn, if F

is in the Riesz class. On the other hand, if the Hausdorff n-measure of
the boundary of the image F (Rn+1

+ ) = D is finite, i.e., if Hn(∂D) <∞,
then F belongs to the Riesz class by [BK, Definition 7.5, Theorems
7.6 and 7.8]. Thus an affirmative answer to Problem 1.3 would solve
the problem of inverse absolute continuity, mentioned earlier in the
introduction.

In search of a full higher dimensional analog of the F. and M. Riesz
theorem, one faces some geometric measure theoretic problems that do
not arise in the plane. We review next what is known about mappings
in the Riesz class.

As we mentioned, F belongs to the Riesz class, if Hn(∂D) < ∞,
where D = F (Rn+1

+ ). On the other hand, F can be in the Riesz class
even when D is bounded with Hn(∂D) = ∞. The precise statement
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here is that F is in the Riesz class if and only if the Hausdorff n-measure
of a porous part of the boundary is finite; the degree of porosity is
dependent on n and the dilatation of F . This fact is a recent result of
Koskela and the second author; see [BK, Definition 7.5, Theorems 7.6
and 7.8, and Example 7.9].

Earlier, the following important special case was proved by Hanson
[Ha, Theorem B]: if F : Rn+1

+ → Rn+1 is a restriction of a global qua-
siconformal self mapping of Rn+1, then F is in the Riesz class if and
only if Hn(∂D) <∞. Even in this case, it is not known whether (1.18)
and its consequence, the inverse absolute continuity, hold.

In the case of a global mapping as above, one has absolute continuity
in the sense that sets of n-measure zero on the boundary get mapped to
sets of Hausdorff n-measure zero, as proved by Gehring [G1], [G2], [G3]
long ago. On the other hand, the third author has shown [H2, Theorem
1.3] that it is not true that Hn(E) = 0 implies Hn

(
f(E)

)
= 0 for every

F in the Riesz class, even when F is bounded and has homeomorphic
extension to Rn ∪ {∞} with Hn(∂D) <∞.

The fact that examples as in [BK] and [H2] exist is accounted for not
so much by the difference between the quasiconformal and conformal
mappings, but rather by the fact that having finite Hausdorff n-measure
generally means less when n ≥ 2. For more precise statements about
the implication “Hn(E) = 0 ⇒ Hn

(
f(E)

)
= 0”, and its history, see

the works [H2], [H3], [Se], [V3].
Finally, we recall that quasiconformal mappings of the upper half

plane R2
+ onto itself need not be absolutely continuous on the boundary

[BA], so that for n = 1 there are no results along the above lines.
Next we say a few words about the proofs of Theorem 1.1. Although

the theorem will be derived from the more general Theorem 4.1, where
no quasiconformal mappings are explicitly present, the ensuing remarks
are still valid.

We have two proofs for the passage from (ii) to (i) in Theorem 1.1.
The first one goes through the geometric condition (iii) and its analytic
counterparts (iv) and (v). In fact, we shall prove

(i)⇒ (ii)⇒ (iii)⇒ (iv)⇒ (v)⇒ (i)

for the implications in Theorem 1.1. Only the first implication here
is trivial. For the second implication, we use the recent work [BK],
where submartingale type estimates were proved for the averaged de-
rivative of a quasiconformal mapping, and the ideas around the so
called wall theorem [BK], [Ha], [H2], [V3]. The implication (iii) ⇒ (iv)
requires some harmonic analysis together with properties of quasicon-
formal mappings, and the ideas here are similar to those in [RS2]. The
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implication (iv) ⇒ (v) is a general fact that has nothing to do with
quasiconformal mappings; it is due to Stephen Semmes in collaboration
with Connes, Sullivan, and Teleman [CST]. We shall present a Banach
space-valued analog of this implication in Section 4. Finally, we prove
the implication (v) ⇒ (i) again by using some basic quasiconformal
and harmonic analysis.

Our second proof for the implication (ii) ⇒ (i) in Theorem 1.1 is
more direct and avoids the Besov space Oscn,∞. It relies, on the other
hand, on the theory of Banach valued Sobolev functions. See Section
5 for this approach.

As an application of Theorems 1.1 and 4.1, we present a compactness
result for quasiconformal mappings and conformal densities in the Riesz
class in Section 6.

It is in the proof of Theorem 4.1 in Section 4 that we use the abstract
theories of conformal densities and Banach space-valued Sobolev map-
pings. Although a direct proof could be given, we feel that avoiding
the language of conformal densities in this context would amount to
hiding a definite source of ideas. Moreover, with some amount of the
basic theory from [BKR] and [HKST], reviewed in Sections 2 and 3,
the implication (ii) ⇒ (i) in Theorem 4.1 becomes rather transparent.
(Compare Remark 5.3.)

We have chosen to formulate the results of this paper for quasicon-
formal mappings defined in the upper half space Rn+1

+ . This practice
deviates from related earlier works where mappings of the open unit ball
Bn+1 were considered. This choice is mostly technical; it is more pleas-
ant to work with Rn as the boundary rather than the sphere ∂Bn+1.
Consequently, many results remain true for mappings Bn+1 → Rn+1,
n ≥ 2, with obvious modifications in statements and in proofs.

2. Conformal densities

In this section, we collect some auxiliary results on conformal densi-
ties as defined in [BKR].

2.1. Basic properties. Consider a positive continuous function ( de-
fined in Rn+1

+ . (One can take n ≥ 1 here although later our concern
will be in the case n ≥ 2.) Each such ( determines a metric measure
space

(Rn+1
+ , d�, µ�)(2.1)
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which is a conformal deformation of Rn+1
+ . Thus,

d�(a, b) = inf

∫
γ

( ds, a, b ∈ Rn+1
+ ,(2.2)

where the infimum is taken over all rectifiable paths γ joining a and b
in Rn+1

+ , and

µ�(A) =

∫
A

(n+1(z) dmn+1(z)(2.3)

for a Borel set A ⊂ Rn+1
+ .

We call ( a conformal density if there exist positive constants C1 and
C2 such that the following two conditions, a Harnack inequality and a
volume growth condition, hold:

1

C1

((a) ≤ ((b) ≤ C1 ((a)(2.4)

whenever Q ⊂ Rn is a cube and a, b ∈ Q̂, and

µ�

(
B�(x, R)

)
≤ C2 Rn+1(2.5)

whenever B�(x, R) is an open metric ball in (Rn+1
+ , d�, µ�). The con-

stants C1, C2, and the dimension n together form the data of (.
If F : Rn+1

+ → Rn+1 is a quasiconformal mapping, then ( = aF sat-
isfies (2.4) and (2.5) with constants C1, C2 depending only on n and
K(F ) [BKR, 2.4]. On the other hand, at least in dimensions n + 1 ≥ 3
there are conformal densities that are not comparable to the averaged
derivative of any quasiconformal mapping [BHR, Theorem 1.8].

In the aforementioned sources, conformal densities are studied in the
unit ball rather than the upper half space. However, the results that
are cited here remain true in Rn+1

+ as well, with only routine changes
in the arguments.

Given a conformal density ( in Rn+1
+ and a Whitney cube Q̂ ∈ W ,

we set

((Q̂) := ((zQ̂)(2.6)

analogously to (1.7); recall that zQ̂ denotes the center of Q̂ ∈ W . We
employ the notation

r�(Q̂) := ((Q̂) diam(Q̂), Q̂ ∈ W .(2.7)

Then it is easy to see that

r�(Q̂) � diam�(Q̂)(2.8)
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and that

r�(Q̂)n+1 � µ�(Q̂)(2.9)

whenever Q̂ ∈ W. Here diam� designates the diameter in the metric
d� and the constants of comparability depend only on the data of (.

In light of (1.8), r�(Q̂) should be thought of as an abstract version of

diam(F (Q̂)). Indeed, r�(Q̂) is comparable to the diameter of the image

of Q̂ under the identity map

I� := id: Rn+1
+ → (Rn+1

+ , d�).(2.10)

We shall use the notation I� for the identity map in (2.10) for the sake
of clarity.

We next explain why it is advantageous to consider the metric space
(Rn+1

+ , d�) and the map I� in (2.10) even when ( = aF for a quasi-
conformal mapping F : Rn+1

+ → Rn+1. The Harnack inequality (2.4)
guarantees that the map I� in (2.10) has nice local properties. In par-
ticular, up to a scaling it behaves like a bi-Lipschitz mapping on each
Whitney cube with a bi-Lipschitz constant depending only on the data
of (. More precisely, for each conformal density ( we have that

C−1((Q̂)|a− b| ≤ d�

(
I�(a), I�(b)

)
≤ C((Q̂)|a− b|(2.11)

whenever Q ⊂ Rn is a cube, and a, b ∈ Q̂. Here C ≥ 1 depends only
on the data of (. By using [BKR, Proposition 6.2] and an argument
similar to that in [GO, Theorem 3, pp. 62–63], it follows therefore that
the map I� is bi-Lipschitz in the quasihyperbolic metrics of Rn+1

+ and
(Rn+1

+ , d�).

Remark 2.1. Recall that the quasihyperbolic metric in a proper sub-
domain D of Rn+1 is obtained by changing the Euclidean metric by
the conformal factor dist(x, ∂D)−1 [GO], [Vu]. A similar definition can
be used in any noncomplete locally compact and rectifiably connected
metric space such as (Rn+1

+ , d�) [BHK]. Quasiconformal mappings be-
tween Euclidean domains are uniformly continuous in the quasihyper-
bolic metrics, and bi-Lipschitz for large quasihyperbolic distances [GO,
Theorem 3], [Vu, Corollary 12.19]. On the other hand, locally in a
given Whitney cube quasiconformal mappings need not be Lipschitz.
The map I� in (2.10) can be thought of as a local smoothening of F
if ( = aF for a quasiconformal mapping. The large scale geometry of
the metric space (Rn+1

+ , d�) is similar to that of D = F (Rn+1
+ ) equipped

with its inner metric, and the study of the boundary behavior of F
can often be transferred to the study of the boundary behavior of I�.
In other words, using I� with some caution, we may assume that F
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has a nice local behavior in Rn+1
+ . The price we have to pay for this

supposition is that the target space is something more abstract than a
Euclidean domain with is Euclidean (inner) boundary. The usefulness
of this point of view will become clear later in the paper.

We can think of the transition from the mapping F to the locally nice
density ( as a simple analytic substitute for the deep results of Sullivan,
Tukia and Väisälä [Su], [TV] which (in dimensions n+1 �= 4) allow for
local Lipschitz smoothening of quasiconformal mappings while keeping
the boundary values fixed.

If ( is a conformal density in Rn+1
+ , then the identity map I� in

(2.10) has an almost everywhere defined trace on Rn, which we denote
by i�. The trace can be defined because the d�-length of the open
line segment from (x, 1) ∈ Rn+1

+ to x ∈ Rn is finite for mn-almost
every point x ∈ Rn; in fact, it is finite for (n + 1)-capacity almost
every x ∈ Rn [BKR, Theorem 4.4]. By using this fact about trace,
in Section 4 we formulate a general (-version of Theorem 1.1. In that
version, the separable metric space (Rn+1

+ , d�) is isometrically embedded
in the Banach space �∞. The values of i� on Rn lie in the completion
of the metric space (Rn+1

+ , d�), hence in �∞ when the embedding is
understood.

2.2. The Gehring-Hayman theorem. One of the most important
and clarifying tools in the theory of general conformal densities has
turned out to be a general form of a theorem of Gehring and Hayman
[GH]. The following result was proved in [BKR, Theorem 3.1].

Proposition 2.2. Let ( be a conformal density on Rn+1
+ , n ≥ 1. Let

γh be a hyperbolic geodesic in Rn+1
+ and let γ in Rn+1

+ be any curve
with same end points as γh, where the end points are allowed to lie in
Rn = ∂Rn+1

+ . Then ∫
γh

( ds �
∫

γ

( ds.(2.12)

In particular, if the end points of γh lie in Rn, then

r�(Q̂0) �
∫

γ

( ds,(2.13)

where Q̂0 ∈ W denotes a Whitney cube of largest diameter that meets
γh. The constants in (2.12) and (2.13) depend only on the data of (.

The classical Gehring-Hayman theorem corresponds to the case in
Proposition 2.2, where n = 1 and ( = |f ′| for a conformal map f : R2

+ →
R2.
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2.3. Submartingale properties. We turn into some more technical
facts about conformal densities. Recall that the conformal modulus of
a family Γ of paths in RN is the number

modN(Γ) = inf

∫
RN

σNdmN ,(2.14)

where the infimum is taken over all Borel functions σ : RN → [0,∞]
such that ∫

γ

σ ds ≥ 1(2.15)

for all locally rectifiable paths γ ∈ Γ. A function σ as above is called an
admissible density for the curve family Γ. See [V1, Chapter1] for the
basic theory of conformal modulus. We shall use conformal modulus
in this paper both on Rn+1

+ and on its boundary Rn, for n ≥ 2.
We state an important sub-mean value property of conformal densi-

ties, which follows from [BK, Proposition 5.5]:

Proposition 2.3. Let ( be a conformal density in Rn+1
+ , n ≥ 2. Then

r�(Q̂0)
nmodn(Γ) �

∑
Q∈S

r�(Q̂)n(2.16)

whenever Q0 ⊂ Rn is a cube, Γ is a family of paths in Q0 joining two
opposite faces of Q0, and S is a finite collection of cubes contained in
Q0 whose union covers the paths in Γ. The constant in (2.16) depends
only on the data of (.

Inequality (2.16) implies in particular that the power r�(Q̂0)
n of the

“diameter function” r� defined in (2.7) is controlled by any sum of the

values r�(Q̂)n, provided the union of the “shadows” Q of the cubes Q̂

is equal to the shadow Q0 of Q̂0.
One should think of (2.16) as a nonlinear analog of the sub-mean

value property of the subharmonic function |F ′(z)| for F conformal.

Inequality (2.16) means that Q �→ ((Q̂)n defines a submartingale on
dyadic cubes in Rn, up to a multiplicative constant. The following
lemma shows that the appearance of this constant is inconsequential.

Lemma 2.4. Let λ : D(Q0)→ (0,∞) be a positive function defined on
dyadic subcubes of a cube Q0 ⊂ Rn and suppose there exists a positive
constant C ≥ 1 such that

λ(Q) ≤ C
∑
R∈S

λ(R)(2.17)
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whenever Q ∈ D(Q0) and S ⊂ D(Q0) is a finite collection satisfying⋃
R∈S

R = Q.(2.18)

Then there exists a positive function λ′ : D(Q0)→ (0,∞) such that

λ′(Q) ≤ λ(Q) ≤ C λ′(Q)(2.19)

for each Q ∈ D(Q0) and that

λ′(Q) ≤
∑
R∈S

λ′(R)(2.20)

whenever Q ∈ D(Q0) and S ⊂ D(Q0) is a collection satisfying (2.18).

Proof. Define, for Q ∈ D(Q0),

λ′(Q) := inf
∑
R∈S

λ(R),

where the infimum is taken over all collections S ⊂ D(Q0) satisfying
(2.18). Then λ′ satisfies (2.19) by definition and by assumption (2.17).
To prove (2.20), fix Q ∈ D(Q0) and a collection S ⊂ D(Q0) as in (2.18).
Then fix ε > 0 and choose for each R ∈ S a collection S(R) such that∑

P∈S(R)

λ(P ) ≤ λ′(R) + ε.

Then

λ′(Q) ≤
∑
R∈S

∑
P∈S(R)

λ(P ) ≤
∑
R∈S

λ′(R) + ε(#S),

and the claim follows by letting ε→ 0. The lemma is proved.

Proposition 2.5. Let ( be a conformal density in Rn+1
+ , n ≥ 2, such

that

sup
t>0

∫
Rn

((x, t)n dmn(x) <∞.(2.21)

Then there exists a constant C ≥ 1 depending only on the data of (
such that

lim sup
t→0

((x, t) ≤ C lim inf
t→0

((x, t) <∞(2.22)

for almost every x ∈ Rn. In particular, the two sets

{
x ∈ Rn : lim inf

t→0
((x, t) = 0

}
and

{
x ∈ Rn : lim sup

t→0
((x, t) = 0

}(2.23)

are equal up to a set of Lebesgue n-measure zero.
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Proof. By the Harnack inequality (2.4), and by (2.16) and Lemma 2.4,

we find that there is a submartingale Q �→ (′(Q̂)n defined on dyadic

cubes Q of Rn such that ((Q̂) � (′(Q̂). Assumption (2.21) implies that
this submartingale is L1-bounded. Assertion (2.22) then follows from
the submartingale convergence theorem [D, p. 450].

It is an interesting open problem to determine whether, for a con-
formal density (, the sets appearing in (2.23) indeed have n-measure
zero, provided (2.21) holds. If that were the case, one could show by a
standard “sawtooth domain” argument that the set appearing on the
right in (2.23) has n-measure zero for each conformal density, indepen-
dently whether (2.21) holds or not. Such a result could be seen as a
nonlinear analog of the classical theorem of Lusin-Privalov [Pr, p. 210
and 212], [Po, p. 126]. See Problem 4.2 below for a precise statement
of this problem.

Finally, we invite the reader to compare the above discussion with
that in [Ma], where the relationship between conformal maps and mar-
tingale theory is discussed.

Remark 2.6. Although L1-bounded submartingales have limits almost
everywhere, one cannot expect the same to be true for a given confor-
mal density satisfying (2.21). On the other hand, if ( is as in Propo-
sition 2.5, then one can always replace ( by a comparable (in general
discontinuous) conformal density (′ for which

lim
t→0

(′(x, t) =: (̄′(x)(2.24)

exists for almost every x ∈ Q0. For example, one can define (′ on the
cubes in W according to Lemma 2.4. For many problems in practice,
the switch between two comparable densities is of no consequence.

The fact that such a function (′ is only piecewise continuous makes
no difference for the theory developed in [BKR] and elsewhere; the
crucial properties, the Harnack inequality (2.4) and the volume growth
condition (2.5) remain intact, and this suffices. We shall not use (2.24)
in this paper however.

3. Banach space-valued Sobolev functions

In this section, the basic theory of abstract Sobolev spaces is re-
viewed. We follow the approach based on upper gradients as in [HKST].
An alternative, and an essentially equivalent way would be to use du-
ality as in [Am], [Re], or “energy densities” as in [KS]. We prefer the
upper gradient approach mainly because it fits well to the theory of
conformal densities; the latter are upper gradients in a natural way.
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The upper gradient approach also provides more information about
pointwise behavior of Sobolev functions: they are automatically quasi-
continuous and quasieverywhere defined. On the other hand, we have
to pay a price for these advantages; the fact that Sobolev functions are
automatically quasieverywhere defined means that we cannot freely
move within the Lebesgue equivalence class of a function. This inflexi-
bility causes some subtle technical problems. Therefore, in the discus-
sion to follow, we assume initially that all the functions are pointwise
defined. Later the equivalence classes based on capacity will be dis-
cussed.

For simplicity, we shall only consider functions whose domain of def-
inition Q0 is either a cube in Rn, or all of Rn. We assume also that
n ≥ 2. For the target, we let V = (V, | · |) be an arbitrary Banach
space.

Given an arbitrary function f : Q0 → V , a Borel function σ : Q0 →
[0,∞] is said to be an upper gradient of f if

|f(a)− f(b)| ≤
∫

γ

σ ds(3.1)

whenever a and b are two points in Q0 and γ is a rectifiable path in Q0

joining a and b.
We define the Dirichlet-Sobolev space L1,n(Q0; V ) to consist of all

measurable and locally integrable functions f : Q0 → V such that there
exists an upper gradient of f in Ln(Q0). There is a natural seminorm
in L1,n(Q0; V ) given by

‖f‖L1,n = ‖f‖L1,n(Q0;V ) := inf ‖σ‖Ln(Q0),(3.2)

where the infimum is taken over all upper gradients σ of f .
We say that f ∈ L1,n(Q0; V ) is separably valued if f(Q0) is a sepa-

rable subset of V . Recall from the introduction that locally integrable
functions are assumed to be essentially separably valued in any case.
The following proposition follows from [HKST, Corollary 6.8]. (Note
that in [HKST], one generally assumes n-summability both for the func-
tion and for its upper gradient, but this assumption has no bearing on
the results used and quoted here.)

Proposition 3.1. Let Q0 ⊂ Rn be a cube or Q0 = Rn, let V be a
Banach space, and let f ∈ L1,n(Q0; V ). Then f is n-quasicontinuous
and upon changing its values in a set of n-capacity zero f becomes
separably valued.

A function f is said to be n-quasicontinuous if there are open sets
of arbitrarily small n-capacity with f continuous in the complement.
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The n-capacity of a measurable set A ⊂ Rn is defined by

capn(A) = inf ||u||nW 1,n(Rn) ,(3.3)

where the infimum is taken over all functions u in the standard Sobolev
space W 1,n(Rn) such that u ≥ 1 a.e. in a neighborhood of A. An event
is said to take place n-quasieverywhere if it takes place outside a set
of n-capacity zero. See [HKM, Chapter 4] or [MZ, Section 2.1] for the
discussion of the above concepts in the case V = R. The definitions
and basic facts are similar in the general case.

If V = Rm for some m ≥ 1, then the above definition leads to the
standard Dirichlet-Sobolev space L1,n(Q0; R

m) consisting of all locally
integrable m-tuples of n-quasicontinuous functions with n-summable
distributional gradients [Sh, Theorem 4.5]. We abbreviate L1,n(Q0; R) =
L1,n(Q0). Recall that every Lebesgue equivalence class of a function
with n-summable distributional gradient on a domain in Euclidean
space has an n-quasicontinuous representative which is unique up to a
set of capacity zero. The approach via upper gradients automatically
picks up the good representative.

For the applications in this paper, it is important to know how to
handle convergence and compactness for Banach space-valued Sobolev
functions. It is rather easy to see that there cannot be a compactness
theorem of the Rellich-Kondrachev type for Banach space-valued func-
tions. The way to bypass this difficulty is to consider the “components”
of the functions. To this end, it is necessary to have a weaker notion
of upper gradient.

A Borel function σ : Q0 → [0,∞] is said to be an n-weak upper gradi-
ent of a function f : Q0 → V , if σ satisfies the upper gradient inequality
(3.1) for every curve outside a family Γ of curves of n-modulus zero.
It is easy to see that modn(Γ) = 0 if and only if there exists a Borel
function τ : Q0 → [0,∞], τ ∈ Ln(Q0), such that∫

γ

τ ds =∞(3.4)

for every locally rectifiable path γ ∈ Γ. It therefore follows that the
existence of an n-weak upper gradient suffices for the membership in
L1,n(Q0; V ), and moreover that

‖f‖L1,n(Q0;V ) = inf ‖σ‖Ln(Q0),(3.5)

where the infimum is taken over all n-weak upper gradients of f .
By using the concept of a weak upper gradient, and [Sh, Lemma

3.6], we find that if two functions f1, f2 ∈ L1,n(Q0; V ) agree outside a
set of n-capacity zero, then ||f1 − f2||L1,n(Q0;V ) = 0. We shall, there-
fore, make the convention that a function in L1,n(Q0; V ) is pointwise
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defined outside a set of n-capacity zero. In particular, two functions in
L1,n(Q0; V ) are identified if they agree outside a set of n-capacity zero.

See [KM] or [Sh] for a detailed theory of upper gradients based on
the use of modulus. The Banach space-valued discussion can be found
in [HKST].

Proposition 3.2. Let Q0 ⊂ Rn be a cube or Q0 = Rn, let V be a
Banach space, and let f : Q0 → V be a separably valued function. Then
upon changing the Lebesgue equivalence class of f the following three
conditions are equivalent:

(i) f belongs to the Dirichlet-Sobolev space L1,n(Q0; V );
(ii) for each Λ ∈ V ∗ with |Λ| ≤ 1 the function 〈Λ, f〉 belongs to the

standard Dirichlet-Sobolev space L1,n(Q0) and there exists a func-
tion σ ∈ Ln(Q0) that is an n-weak upper gradient of 〈Λ, f〉 for
each such Λ;

(iii) for each Λ ∈ V ∗ with |Λ| ≤ 1 the function 〈Λ, f〉 has a distribu-
tional gradient in Ln(Q0) and there exists a function σ ∈ Ln(Q0)
such that

|∇〈Λ, f〉(x)| ≤ σ(x)(3.6)

for almost every x ∈ Q0, for each such Λ.

Moreover, in both cases (ii)–(iii) we have that

‖f‖L1,n = inf ‖σ‖Ln(Q0),(3.7)

where the infimum is taken over all such common σ.

Proposition 3.2 follows from [HKST, Theorem 3.17 and Proposi-
tion 5.4]. Notice the distinction between (ii) and (iii): according to
our definitions, the former requires that 〈Λ, f〉 is quasicontinuous for
all Λ, while the latter only implies that 〈Λ, f〉 has a quasicontinuous
Lebesgue representative, a priori dependent on Λ. Also notice that the
requirement that f be separably valued is automatically satisfied for
f ∈ L1,n(Q0; V ) by Proposition 3.1.

Proposition 3.3. Let Q0 ⊂ Rn be a cube or Q0 = Rn, let V be a
Banach space, and let (fν) be a sequence of mappings in L1,n(Q0; V )
with corresponding upper gradient sequence (σν). Assume that

sup
ν
||σν ||Ln(Q0) <∞(3.8)

and that the functions fν converge pointwise almost everywhere in Q0 to
a mapping f ∈ L1

loc(Q0; V ) with separable image. Then upon changing
the Lebesgue equivalence class of f we have that f ∈ L1,n(Q0; V ). If
fν → f n-quasieverywhere, then automatically f ∈ L1,n(Q0; V ).



20 KARI ASTALA, MARIO BONK, AND JUHA HEINONEN

Finally, if σ ∈ Ln(Q0) is any weak limit in Ln(Q0) of a subsequence
of (σν), then σ is an n-weak upper gradient of f . In particular,

‖f‖L1,n ≤ lim inf
ν→∞

‖fν‖L1,n .(3.9)

Proof. The proposition is essentially contained in the arguments in [Sh],
[HKST], but in the lack of a precise reference, we provide the details.
We use Proposition 3.2.

Thus, fix Λ ∈ V ∗ with |Λ| ≤ 1. By Proposition 3.2, the functions
〈Λ, fν〉 belong to the standard Dirichlet-Sobolev space L1,n(Q0) with
uniformly bounded norms. Therefore, because 〈Λ, fν〉 → 〈Λ, f〉 point-
wise almost everywhere in Q0, we have by standard reasoning that
〈Λ, f〉 has a distributional gradient in Ln(Q0). To be more precise,
we may clearly assume that Q0 is a finite cube. Then by the Sobolev
embedding theorem [GT, Chapter 7] (compare (6.6) below) we have
that (〈Λ, fν〉) is a bounded sequence in the standard Sobolev space
W 1,n(Q0). By the reflexivity of W 1,n(Q0), the sequence (〈Λ, fν〉) sub-
converges weakly to a function u in W 1,n(Q0). But because 〈Λ, fν〉 →
〈Λ, f〉 pointwise almost everywhere, we must have that u = 〈Λ, f〉. This
latter conclusion is a standard consequence either of Mazur’s lemma
[Y, Section V. 1], or of the compactness of the embedding of W 1,n(Q0)
in Ln(Q0) [GT, Chapter 7].

Next we show that

|∇〈Λ, f〉(x)| ≤ σ(x)(3.10)

for almost every x ∈ Q0, whenever σ ∈ Ln(Q0) is any weak limit of a
subsequence of (σν). Indeed, it then follows from Proposition 3.2 that
there is a Lebesgue representative of f in L1,n(Q0; V ). The proof of
(3.10) is an application of Mazur’s lemma: by passing to subsequences
and convex combinations, both for the functions σν and for the corre-
sponding functions fν , we may assume that ∇〈Λ, fν〉 → ∇〈Λ, f〉 and
σν → σ in Ln(Q0) and pointwise almost everywhere; notice here that
the upper gradient inequality (3.1) is insensitive for passing to convex
combinations. This understood, we also have that σν is an upper gra-
dient of 〈Λ, fν〉, and a standard Lebesgue point argument using (3.1)
(compare [Sh, Proof of Theorem 4.5]) gives that

|∇〈Λ, fν〉(x)| ≤ σν(x)(3.11)

for almost every x ∈ Q0. Thus (3.10) follows by passing to a limit in
(3.11) as ν →∞.

The fact that σ is an n-weak upper gradient of f follows from [HKST,
Proof of (3’) ⇒ (1) in Theorem 3.17], while inequality (3.9) is, with all
the proven facts, obvious.
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Finally, if fν → f n-quasieverywhere, then also 〈Λ, fν〉 → 〈Λ, f〉
n-quasieverywhere for each given Λ ∈ V ∗, and by strengthening the
above argument by the nice trick of Fuglede [Fu, Theorem 3 (f)], we
have that 〈Λ, f〉 ∈ L1,n(Q0) automatically. More precisely, after pass-
ing to convex combinations, we can extract from the sequence (σν) a
subsequence such that the line integral of σν converges to the line in-
tegral of σ outside a family of curves of n-modulus zero. By using the
n-quasieverywhere convergence, and the fact that the n-modulus of all
curves that pass through a fixed set of n-capacity zero has n-modulus
zero, we hence have that the upper gradient inequality holds for the
pair 〈Λ, f〉 and σ for curves outside a family of n-modulus zero. It
follows that σ is an n-weak upper gradient of 〈Λ, f〉. (See [Sh, Section
3] or [KSh, Lemma 3.1] for more details here.) The second claim in the
proposition now follows from [HKST, Theorem 3.17].

The proposition is proved.

4. Statement and proof of the main result

The goal of this section is to state and prove Theorem 4.1, which is
a generalization of Theorem 1.1 for general conformal densities.

Statements (i)–(iii) in Theorem 1.1 have obvious counterparts for
general conformal densities. Condition (iv) can be formulated by the
aid of the general definition for Oscn,∞(Rn; V ) given in (1.13), and
condition (v) uses the Sobolev-Dirichlet space described in Section 3.

We make one more remark and convention before formulating The-
orem 4.1. Given a conformal density ( in Rn+1

+ , the metric space
(Rn+1

+ , d�) is separable and hence can be embedded isometrically in
the Banach space �∞. An explicit embedding is given by

z �→
(
d�(z, z1)− d�(en+1, z1), d�(z, z2)− d�(en+1, z2), . . .

)
,(4.1)

where en+1 = (0, 1) ∈ Rn+1
+ and {zν : ν ∈ N} is a fixed dense subset

of Rn+1
+ . Embedding (4.1) entails some choices, but we tacitly assume

from now on that the choices have been made independently of the con-
formal density (. Thus, in particular, we can always think of (Rn+1

+ , d�),
as well as its metric completion, as being a subset of �∞.

As explained in Section 2, it was proved in [BKR, Theorem 4.4] that
the identity map I�, defined in (2.10), has an (n + 1)-capacity almost
everywhere defined (radial) extension to Rn,

i� : Rn → �∞, i�(x) = lim
t→0

I�(x, t).(4.2)
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The mapping i� is measurable and essentially separably valued because
it is almost everywhere a pointwise limit of continuous mappings

I�(·, t) : Rn → �∞, x �→ I�(x, t), t > 0,(4.3)

whose images are separable.

Theorem 4.1. Let ( be a conformal density in Rn+1
+ , n ≥ 2. Then the

following five conditions are equivalent:

(i) (∗(·) := sup
t>0

((·, t) ∈ Ln(Rn),

(ii) ‖(‖QHn(Rn) :=
(

sup
t>0

∫
Rn

((x, t)n dmn(x)
)1/n

<∞,

(iii) sup
λ>0

λ
(
#{Q ∈ D(Rn) : r�(Q̂) > λ}

)1/n

<∞,

(iv) i� ∈ Oscn,∞(Rn; �∞),

(v) i� ∈ L1,n(Rn; �∞).

Moreover, the various Lebesgue type norms appearing in conditions
(i)–(v) are equivalent with multiplicative constants only depending on
the data of (.

Note that (v) has equivalent formulations given in Proposition 3.2.
At this point, (v) should be understood so that the almost every-
where defined function i� has an n-quasicontinuous representative in
L1,n(Rn; �∞). We shall later show (in Section 5) that the (n + 1)-
capacity everywhere defined trace in (4.2) is this representative.

Problem 4.2. Let ( be a conformal density in Rn+1
+ , n ≥ 2, satisfying

any of the equivalent conditions (i)–(v) in Theorem 4.1. Is it then true
that

mn

(
{x ∈ Rn : lim inf

t→0
((x, t) = 0}

)
= 0 ?(4.4)

As explained earlier, an affirmative answer to Problem 4.2 yields an
affirmative answer to Problem 1.3.

Remark 4.3. In view of the discussion in Section 2, the equivalence of
(i)–(iii) in Theorem 1.1 follows immediately from Theorem 4.1. Strictly
speaking, this is not the case for the assertions (iv) and (v), for the
target space for the functions in Theorem 4.1 is �∞ rather than Rn+1.
Moreover, the isometric embedding in �∞ uses the inner metric in the
image domain rather than the Euclidean metric.

To handle this discrepancy, one should simply follow the ensuing
proof of Theorem 4.1 and observe that the arguments go over whole-
sale in the case of a quasiconformal mapping with boundary values
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in Rn+1. The details even simplify here because the classical Sobolev
space theory applies. One can also derive the implication “(v) in The-
orem 4.1 ⇒ (v) in Theorem 1.1” more formally as follows: Let ( = aF

for a quasiconformal mapping F as in Theorem 1.1, and assume that
(Rn+1

+ , d�) has been isometrically embedded in �∞ as described in the
beginning of this section. Then define a map

π : i�(R
n)→ Rn+1(4.5)

by

y �→ π(y) := f(x) ,

if x ∈ Rn is a point such that y = i�(x). The map π in (4.5) is
indeed well defined, for if x and x′ are two distinct points on Rn, then
the distance between i�(x) and i�(x

′) in �∞ is positive by the Gehring-
Hayman Theorem 2.2—see (2.13). Moreover, the map π is easily seen to
be Lipschitz, with constant depending only on the data of the problem.
Consequently,

f = π ◦ i�

is a function in the Dirichlet-Sobolev space L1,n(Rn; Rn+1), as follows
directly from the definitions. Finally note that (iv) and (v) are equiv-
alent by Proposition 4.7, irrespectively of the situation at hand.

We now turn to the proof of Theorem 4.1.
The implication (i) ⇒ (ii) in Theorem 4.1 is of course trivial with

the estimate

‖(‖QHn(Rn) ≤ ‖(∗‖Ln(Rn).

Next, consider the implication (ii)⇒ (iii). In the proof, all constants
in the relations � and � depend only on the data of (. To begin with,
it follows from the sub-mean value property (2.16) in Proposition 2.3
that

((x, t) � ‖(‖QHn(Rn)

t
(4.6)

whenever t > 0. If we define r� as in (2.7), then (4.6) implies

sup
Q∈D(Rn)

r�(Q̂) � ‖(‖QHn(Rn).(4.7)

To ease notation, we perform a scaling and assume that the supremum
on the left hand side of (4.7) is bounded by one. We then claim that
the following growth estimate for the number of Whitney cubes,

#k := #
{
Q ∈ D(Rn) : r�(Q̂) ∈ (2−k, 2−k+1]

}
� 2kn(4.8)
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for k ∈ N, is enough to prove (iii). Indeed, it follows from (4.8) that

#
{
Q ∈ D(Rn) : r�(Q̂) > λ

}
≤

m∑
k=1

#k � 2mn � 1

λn
,(4.9)

where m is such that λ ∈ (2−m, 2−m+1]. It therefore suffices to prove
(4.8) under the normalization ‖(‖QHn � 1.

To this end, fix k ≥ 1, and let Q̂1, . . . , Q̂N be Whitney cubes such
that

r�(Q̂i) ∈ (2−k, 2−k+1], i = 1, . . . , N.

Then fix a positive number t with

t� min
i=1,...,N

{diam(Q̂i)},

and set, for each i = 1, . . . , N ,

St(Q̂i) =
{
(x, t) ∈ Rn+1

+ : (x, s) ∈ Q̂i for some s > t
}
.

Thus St(Q̂i) is the shadow of the cube Q̂i on Rn × {t}.
For the following lemma, fix a cube Q̂ ∈ {Q̂1, . . . , Q̂N}.

Lemma 4.4. For each ε > 0 there exists λ ≥ 1, depending on the data

of (, and a set Tt(Q̂) ⊂ St(Q̂) such that

H∞
n−1

(
St(Q̂) \ Tt(Q̂)

)
< ε(diam(Q̂))n−1(4.10)

and that

Tt(Q̂) ⊂
{
y ∈ Rn+1

+ : dist�(y, Q̂) ≤ λ diam�(Q̂)
}

=: N�(Q̂, λ).(4.11)

Recall that H∞
α denotes the Hausdorff α-content, α > 0. In order to

prove Lemma 4.4, we require the following standard modulus estimate
[KR, Proposition 4.3], [BK, Proposition 5.1]:

Lemma 4.5. Let Q̂ ∈ W be a cube, let 0 ≤ t < diam(Q̂), and let

St(Q̂) be the shadow of Q̂ on Rn × {t}. If E ⊂ St(Q̂) and if Γ is a

family of curves joining Q̂ and E in Rn+1
+ , then

H∞
α (E)

(diam(Q̂))α
≤ Cmodn+1(Γ),(4.12)

where C = C(n, α) ≥ 1.

Proof of Lemma 4.4. The proof is a standard application of estimate
(4.12) with α = n−1. Analogous results appear in several places in the
literature, for example in [KR, Proposition 4.3] and in [BK, Section 5].
For convenience, we repeat the argument here.
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For λ > 1 denote by Eλ the set of all points in St(Q̂) that lie outside

the neighborhood N�(Q̂, λ) of Q̂ with respect to metric d� as defined in

(4.11). If Γ = Γ(Q̂, t; λ) is the family of all rectifiable curves γ joining

Q̂ to Eλ in Rn+1
+ , then every curve γ ∈ Γ leaves N�(Q̂, λ). Then by the

basic modulus estimate [BKR, Lemma 3.2], we have that

modn+1(Γ) ≤ C(log λ)−n(4.13)

for λ ≥ 4. On the other hand, (4.12) shows that

H∞
n−1(Eλ)

(diam(Q̂))n−1
≤ Cmodn+1(Γ).(4.14)

The lemma follows from estimates (4.13) and (4.14).

Next, choose ε = 1
2

in Lemma 4.4. Then the n-modulus in St(Q̂) of

the family Γ(Q̂, t) of all curves inside Tt(Q̂) joining two opposite faces

of the cube St(Q̂) satisfies

modn(Γ(Q̂, t)) ≥ 1

2
> 0.(4.15)

This is simply because at least half of the straight line segments joining

the faces necessarily miss St(Q̂) \ Tt(Q̂), as follows from (4.10) and
from the fact that Hausdorff content decreases in projections. The
assumption n ≥ 2 is important here.

By observing (4.15), Proposition 2.3 implies that

r�(Q̂)n �
∑

R∈Tt(Q)

r�(R̂)n,(4.16)

whenever Tt(Q) is any finite collection of cubes R ⊂ Q in Rn whose

union covers the projection of Tt(Q̂) in Rn; that is, we require in (4.16)
that {

x ∈ Rn : (x, t) ∈ Tt(Q̂)
}
⊂

⋃
R∈Tt(Q)

R,(4.17)

where the union is assumed finite. Recalling that r�(Q̂) ∈ (2−k, 2−k+1],
we now obtain from (4.16) that

2−kn � r�(Q̂)n �
∑

R∈Tt(Q)

r�(R̂)n.(4.18)

Next we note that there is only a fixed amount of overlap among the

neighborhoods N�(Q̂1, λ), . . . , N�(Q̂N , λ), where the notation is as in
Lemma 4.4 and λ ≥ 1 corresponds to the value ε = 1

2
. Indeed, because

diam�(Q̂i) � r�(Q̂i) � 2−k
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for each i = 1, . . . , N , no point in Rn+1
+ can belong to more than C of

the sets N�(Q̂i, λ) by a simple packing argument based on (2.4) and
(2.5), where C > 0 only depends on the data. From this and from the

way the sets Tt(Q̂i) were constructed in the proof of Lemma 4.4, we see

that no point z = (x, t) can belong to more than C of the sets Tt(Q̂i),

where again C > 0 only depends on the data. Because the sets Tt(Q̂i)
are closed and there are only finitely many of them, there exists δ > 0
such that no set of diameter less than δ can meet more than C of the
sets Tt(Q̂i). Now choose a finite covering Tt(Qi) of the projection to

Rn of the set Tt(Q̂i) by cubes of a fixed diameter t′ < min{t, δ}. Then
no point x ∈ Rn belongs to more than a fixed number of cubes from all
the coverings Tt(Qi), i = 1, . . . , N . Clearly, this fixed number depends
only on the data of (. It therefore follows from (4.18) that

N 2−kn �
N∑

i=1

∑
R∈Tt(Qi)

r�(R̂)n �
∫

Rn

((x, t′)n dmn(x) � 1,

where our normalization ‖(‖QHn � 1 was also used.
This proves the growth estimate (4.8), and thereby the implication

(ii) ⇒ (iii) in Theorem 1.1. The proof shows that the quantity in (iii)
is bounded by a constant (depending only on the data of () times the
quantity in (ii).

Next we prove the implication (iii) ⇒ (iv) in Theorem 1.1. First
notice that (iii) gives

sup
w∈Rn

sup
λ>0

λ
(
#{Q ∈ D(Rn) : r�(Q̂− w) > λ}

)1/n

<∞,

as is easily seen by using the Harnack inequality (2.4). We shall show
that the norm ‖i�‖Oscn,∞ is bounded by a constant C(n, K) times this
quantity. Here we follow the ideas from [RS1], [RS2].

It suffices to consider a fixed translation of the dyadic cubes, and
without loss of generality we may consider the dyadic cubes in D(Rn)
themselves. Thus, fix a cube Q ∈ D(Rn) and let zQ = (xQ, tQ) be the
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center of the cube Q̂ ∈ Rn+1
+ . Then

∫
Q

|i�(x)− (i�)Q| dmn(x) �
∫

Q

|i�(x)− I�(zQ)| dmn(x)

≤
∫

Q

|i�(x)− I�(x, tQ)| dmn(x) +

∫
Q

|I�(x, tQ)− I�(zQ)| dmn(x)

�
∫

Q

∫ tQ

0

((x, s) ds dmn(x) + r�(Q̂).

(4.19)

In order to estimate the last integral in the preceding expression we
introduce a “maximal function” M(φ) : D(Rn) → R+ associated with
a function φ : D(Rn)→ R+ as follows

M(φ)(Q) :=
1

mn(Q)

∑
R⊂Q

R∈D(Rn)

φ(R) mn(R).(4.20)

It then follows from (4.19) that the mean oscillation function Q �→
Ai�(Q) is bounded from above by a constant C(n, K) times the maxi-

mal function defined in (4.20) for the function Q �→ r�(Q̂):

Ai�(Q) �M(r�)(Q) for Q ∈ D(Rn).

Note that instead of M(r�( ·̂ )) we here write M(r�) for simplicity.
It follows from Lemma 4.6 below that M is a bounded operator

weak-�n → weak-�n. Hence the mapping Q �→ A�(Q) belongs to
weak-�n with norm bounded by a constant times that of r�.

This completes the proof of the implication (iii) ⇒ (iv) in Theo-
rem 1.1.

The following lemma was needed in the above proof.

Lemma 4.6. The operator

M : weak-�n → weak-�n

defined in (4.20) is bounded with norm depending only on n.

Proof. The lemma is a generalized Schur lemma, and appears in [RS2,
p. 269], for example. For the convenience of the reader, we indicate the
proof. The following lemma appears in [W, p. 87]:

Let (X, µ) be a measure space, letK : X×X → [0,∞) be measurable,
and let 1 < p < ∞. Suppose that there exists a measurable function
g : X → (0,∞) together with a number M > 0 such that∫

X

K(x, y)g(y)p/(p−1) dµ(y) ≤Mg(x)p/(p−1)



28 KARI ASTALA, MARIO BONK, AND JUHA HEINONEN

for all x ∈ X and ∫
X

K(x, y)g(x)p dµ(x) ≤Mg(y)p

for all y ∈ X. Then the operator

Tf(x) =

∫
X

K(x, y)f(y) dµ(y)

is bounded T : Lp(X, µ)→ Lp(X, µ) with ||T || ≤M2.
By applying this lemma to the spaces �p, 1 < p < ∞, we find

that M : �p → �p is bounded. Indeed, let X = D(Rn) and let µ be
the counting measure on X. Define K(Q, Q′) = |Q′|/|Q| if Q′ ⊂ Q,
and K(Q, Q′) = 0 otherwise, and choose g(Q) = |Q|α, where 0 < α <
1/p. The boundednessM : weak-�n → weak-�n follows by interpolation
[SW, V.3]. This proves Lemma 4.6.

The implication (iv) ⇒ (v) follows from the left inequality in (4.21)
in the following proposition.

Proposition 4.7. Let V be a Banach space and let f : Rn → V be a
function in L1

loc(R
n; V ). Then

1

C
‖f‖L1,n(Rn;V ) ≤ ‖f‖Oscn,∞(Rn;V ) ≤ C ‖f‖L1,n(Rn;V ),(4.21)

where the constant C ≥ 1 depends only on n.

One should interpret Proposition 4.7 to mean that if a function f
belongs to L1,n(Rn; V ), then it belongs to Oscn,∞(Rn; V ) with the norm
inequality on the right in (4.21), and if a function f ∈ L1

loc(R
n; V )

belongs to Oscn,∞(Rn; V ), then it has a Lebesgue representative in
L1,n(Rn; V ). Moreover, f is assumed to be a priori separably valued,
which is essentially automatic if f ∈ L1,n(Rn; V ) by Proposition 3.1.

The right inequality in (4.21) for scalar-valued functions was proved
by Rochberg and Semmes [RS1, p. 228]. Their proof extends to the
general case with some modifications, but as we do not need the right
inequality here, we omit the proof. It is the left inequality that is
required in this paper. As mentioned earlier, the left inequality for
scalar-valued functions appears, in a slightly different formulation, in
[CST, Appendix]. Since the argument in [CST] is somewhat sketchy,
and since a few words need to be added in order to reach the general
Banach space-valued statement, for the convenience of the reader we
provide a detailed proof of the left inequality.

To that end, fix a nonnegative, radially symmetric bump-function
η ∈ C∞

0 (Rn) with
∫

Rn η dmn = 1 whose support is contained in the
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unit ball of Rn. For each function f ∈ L1
loc(R

n; V ) and ε > 0, the
convolutions

fε(x) = (f A ηε)(x) =

∫
Rn

f(x− w) ηε(w) dm(w),(4.22)

are smooth functions from Rn into V . Here ηε(w) = ε−n η(w/ε).

Lemma 4.8. For each f ∈ L1
loc(R

n; V ) and ε > 0, the convolution fε

satisfies

Afε(Q) ≤
∫

Rn

Af (Q− w) ηε(w) dmn(w)(4.23)

for each cube Q ⊂ Rn.

Proof. Recall the definition for Af (Q) from (1.12). Estimate (4.23)
follows from a straightforward computation:

Afε(Q) =

∫
Q

|fε(x)− (fε)Q| dmn(x)

=

∫
Q

∣∣∣∣
∫

Q

(∫
Rn

(
f(x− w) − f(y − w)

)
ηε(w) dmn(w)

)
dmn(y)

∣∣∣∣ dmn(x)

≤
∫

Rn

∫
Q

∣∣∣∣f(x− w)−
∫

Q

f(y − w) dmn(y)

∣∣∣∣ dmn(x) ηε(w) dmn(w)

=

∫
Rn

Af (Q− w) ηε(w) dmn(w),

whence the lemma follows.

We wish to reduce the left inequality in (4.21) to the case when
f is a smooth function. To this end, we shall invoke some general
interpolation theorems as in [SW, V.3]. For small ε > 0 consider the
product measure #× νε on D(Rn)× Rn, where

# = counting measure,
dνε = ηε dmn.

Then define an operator T from functions on D(Rn)×Rn to functions
on D(Rn) by

Ta(Q) =

∫
Rn

a(Q, w) dνε(w).(4.24)

We claim that

T : Lp(#× νε)→ Lp(#) = �p
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is bounded for all 1 < p < ∞ with operator norm ‖T‖ ≤ 1. Indeed,
because νε(R

n) = 1, we have that

‖Ta‖#p =
( ∑

Q∈D(Rn)

|Ta(Q)|p
)1/p

≤
( ∫

Rn

∑
Q∈D(Rn)

|a(Q, w)|p dνε(w)
)1/p

= ‖a‖Lp(#×νε).

Consequently, by interpolation [SW, Theorem 3.15, p. 197], we con-
clude that

T : weak-Lp(#× νε)→ weak-�p

is bounded for each 1 < p <∞. Indeed, we obtain the inequality

‖Ta‖weak-#n ≤ B ‖a‖weak-Ln(#×νε),

where B = B(n) ≥ 1 is a constant depending only on n (see [SW,
p. 200]).

We apply the last inequality for the function a defined by

a(Q, w) := Af (Q− w).

Then

‖a‖weak-Ln(#×νε) = sup
λ>0

λ
(
(#× νε)({(Q, w) : Af (Q− w) > λ})

)1/n

≤ ‖f‖Oscn,∞ .

Since Afε(Q) ≤ Ta(Q) by Lemma 4.8, and because translations com-
mute with convolutions, we obtain from the preceding discussion that

‖fε‖Oscn,∞ ≤ B(n) ‖f‖Oscn,∞(4.25)

whenever f ∈ L1
loc(R

n; V ) and ε > 0.

Lemma 4.9. There exists a constant C = C(n) ≥ 1 such that

‖ |Dg| ‖Ln(Rn) ≤ C ‖g‖Oscn,∞(Rn;V )(4.26)

whenever g : Rn → V is a smooth function.

The (operator) norm of the differential |Dg(x)| of a smooth function
g : Rn → V is a continuous upper gradient of g. All these are well
known facts for scalar-valued functions g, and for the general Banach
space-valued function, see [Fe, pp. 209, 211, 347]. (Note that Federer
assumes separability for the target Banach space, but all the claims here
are valid in general, because smooth functions are separably valued.
The proofs in [Fe] apply in this case.)

Before we prove Lemma 4.9, we point out how the left inequality
in Proposition 4.7 follows. If f ∈ L1

loc(R
n; V ), then we have seen that
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(4.25) is valid for ε > 0. Moreover, since fε is smooth, we can apply
Lemma 4.9 and conclude that

‖ |Dfε| ‖Ln(Rn) ≤ C(n)‖f‖Oscn,∞(Rn;V )(4.27)

for ε > 0. Now |Dfε| is an upper gradient for fε, ε > 0, and fε converges
pointwise almost everywhere to f if ε → 0. Therefore, by (4.27) we
can apply Proposition 3.3 to the our functions f and fε. This shows
that f has an n-weak upper gradient σ such that

‖σ‖Ln(Rn) ≤ C(n)‖f‖Oscn,∞(Rn;V )(4.28)

and so the left inequality in Proposition 4.7 follows.

Proof of Lemma 4.9. The proof here is essentially that given in [CST,
pp. 679–680].

Fix a cube Q0 ∈ D(Rn). It suffices to show that∫
Ms

|Dg|n dmn ≤ C(n) ‖g‖n
Oscn,∞(Rn;V )(4.29)

for each s > 0, where Ms := {x ∈ Q0 : |Dg(x)| > s}. Thus, fix s > 0,
and let

Qs :=
{
Q ∈ D(Rn) : Q ⊂ Q0, �(Q) = 2m, and Q ∩Ms �= ∅

}
,

where m ∈ Z is chosen so small that

|Dg(x)−Dg(y)| << s(4.30)

whenever x, y ∈ Q and Q ∈ Qs. In particular we have

1

2
|Dg(x)| ≤ |Dg(y)| ≤ 2 |Dg(x)|(4.31)

whenever x, y ∈ Q and Q ∈ Qs. Note that

Ms ⊂
⋃

Q∈Qs

Q ⊂ Q0.

If R ⊂ Q0 is a dyadic cube we write

|Dg(R)| = max
x∈R

|Dg(x)|.

Then a routine computation based on (4.30) shows that there is con-
stant b = b(n) ≥ 1 such that

1

b
�(R) |Dg(R)| ≤ Ag(R) ≤ b �(R) |Dg(R)|(4.32)

if R ⊂ Q ∈ Qs. Now fix 0 < λ < s such that

λ < Ag(Q)(4.33)
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for all Q ∈ Qs. Then for Q ∈ Qs we have that

λ < b �(Q) |Dg(Q)|,
and hence there is a unique integer kQ ≥ 1 such that

b 2−kQ �(Q) |Dg(Q)| ≤ λ < b 2−kQ+1 �(Q) |Dg(Q)|.(4.34)

Thus (4.31) and (4.34) give that∫
Ms

|Dg|n dmn ≤
∑

Q∈Qs

∑
R⊂Q

#(R)=2
−kQ#(Q)

∫
R

|Dg|n dmn

�
∑

Q∈Qs

∑
R⊂Q

#(R)=2
−kQ#(Q)

�(R)n |Dg(R)|n

�
∑

Q∈Qs

2kQn 2−kQn �(Q)n |Dg(Q)|n �
∑

Q∈Qs

2kQn λn.

In the above sums it is understood that R is a dyadic cube.
On the other hand, Ag(R) � λ for each cube R ⊂ Q with �(R) =

2−kQ �(Q), if Q ∈ Qs. It follows that the last sum above is bounded by
a dimensional constant times ‖g‖n

Oscn,∞ . Hence we obtain (4.29), and
the proof of the lemma is complete.

We have now completed the proof of the implication (iv) ⇒ (v) in
Theorem 4.1.

It remains to prove the implication (v) ⇒ (i). We first require a
lemma. The lemma is valid for arbitrary conformal densities (.

Lemma 4.10. Suppose ( : Rn+1
+ → (0,∞) is a conformal density. For

each cube Q ⊂ Rn there exists a set E ⊂ Q such that mn(E) ≥ 1
2
mn(Q)

and that

|i�(x)− (i�)Q| ≥ δr�(Q̂)(4.35)

for x ∈ E, where δ > 0 depends only on the data of (.

Recall that r� is defined in (2.7). Here and below | · | denotes the
norm in �∞.

Proof. Note that r�(Q̂) � diam�(Q̂). Then fix ε > 0 and let Gε ⊂ Q

consist of those points x for which |i�(x)− (i�)Q| ≤ ε diam�(Q̂). Let Γε

denote the family of straight line segments between the points x and
(x, �(Q)) for x ∈ Gε. Then

modn+1(Γε) =
mn(Gε)

mn(Q)
(4.36)
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by [V1, 7.2]. On the other hand,

modn+1(Γε) ≤ C1

(
log

(
dist�(Q̂, Gε)

ε diam�(Q̂)

))−n

≤ C1

(
log(C2/ε)

)−n

(4.37)

by the modulus estimate [BKR, Lemma 3.2] and by (2.4). Here the
constants C1, C2 > 0 depend only on the data of (. By combining
(4.36) and (4.37), choosing ε > 0 judiciously, and letting E = Q \ Gε,
we obtain the required set. The lemma follows.

Note that the vector (i�)Q can be replaced by any other vector in �∞

in the statement and proof of the preceding lemma.
To finish the proof of the implication (v) ⇒ (i), fix a cube Q ⊂ Rn,

and let E ⊂ Q be as in Lemma 4.10. By [HKST, Theorem 6.2], the
following Poincaré inequality holds for �∞-valued Sobolev function:∫

Q

|i�(x)− (i�)Q| dmn(x) ≤ C diam(Q)

∫
τQ

σ(x) dmn(x)(4.38)

for each upper gradient σ of i�, where C = C(n) ≥ 1 and τ = τ(n) ≥ 1,
and τQ is the cube with same center as Q but �(τQ) = τ�(Q). From
this and (4.35) we obtain

r�(Q̂) �
∫

E

|i�(x)− (i�)Q| dmn(x) �
∫

Q

|i�(x)− (i�)Q| dmn(x)

� diam(Q)

∫
τQ

σ(x) dmn(x),

(4.39)

whence

((Q̂) �
∫

τQ

σ(x) dmn(x).(4.40)

This implies that

(∗(x) � (Mσ)(x), x ∈ Rn,

where M denotes the Hardy-Littlewood maximal operator [St, Chap-
ter 1]. Because M maps Ln(Rn) boundedly to Ln(Rn) (recall that
n > 1), the implication (v) ⇒ (i) follows. Moreover, the implication is
quantitative in that

‖(∗‖Ln(Rn) ≤ C(n) ‖σ‖Ln(Rn).

We have thereby completely proved Theorem 4.1.
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5. Quasieverywhere defined trace

As already mentioned in the introduction, a quasiconformal map
F : Rn+1

+ → Rn+1 has radially defined trace f as in (1.5) outside an
exceptional set EF ⊂ Rn of zero (n + 1)-capacity in Rn+1. It turns out
that a slightly better result is true for mappings in the Riesz class (cf.
discussion after Corollary 5.2).

Theorem 5.1. Let ( be a conformal density in Rn+1
+ , n ≥ 2, such that

sup
t>0

∫
Rn

((x, t)n dmn(x) <∞.(5.1)

Then there is a Borel set E� ⊂ Rn of zero n-capacity in Rn such that∫ 1

0

((x, s) ds <∞ for all x ∈ Rn\E�.(5.2)

Moreover, if

(̄(x) = lim sup
t→0

((x, t)(5.3)

for x ∈ Rn, then (̄ is an n-weak upper gradient of the boundary mapping
i� : Rn → �∞, and ‖(̄‖Ln(Rn) � ‖i�‖Oscn,∞(Rn;#∞) with constants only
depending on the data of (.

Recall that we assume that an isometric embedding (Rn+1
+ , d�)→ �∞

has been chosen; see (4.1).

Proof. Fix an arbitrary cube Q1 ⊂ Rn, and let

E0 :=

{
x ∈ Q1 :

∫ 1

0

((x, s) ds =∞
}

.

It is easy to see that E0 is a Borel set. We claim that capn(E0) = 0,
where capn denotes n-capacity in Rn as defined in (3.3). This will be
enough to show the first part of the theorem.

We may assume that Q1 is the unit cube in Rn. Fix k ∈ N. If
capn(E0) > 0, then there exists δ > 0, independent of k (see [HKM,
Theorem 2.2 (v)]), such that for some tk > 0 we have that capn(Ek) > δ,
where

Ek :=

{
x ∈ Q1 :

∫ 1

tk

((x, s) ds ≥ k

}
.

Fix a cube Q2 in Rn with �(Q2) = �(Q1) = 1 and dist(Q1, Q2) = 1, and
consider the family Γk of curves in Rn connecting Ek ⊂ Q1 and Q2.
Then capn(Et) > δ implies

modn(Γk) > δ′ > 0,(5.4)
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where δ′ is independent of k (see e.g. [Zie]).
On the other hand, consider an arbitrary locally rectifiable curve

γ ∈ Γk, and suppose x1 ∈ Ek ⊂ Q1 and x2 ∈ Q2 are the end points
of γ. By the Gehring-Hayman theorem (cf. Proposition 2.2), up to a
fixed constant depending only on the data of (, the hyperbolic geodesic
α joining (x1, tk) and (x2, tk) has the smallest (-length ��(α) among all
curves in Rn+1

+ with the same end points. By choice of Q1 and Q2,
the hyperbolic geodesic α has bounded hyperbolic distance to en+1.
Therefore, by definition of Ek we have that ��(α) � k. It follows that∫

γ

((γ(x), tk) |dx| ≥ Ck

with a constant C > 0 independent of γ and k. This shows that the
density σ(x) = 1

Ck
((x, tk) on Rn is admissible for the curve family Γk.

Hence

modn(Γk) � (1/kn)

∫
Rn

((x, tk)
n dmn(x) � 1/kn → 0 as k →∞,

where we used the assumption (5.1). This contradicts (5.4).
To prove the second part of the theorem consider the continuous

mappings

It : Rn → �∞, x �→ It(x) = I�(x, t),(5.5)

and the functions

(t : Rn → (0,∞), x �→ (t(x) = ((x, t),(5.6)

for 0 < t < 1. Let γ : [0, �(γ)]→ Rn be a rectifiable curve parametrized
by the arc length, with end points a and b. Then γt(s) =

(
γ(s), t

)
,

s ∈ [0, �(γ)], is a curve in Rn × {t} ⊂ Rn+1
+ with end points (a, t) and

(b, t). Moreover,

|It(a)− It(b)| = d�

(
(a, t), (b, t)

)
≤

∫ #(γ)

0

(
(
γ(s), t

)
ds

=

∫ #(γ)

0

(t

(
γ(s)

)
ds,

which implies that (t is an upper gradient of It. Inequality (5.2) implies
that the equality limt→0 It(·) = i�(·) is valid n-quasieverywhere on Rn,
and by our hypothesis (5.1) the Ln-norm of the functions (t is uniformly
bounded independent of (. So from Proposition 3.3 we obtain that i� ∈
L1,n(Rn; �∞) (without change of the Lebesgue class of i�; see the remark
following Theorem 4.1). In addition, any weak limit σ : Rn → [0,∞] of
(t as t→ 0 is an n-weak upper gradient of i�. By Mazur’s lemma such
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a weak limit σ will be the pointwise limit almost everywhere of convex
combinations of the functions (t. This shows that

σ(x) ≤ (̄(x)

for almost every x ∈ Rn. It is easy to see that this implies that
∫

γ
σ ds ≤∫

γ
(̄ ds for all curves γ in Rn outside a family Γ of curves of n-modulus

zero (cf. [HKST, Lemma 3.23]). Hence (̄ is an n-weak upper gradient
of i�.

If we define

((x) := lim inf
t→0

((x, t)

for x ∈ Rn, then the same argument shows that

((x) ≤ σ(x)

for almost every x ∈ Rn, whenever σ is a n-weak upper gradient of i�.
By Proposition 2.3 there is a constant C > 0 depending only on the
data of ( sucht that (̄(x) ≤ C((x) for almost every x ∈ Rn. Hence

‖i�‖L1,n(Rn;#∞) ≤ ‖(̄‖Ln(Rn) � inf ‖σ‖Ln(Rn) = ‖i�‖L1,n(Rn;#∞),

and the proof of the theorem is complete.

Corollary 5.2. Let F : Rn+1
+ → Rn+1, n ≥ 2, be a quasiconformal

mapping in the Riesz class. Then there is a Borel set EF ⊂ Rn of zero
n-capacity in Rn such that the limit

lim
t→0

F (x, t) = f(x)(5.7)

exists for each x ∈ Rn \EF . The function f as defined radially in (5.7)
for x ∈ Rn \ Ef is an n-quasicontinuous representative of the trace f
in the Dirichlet-Sobolev space L1,n(Rn; Rn+1). Moreover, the sets

{x ∈ Rn : Df(x) = 0} and {x ∈ Rn : lim sup
t→0

aF (x, t) = 0}(5.8)

are equal up to a set of Lebesgue n-measure zero.

Note that the class of sets in Rn with vanishing n-capacity in Rn

is contained in the class of sets of vanishing (n + 1)-capacity in Rn+1

(where Rn is considered as an n-dimensional hyperplane in Rn+1), but
the former class is strictly smaller than the latter. See e.g. [Mz, Chap-
ter 7.2.3]. If F : Rn+1

+ → Rn+1 is an arbitrary quasiconformal map,
then the limit in (5.7) exists only outside a set EF ⊂ Rn which has
(n + 1)-capacity zero in Rn+1. Therefore, according to Corollary 5.2
the exceptional sets EF for quasiconformal maps F in the Riesz class
are a priori smaller than for general quasiconformal maps. On the
other hand, it is not clear which exceptional sets can actually arise at
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all. In the plane the situation is better understood according to a re-
sult by Kaplan [K]: Every compact set E ⊂ R of vanishing logarithmic
capacity (which is the same as vanishing 2-capacity in R2) can arise as
the exceptional set of a conformal map F : R2

+ → R2 in the sense that
the limit in (5.7) exists except for x ∈ E, where it is infinite.

Proof of Corollary 5.2. We apply the previous theorem to the density
( = aF . Since

∫ 1

0
((x, t) dt < ∞ implies the existence of the limit in

(5.7) (cf. [BK, Lemma 7.4]), a set EF as required exists.
Recall the Lipschitz map π from Remark 4.3. Then f = π◦ i�, and it

follows that f as defined in (5.7) is an n-quasicontinuous representative
of the boundary trace of F , since i� is such a representative for the
boundary trace of I�.

To see that the sets in (5.8) agree up to a set of measure zero, note
that up to a dimensional constant |Df | is a minimal weak upper gra-
dient of f (cf. [Sh, Proof of Theorem 4.5]). So if σ is any n-weak upper
gradient of f , then

|Df(x)| ≤ C(n)σ(x)

for almost every x ∈ Rn. By Theorem 5.1 we know that

σ = āF := lim sup
t→0

aF (·, t)

is an n-weak upper gradient of f . Hence up to a set of measure zero,
the set on the right side of (5.8) is contained in the set on the left side.

For the other direction we use (4.40) from the proof of the implication
(v) ⇒ (i) in Theorem 4.1. We apply this to ( = aF , the n-weak upper
gradient σ = |Df | of f , and let the cube Q shrink to a given point x.
Then the Lebesgue differentiation implies that

āF (x) ≤ |Df(x)|

for almost every x ∈ Rn. This shows that up to a set of measure zero,
the set on the left side of (5.8) is contained in the set on the right side.
The corollary follows.

Remark 5.3. If F : Rn+1
+ → Rn+1, n ≥ 2, is a quasiconformal mapping

satisfying (ii) in Theorem 1.1, it is tempting to try to adapt the ar-
gument in Theorem 5.1 and prove that the boundary trace f belongs
to the Dirichlet-Sobolev space L1,n(Rn; Rn+1). This approach does not
work, however, for the simple reason that the maps ft(x) = f(x, t),
t > 0, need not belong to L1,n(Rn; Rn+1). Theorem 5.1 is another in-
stance where the approach via general densities and Sobolev spaces
comes in handy.
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6. Two compactness results

In this section, as an application of the techniques introduced earlier
in this paper, we state and prove two compactness results.

Our second compactness result (Theorem 6.2) is about general con-
formal densities, and it contains the first result (Theorem 6.1), which
is about quasiconformal mappings, as a special case. We find it in-
structive to present and prove the quasiconformal case first, and then
indicate the changes that are required in the general case.

Theorem 6.1. Let (Fν) be a sequence of K-quasiconformal mappings
from Rn+1

+ into Rn+1, n ≥ 2. Suppose that

H := sup
ν
‖aFν‖QHn(Rn) <∞,(6.1)

and that the sequence (Fν) converges uniformly on compacta to a non-
constant mapping F : Rn+1

+ → Rn+1.
Then F is K-quasiconformal, and we have that

‖aF‖QHn(Rn) � H <∞,(6.2)

where the constant implicit in (6.2) depends only n and K.
Moreover, for every cube Q0 ⊂ Rn, the sequence of boundary map-

pings (fν |Q0) converges to the boundary map f |Q0 weakly in the Sobolev
space W 1,n(Q0; R

n+1).

Recall the notational convention: fν and f denote the traces of the
maps Fν and F , respectively, as defined in (1.5). Note that the limiting
map F is quasiconformal [V1, Section 21]. The assumption that F is
nonconstant can be replaced by the normalization

aFν (0, 1) = 1

for the averaged derivative.
By using the properties of the averaged derivative, (1.8), we infer

that (6.2) follows from (6.1) and from the locally uniform convergence.
We thus have, by Theorem 1.1, that the traces fν and f belong to the
Dirichlet-Sobolev space L1,n(Rn; Rn+1) with uniformly bounded norm.
We shall see that the traces restricted to a fixed cube Q0 ⊂ Rn belong
to the standard Sobolev space W 1,n(Q0; R

n+1) with uniformly bounded
norm. By the reflexivity of the Sobolev space, the sequence (fν |Q0)
has weak limits, and Theorem 6.1 further asserts that there is precisely
one weak limit namely f |Q0. This, of course, is the main point of
Theorem 6.1.

Note that if (Fν) is a locally uniformly convergent sequence of con-
formal maps in the upper half plane R2

+ with derivatives uniformly
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bounded in the Hardy space H1, then an analogous result to Theorem
6.1 can be proved by using the fact that H1 is a dual space (of VMO).

Finally, we remark that the hypothesis (6.1) is satisfied if

sup
ν
Hn(∂Fν(R

n+1
+ )) <∞

by [BK, Theorem 1.4]).

Proof of Theorem 6.1. After the preceding discussion it remains to prove
the statement about the convergence of the boundary traces.

Fix a cube Q0 ⊂ Rn. For simplicity, we denote the traces fν |Q0

and f |Q0 by fν and f , respectively. As already remarked above, these
traces exist. We first claim that (fν) is a uniformly bounded sequence
in the Sobolev space W 1,n(Q0). Indeed, a uniform bound

sup
ν

∫
Q0

|Dfν |n dmn ≤ C <∞(6.3)

follows from the hypothesis (6.1) and from Theorem 1.1, and so it
remains to show that ∫

Q0

|fν |n ≤ C <∞.(6.4)

Here and in the rest of the proof C will denote various positive constants
independent of ν. The bound (6.4) can be obtained from (6.3) and from
a Poincaré type inequality as follows. First note that by Proposition
2.3 and by (6.1) we have that

aFν (z0) ≤ C <∞,

where z0 is the center of Q̂0. Now modulus estimates as, for example, in
Lemma 4.4 (see [HeK, Lemma 6.6]) and the locally uniform convergence
Fν → F imply that there exists, for each ν ∈ N, a set Eν ⊂ Q0 such
that mn(Eν) ≥ 1

2
mn(Q0) and that

sup
ν

sup
x∈Eν

dist
(
fν(x), F (z0)

)
≤ C <∞.(6.5)

Therefore∫
Q0

|fν |n dmn �
∫

Q0

|fν − (fν)Eν |n dmn + mn(Q0)|(fν)Eν |n

≤ C

∫
Q0

|Dfν |n + C,

where the second inequality follows from the Poincaré inequality∫
Q0

|u− uE|n dmn ≤ C(n)
mn(Q0)

2

mn(E)

∫
Q0

|Du|n dmn(6.6)
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valid for all functions u with n-summable distributional gradient in
Ln(Q0) and for all measurable sets E ⊂ Q0 [GT, Section 7.8]. Thus
(6.4) follows.

Now let g be any weak limit of a subsequence of (fν) in W 1,n(Q0; R
n+1).

We continue to denote the subsequence by (fν), and our task is to show
that g = f .

To this end, let Q ⊂ Q0 be a dyadic cube. As before, zQ = (xQ, tQ)

denotes the center of the cube Q̂ as in (1.2). We estimate

∫
Q

|f(x)− g(x)| dmn(x) ≤
∫

Q

|f(x)− F (zQ)| dmn(x)

+

∫
Q

|F (zQ)− Fν(zQ)| dmn(x)

+

∫
Q

|Fν(zQ)− fν(x)| dmn(x)

+

∫
Q

|fν(x)− g(x)| dmn(x).

(6.7)

Recall the definition for raF
from (2.7), let r := raF

and rν = raFν

for ν ∈ N, and recall the maximal function M from (4.20). The
first and the third term in the preceding sum can be bounded from
above by a constant C(n, K) times the maximal functions M(r)(Q)
and M(rν)(Q), respectively. For this estimation, see the proof of the
implication (iii) ⇒ (iv) of Theorem 4.1 in Section 4.

Next, by the Rellich-Kondrachev compactness theorem [GT, Section
7.10], we may pass to a subsequence, still denoted by (fν), which con-
verges to g in L1(Q0). It follows that the Hardy-Littlewood maximal
functions

M(fν − g)(x) = sup
x∈Q

∫
Q

|fν(x)− g(x)| dmn(x), Q ⊂ Q0,

converge to zero in measure as ν →∞, and so by passing to yet another
subsequence, we may assume that M(fν − g)(x) → 0 for almost every
x ∈ Q0 as ν →∞.

Assume now that the set {x ∈ Q0 : f(x) �= g(x)} has positive
measure. Then there are x0 ∈ Q0 and δ > 0 such that

δ < lim inf
Q↓x0

∫
Q

|f(x)− g(x)| dmn(x),(6.8)
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where the notation Q ↓ x0 means that Q runs through all dyadic cubes
in Q0 that contain x0 and shrink down to x0. Moreover, by the pre-
ceding discussion, we may assume that

lim
ν→∞

M(fν − g)(x0) = 0.(6.9)

The preceding understood, we conclude from (6.7) and (6.9) that
there is a positive integer N0 such that

δ <M(r)(Q) + |F (zQ)− Fν(zQ)|+M(rν)(Q)(6.10)

for all dyadic cubes Q in Q0 that contain x0 and satisfy �(Q) ≤
2−N0 �(Q0), and for all large enough ν. If we recall that r(Q̂) �
diam(F (Q̂)), we obtain from Theorem 4.1(iii), and from (6.2), that

the function Q �→ r(Q̂) is in weak-�n (on the cubes D(Rn)). The same
holds true for rν , and by the hypotheses (6.1), the weak-�n norms are
uniformly bounded (that is, independent of ν).

Next recall that the maximal function M : weak-�n → weak-�n is
bounded (see the discussion after (4.20)). We can therefore pick an
integer L > 0, independent of ν, such that

#
{
Q : Q ⊂ Q0 dyadic and M(r)(Q) > δ/3

}
+ #

{
Q : Q ⊂ Q0 dyadic and M(rν)(Q) > δ/3

}
< L.

(6.11)

We may obviously assume that the integer N0, chosen above before
(6.10), is large enough so that M(r)(Q) ≤ δ/3 for all dyadic Q ⊂ Q0

with �(Q) ≤ 2−N0 �(Q0). Inequality (6.10) then implies

2δ

3
< |F (z0)− Fν(z0)|+M(rν)(Q)(6.12)

whenever �(Q) ≤ 2−N0 �(Q0). On the other hand, for each ν there
exists, by (6.11), a dyadic cube Q ⊂ Q0 that contains x0 and satisfies
both

2−L−1 2−N0 �(Q0) ≤ �(Q) ≤ 2−N0 �(Q0)(6.13)

and
δ

3
< |F (zQ)− Fν(zQ)|.(6.14)

Now there are only finitely many cubes satisfying condition (6.13), and
hence by passing to a subsequence, we may assume that (6.14) holds
for a fixed cube Q and for all ν. But this is an obvious contradiction
as Fν → F locally uniformly in Rn+1

+ .
We have thus shown that fν converges weakly to f in W 1,n(Q0; R

n+1),
and the proof of Theorem 6.1 is thereby complete.

Next we formulate and prove an abstract version of Theorem 6.1.
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Theorem 6.2. Let ((ν) be a sequence of conformal densities in Rn+1
+ ,

n ≥ 2, with uniformly bounded data. Suppose that

H := sup
ν
‖(ν‖QHn(Rn) <∞,(6.15)

and that the sequence ((ν) converges uniformly on compacta to a density
(0 �≡ 0 on Rn+1

+ . Then (0 is a conformal density with

‖(0‖QHn(Rn) ≤ H.(6.16)

Moreover, for each cube Q0 ⊂ Rn and each Λ ∈ (�∞)∗, the func-
tions 〈Λ, i�ν 〉|Q0 converge weakly in the Sobolev space W 1,n(Q0) to the
function 〈Λ, i�0〉|Q0.

Note that estimate (6.16) is a direct consequence of the locally uni-
form convergence (ν → (0. It is also clear that (0 is a conformal density,
that is, it satisfies (2.4) and (2.5).

Next, consider the mappings

Iν = I�ν : Rn+1
+ → (Rn+1

+ , d�ν )

as in (2.10), and similarly for I0 = I�0 . We adopt the conventions
made around (4.1) and assume that the mappings Iν , I0 take values
in the Banach space �∞. The discussion now parallels to that after
the statement of Theorem 6.1. Conditions (6.15) and (6.16) imply by
Theorem 4.1 that the traces

iν = i�ν : Rn → �∞

belong to the Dirichlet-Sobolev space L1,n(Rn; �∞) with uniform norm
bound for ν ∈ N. From the Banach space-valued Sobolev embedding
theorem [HKST, Theorem 6.2] we conclude that

sup
ν

∫
Q0

|iν(x)− (iν)Q0 |n dmn(x) ≤ C <∞,

where (iν)Q0 stands for the mean value of iν over Q0 as defined in (1.10)
and (1.11). The modulus estimates alluded to in connection with (6.5)
apply equally well in the setting of conformal densities and we conclude
that there exist sets Eν ⊂ Q0 such that mn(Eν) ≥ 1

2
mn(Q0) and that

sup
ν

sup
x∈Eν

dist
(
iν(x), I0(z0)

)
≤ C <∞,(6.17)

where z0 is the center of Q̂0 and the distance is taken in �∞. As in
the proof of Theorem 6.1, therefore, we obtain a uniform bound for the
traces iν in Ln(Q0; �

∞), provided one can show a Poincaré inequality of
the type (6.6) for Banach space-valued Sobolev mappings. Such an in-
equality follows from the results in [HaK], as is presented in Lemma 6.3
below.
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The preceding discussion understood, we conclude that the sequence
of mappings iν : Q0 → �∞ is uniformly bounded in the Sobolev norm,

‖iν‖W 1,n(Q0;#∞) := ‖iν‖Ln(Q0;#∞) + inf ‖σν‖Ln(Q0) ≤ C <∞,(6.18)

where the infimum is taken over all upper gradients σν of iν , and where
C is independent of ν ∈ N. On the other hand, there is no Rellich’s
theorem for Banach space-valued Sobolev functions, so that we have
to be satisfied with the formulation of Theorem 6.2 via duality.

Before turning to the proof of Theorem 6.2, we require the following
lemma.

Lemma 6.3. Let V be a Banach space and let u : Q0 → V be a func-
tion in L1(Q0; V ) ∩ L1,n(Q0; V ), where Q0 ⊂ Rn is a cube and n ≥ 2.
The inequality ∫

Q0

|u− uE|n dmn ≤ C(n)
mn(Q0)

2

mn(E)

∫
Q0

σn dmn(6.19)

holds for every upper gradient σ of u and for every measurable subset
E ⊂ Q0.

Proof. It follows from [HaK, Proof of Theorem 5.2, p. 25, and Theorem
5.3] (see also [HKST, Section 6]) that for almost every x, y in Q0 the
inequality

|u(x)− u(y)| � Jσ(x) + Jσ(y)(6.20)

is valid, where J is a generalized Riesz potential satisfying

‖Jσ‖Ln(Q0) � diam(Q0) ‖σ‖Ln(Q0).

Thus, by integrating (6.20) first over E and then over Q0, we obtain∫
Q0

∫
E

|u(x)− u(y)|n dmn(y) dmn(x)

� mn(E)

∫
Q0

Jσ(x)n dmn(x) + mn(Q0)

∫
E

Jσ(y)n dmn(y),

and therefore∫
Q0

|u(x)− uE|n dmn(x) � mn(Q0)

mn(E)

∫
Q0

Jσ(x)n dmn(x)

� mn(Q0)
2

mn(E)

∫
Q0

σn(x) dmn(x),

as desired. Finally, the constants above only depend on n. The lemma
follows.
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Proof of Theorem 6.2. Let (ν , (0 be as in the hypotheses, and let Q0 ⊂
Rn be a cube. As we already pointed out in the preceding discussion,
estimate (6.16) is an immediate consequence of the locally uniform
convergence (ν → (0. Then fix Λ ∈ (�∞)∗. Without loss of generality,
we assume that |Λ| ≤ 1. By (6.17) and by (6.19) we have that (6.18)
holds, as explained above. Because every upper gradient of iν is an
upper gradient of 〈Λ, iν〉 (see [HKST, Proof of Theorem 3.17]), and
because the Sobolev space defined via upper gradients agrees with the
standard Sobolev space in Euclidean domains [Sh, Theorem 4.5], we
have from (6.18) that the sequence (〈Λ, iν〉) is bounded in W 1,n(Q0).
Let g be any weak limit of a subsequence of (〈Λ, iν〉) in W 1,n(Q0); we
continue to denote the subsequence by (〈Λ, iν〉). Analogously to the
proof of Theorem 6.1, our task is to show that g = 〈Λ, i0〉. For this, we
argue much as in the proof of Theorem 6.1.

Thus, let Q ⊂ Q0 be a dyadic cube. We abbreviate rν := r�ν (see
(2.7)) and estimate as in (6.7), and in the subsequent discussion,∫

Q

|〈Λ, i0(x)〉 − g(x)| dmn(x)

≤
∫

Q

|〈Λ, i0(x)− I0(zQ)〉| dmn(x) + |〈Λ, I0(zQ)− Iν(zQ)〉|

+

∫
Q

|〈Λ, Iν(zQ)− iν(x)〉| dmn(x)

+

∫
Q

|〈Λ, iν(x)〉 − g(x)| dmn(x)

�M(r0)(Q) + |I0(zQ)− Iν(zQ)|+M(rν)(Q)

+

∫
Q

|〈Λ, iν(x)〉 − g(x)| dmn(x).

Now the assertion g = 〈Λ, i0〉 follows precisely as in the proof of Theo-
rem 6.1, by using Theorem 4.1.

This completes the proof of Theorem 6.2.
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spaces, Astérisque 270, 2001.

[BHR] M. Bonk, J. Heinonen and S. Rohde, Doubling conformal densities, J. reine
angew. Math. 541 (2001), 117–141.

[BKR] M. Bonk, P. Koskela and S. Rohde, Conformal metrics on the unit ball in
Euclidean space, Proc. London Math. Soc. 77 (1998), 635–664.

[CST] A. Connes, D. Sullivan and N. Teleman, Quasiconformal mappings, opera-
tors on Hilbert space, and local formulae for characteristic classes, Topol-
ogy 33 (1994), 663–681.

[DU] J. Diestel and J.J. Uhl, Vector measures, American Mathematical Society,
Providence, R.I., 1977.

[D] J.L. Doob, Classical Potential Theory and its Probabilistic Counterpart,
Springer-Verlag, New York, 1984.

[Fe] H. Federer, Geometric Measure Theory, Springer-Verlag, Berlin-Heidel-
berg-New York, 1969.

[Fu] B. Fuglede, Extremal length and functional completion, Acta Math. 98
(1957), 171–218.

[Ga] J. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
[G1] F.W. Gehring, The Hausdorff measure of sets which link in euclidean space,

Contributions to analysis: A collection of papers dedicated to Lipman
Bers, Academic Press, New York, 1974.

[G2] F.W. Gehring, Lower dimensional absolute continuity properties of quasi-
conformal mappings, Math. Proc. Cambridge Philos. Soc. 78 (1975), 81–
93.

[G3] F.W. Gehring, Absolute continuity properties of quasiconformal mappings,
Symposia Math. XVIII (1976), 551–559.

[GH] F.W. Gehring and W.K. Hayman, An inequality in the theory of conformal
mapping, J. Math. Pure Appl. 41 (1962), 353–361.

[GO] F.W. Gehring and B.G. Osgood, Uniform domains and the quasihyperbolic
metric, J. Anal. Math. 36 (1979), 50–74.

[GT] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Operators of
Second Order, 2nd Edition, Springer-Verlag, Berlin-Heidelberg-New York,
1983.

[HaK] P. HajIlasz and P. Koskela, Sobolev met Poincaré, Memoirs Amer. Math.
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E-mail address: astala@math.jyu.fi

(M.B.) Department of Mathematics, University of Michigan, Ann
Arbor, MI 48109, USA

E-mail address: mbonk@math.lsa.umich.edu

(J.H.) Department of Mathematics, University of Michigan, Ann Ar-
bor, MI 48109, USA

E-mail address: juha@math.lsa.umich.edu


