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Abstract

We give sufficient metric conditions for a homeomorphism to be-
long to a Sobolev class. We give an improvement on the result of
Gehring’s on the metric definition of quasiconformality where “lim-
sup” is replaced with “liminf”.

1 Introduction

The analytic definition of quasiconformality declares that a homeomorphism

f between domains Ω and Ω′ in Rn is quasiconformal if f ∈ W 1,n
loc (Ω, Ω′) and

there exists a constant K so that

|Df(x)|n ≤ KJf (x) a.e. in Ω.

Because the Jacobian of any homeomorphism f ∈ W 1,1
loc (Ω, Ω′) is locally in-

tegrable, the regularity assumption on f in this definition can naturally be

relaxed to f ∈ W 1,1
loc (Ω, Ω′). There has been considerable interest recently in

so-called µ-homeomorphisms that form a natural generalization of the con-

cept of a quasiconformal mapping in dimension two. To be more precise, we

consider homeomorphisms f ∈ W 1,1
loc (Ω, Ω′) so that

(1) |Df(x)|n ≤ K(x)Jf (x) a.e. in Ω
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with K(x) ≥ 1 and exp(λK) ∈ L1
loc(Ω) for some λ > 0. A class of mappings

equivalent to this was introduced by David in [1] and further studied in [17],

[16]. He considered the Beltrami equation

∂f(z) = µ(z)∂f(z)

and essentially showed that a homeomorphic solution f ∈ W 1,1
loc (Ω, Ω′) exists

(in the planar case) when |µ(z)| ≤ 1 almost everywhere and

exp

(
C

1 + |µ(z)|
1 − |µ(z)|

)
∈ L1

loc(Ω);

for this generality see [17]. These mappings in fact belong to ∩p<2W
1,p
loc (Ω, Ω′),

they are differentiable a.e. and preserve the null sets for the two dimensional

Lebesgue measure. These conclusions hold with 2 replaced by n in any

dimension for mappings with an exponentially integrable distortion in the

sense of (1); see [13], [14].

Quasiconformal mappings can alternatively be defined using metric quanti-

ties: Let Ω and Ω′ be domains in Rn and f : Ω → Ω′ a homeomorphism. Re-

call that f is then either sense-preserving or sense-reversing; we will through-

out the paper assume that all the homeomorphisms we deal with are sense-

preserving. Then the distortion of f at a point x ∈ Ω is

(2) Hf (x) = lim sup
r→0

Hf (x, r)

or

(3) hf (x) = lim inf
r→0

Hf (x, r),

where

Hf (x, r) =
Lf (x, r)

lf (x, r)
,

and

Lf (x, r) = sup{|f(x) − f(y)| : |x − y| ≤ r},

lf (x, r) = inf{|f(x) − f(y)| : |x − y| ≥ r}.

By |x − y| we denote the euclidean distance between x and y. Now f is

quasiconformal if and only if the distortion Hf is uniformly bounded, i.e.

(4) Hf (x) ≤ H < ∞ for all x ∈ Ω.

2



According to a result by Gehring [3, Thm 8], the uniform boundedness of

Hf can be relaxed to the requirement that Hf (x) < ∞ outside a set E of

σ-finite (n − 1)-dimensional measure and Hf ≤ H a.e. Quite recently it

was observed that, first of all, Hf in (4) can be replaced with hf . For this

result that quickly found applications in complex dynamics see the paper [7]

by Heinonen and Koskela. Secondly, we established in [11] a version of the

result of Gehring’s by showing that it suffices to assume that hf (x) ≤ H

outside a set of σ-finite (n− 1)-measure. This result was partially motivated

by the need for tools of this type in complex dynamics (see [4]).

In the case of µ-homeomorphisms or more generally homeomorphisms f ∈
W 1,1(Ω, Ω′) that satisfy (1) with some suitably well integrable K, there is

no real hope in obtaining a metric definition that would yield the same class

of mappings: the σ-finiteness of the exceptional set is crucial even in the

quasiconformal setting and under integrability conditions on K, Hf can well

be infinite in a set of dimension larger than n − 1. Thus the best one can

hope for is a sufficient metric condition. Again, the quest for such a condi-

tion is partially motivated by complex dynamics; µ-homeomorphism appear

naturally in conjugation problems [5], [6]. According to a result by Kallunki

and Martio [12], in the planar case, a homeomorphism f : Ω → Ω′ for which

Hf ∈ Lp
loc(Ω) for some p > 2 and Hf (x) < ∞ outside a set of σ-finite length

indeed belongs to W 1,1
loc (Ω, Ω′) and is differentiable a.e. Also see [17] for a

related result. For simplicity and for the relevance for complex dynamics we

here and from this on mostly concentrate on the planar case. In this paper

we establish new results in terms of hf . They rely on our first theorem that

gives control on the distortion of shapes by means of integrals of hf .

Theorem 1.1 Let f be a homeomorphism between domains Ω, Ω′ ⊂ R2 such

that hf (x) < ∞ outside a set E of σ-finite length and hf ∈ L2
loc(Ω). Then

(5) Lf (x, r) ≤ lf (x, r) exp(C −
∫

B(x,2r)

h2
f (y) dy)

for each x ∈ Ω and every r > 0 such that B(x, 2r) ⊂ Ω. The constant C is

an absolute constant. In particular, f is differentiable almost everywhere.

By the σ-finite length of a set we mean that the set has a countable cover by

sets of finite length.
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As an immediate consequence of this theorem and its higher dimensional

analog given in Section 4 we obtain the following corollary that gives a full

extension of the result of Gehring’s discussed above; also see Theorem 1.3

below. It is an improvement on our main result in [11].

Corollary 1.2 Let Ω, Ω′ ⊂ Rn be domains and suppose that f : Ω → Ω′ is

a homeomorphism. Suppose that there is a set E of σ-finite (n− 1)-measure

and a constant H such that hf (x) < ∞ outside E in Ω and

hf (x) ≤ H

almost everywhere in Ω. Then f is quasiconformal.

We close this introduction with two regularity results. The first of them gives

a sufficient metric condition for a mapping to be a µ-homeomorphism.

Theorem 1.3 Let f be a homeomorphism between domains Ω, Ω′ ⊂ R2 such

that hf (x) < ∞ outside a set E of σ-finite length. There is a constant C ′,

independent of E and f , such that

exp(C ′h2
f ) ∈ L1

loc(Ω)

implies that f ∈ W 1,2
loc (Ω, Ω′) and that (1) holds with exp(C ′K2) ∈ L1

loc(Ω).

Notice that we obtain a stronger conclusion than simply the exponential

integrability of the distortion and that the asserted regularity of the mapping

is stronger than one would expect. The regularity will be deduced from [8],

[9]. It would be interesting to know if already the exponential integrability

of hf could guarantee that the mapping belongs to W 1,1
loc (Ω, Ω′).

If we assume that hf is sufficiently regular, then we do obtain that W 1,1
loc (Ω, Ω′)

under a substantially weaker integrability assumption on hf . This is the con-

tent of Theorem 1.4 that is based on Theorem 1.1 and results in [12]. It

extends a related conclusion in [12].

Theorem 1.4 Let f be a homeomorphism between domains Ω, Ω′ ⊂ R2 such

that hf (x) < ∞ and

(6) lim sup
r→0

−
∫

B(x,r)

h2
f (x) dx < ∞
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outside a set E of σ-finite length, and hf ∈ L2+ε
loc (Ω) with ε > 0. Then

f ∈ W 1,1
loc (Ω).

The paper is organized as follows. In Section 2 we prove Theorem 1.1. Section

3 is devoted to the proofs of Theorems 1.3 and 1.4. The last section contains

the formulation and the outline of the proof of Theorem 1.1 in Rn.

2 The local quasisymmetry condition

In this section we prove Theorem 1.1.

Proof of Theorem 1.1. If inequality (5) holds, then

Hf (x) = lim sup
r→0

Lf (x, r)

lf (x, r)
< ∞ for a.e. x ∈ Ω.

This guarantees the differentiability of f almost everywhere due to the Rade-

macher-Stepanov theorem ( see e.g [12] ).

The proof of inequality (5) is somewhat technical. The argument is an im-

provement on the techniques in [7] and [11]; for the convenience of the reader

we will repeat even the part of the original reasoning from [7] that need not

be altered.

First fix x0 ∈ Ω and r > 0 with B(x0, 2r) ⊂ Ω. We can assume that

Lf (x0, r) > 3lf (x0, r).

Let 1 ≤ p < 2 and ε > 0. Define

A = B(f(x0), L) \ B(f(x0), l),

where L = Lf (x0, r) and l = lf (x0, r). For each k = 0, 1, 2, . . . write

Ak = {y ∈ f−1(A) ∩ B(x0, 2r) : 2k ≤ hf (y) < 2k+1}.

The set Ak is a Borel set, f−1(A) ∩ B(x0, 2r) \ E = ∪kAk and for every k

there exists open Uk such that Ak ⊂ Uk and

|Uk| ≤ |Ak| +
ε

2k(2
2p

2−p )k
.

Fix k. Now for every y ∈ Ak there is ry > 0 such that
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(i) 0 < ry < 1
10

min{d(f−1(B(f(x0), l)), f
−1(R2 \ B(f(x0), L))),

d(y, ∂B(x0, 2r))},

(ii) diam(fBy) < 2−j0−3L,

(iii) Hf (y, ry) < 2k+1, and

(iv) By ⊂ Uk.

Here By = B(y, ry) and j0 is the least positive integer with 2−j0L < l.

We have obtained a family of balls By such that they satisfy the conditions

(i) and (ii) and if y ∈ Ak then By satisfies the condition (iii) for k. By the

Besicovitch covering theorem we find balls B1, B2, . . . from balls B(y, ry) so

that

f−1(A) ∩ B(x0, 2r) \ E ⊂
⋃
j

Bj ⊂ B(x0, 2r)

and
∑

j χBj
(x) ≤ C(2) for every x ∈ R2. Here and in what follows notation

like C(2) indicates that this constant will depend on the dimension when the

argument is extended to cover the higher dimensional setting. For these balls

we know that

|fBj| ≤ C(2)diam(fBj)
2

and when yj ∈ Ak (here yj is the center of Bj)

|fBj| ≥
C(2)diam(fBj)

2

22(2k+1)2
.

Let us define

ρ(x) = (log
L

l
)−1

∑
j

diam(fBj)

d(fBj, f(x0))

1

diam(Bj)
χ2Bj

(x).

The function ρ is measurable, because it is a countable sum of simple func-

tions.

By a general estimate on Lp-norms of weighted sums of characteristic func-

tions, the Lp-norms, 1 ≤ p < ∞, of ρ are comparable to the corresponding

norms of the function where the characteristic functions χ2Bj
are replaced
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with χBj
(c.f. [2]). Thus, knowing that

∑
χBj

≤ C(2), we arrive at the

estimate∫
B(x0,2r)

ρ(x)p dx ≤ C(2, p)

(
log

L

l

)−p ∑
j

(
diam(fBj)

d(fBj, f(x0))

1

diam(Bj)

)p

|Bj|.

Using the fact that diamfB2
j ≤ C(2)|fBj|(2k+1)2 when yj ∈ Ak and Hölder’s

inequality, we thus obtain

∫
B(x0,2r)

ρ(x)p dx ≤ C(2, p)(log
L

l
)−p

(∑
j

|fBj|
d(fBj, f(x0))2

) p
2


∑

k

∑
yj∈Ak

(2k)2p/(2−p)diam(Bj)
2




2−p
2

.

It is easy to see by regrouping the balls depending on their distance from

f(x0) and by using the estimate
∑

χBi
≤ C(2) that

∑
j

|fBj|
d(fBj, f(x0))2

≤ C(2) log
L

l
.

The approximation of the second term is a little bit trickier. First diamB2
j ≤

C(2)|Bj| = C(2)(|Bj ∩Ak|+ |Bj \Ak|). The double sum over the |Bj ∩Ak|-
terms can be estimated by the integral of h

2p/(2−p)
f and the double sum over

the |Bj \Ak|-terms turns out to be no more than a constant times ε, because

∪yj∈Ak
Bj ⊂ Uk and |Uk| ≤ |Ak| + ε

2k(2
2p

2−p )k
. Therefore

∑
k

∑
yj∈Ak

(2k)2p/(2−p)diam(Bj)
2 ≤ C(2)

(∫
B(x0,2r)

hf (x)2p/(2−p) dx + ε

)
.

Because ε was arbitrary we conclude that

∫
B(x0,2r)

ρ(x)p dx ≤ C(2, p)(log
L

l
)−p/2

(∫
B(x0,2r)

hf (x)2p/(2−p) dx

)(2−p)/2

.

In the following we will actually choose p = 1.

Our next goal is to find a lower bound on the integral of ρ. For this, define

F1 = f−1(B(f(x0), l)) and F2 = f−1(R2 \ B(f(x0), L)) ∩ B(x0, 2r). Take a

7



point y ∈ F1 ∩ S(x0, r). By applying an auxiliary rotation we may assume

that y = x0 + (r, 0). Consider the line segments Jt parallel to the imaginary

axis through the points x0 + (t, 0), 0 ≤ t ≤ r, which join two points of

S(x0, 2r). Assume first that
∫

Jt
ρ ≥ 1

2000
for each t in a set A ⊂ [0, r] with

m(A) > r/2. Here m refers to the Lebesgue measure on the line. Then it

follows from the Fubini theorem that∫
B(x0,2r)

ρ ≥ r

4000
.

Suppose then that
∫

Jt
ρ ≤ 1

2000
for each t in a set A with m(A) > r/2. Now

m({0 ≤ t ≤ r : E∩Jt is uncountable }) = 0, and m({r ≤ s ≤ 2r : E∩S(x0, s)

is uncountable }) = 0 because E has σ-finite length, compare [18, 30.16].

Take a radius r < s < 2r and a number t ∈ A such that both E ∩ S(x0, s)

and E ∩ Jt are countable.

Pick the balls V1, V2, . . . from balls the B1, B2, . . . for which Vi∩S(x0, s) �= ∅
or Vi ∩ Jt �= ∅. Write γ = Jt ∪ S(x0, s). Then the connected set γ inter-

sects both F1 and F2 and thus f(γ) is a connected set that intersects both

B(f(x0), l) and R2 \ B(f(x0), L). Moreover, the sets f(Vi) cover f(γ) up to

a countable set.

Now ∫
γ

ρ ≥ 1

2
(log

L

l
)−1

∑
i

diamfVi

d(fVi, f(x0))
.

If f(Vi) touches the annulus Aj = B(f(x0), 2
j+1l) \ B(f(x0), 2

jl), where j =

0, . . . , j0−1, then d(fVi, f(x0)) ≤ 2j+1l, and because the connected sets f(Vi)

cover f(γ) up to a countable set,

∫
γ

ρ ≥ (log
L

l
)−1

j0−1∑
j=0

1

4
≥ 1

1000
.

Because t ∈ A, we have that ∫
Jt

ρ ≤ 1

2000

and it follows that ∫
S(x0,s)

ρ ≥ 1

2000
.
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From this estimate we obtain by using the Fubini theorem that∫
B(x0,2r)

ρ(x) ≥
∫ 2r

r

(

∫
S(y,s)

ρ) ds ≥ 1

2000
r.

Thus we in both cases have the estimate∫
B(x0,2r)

ρ(x) dx ≥ Cr.

Combining now the lower bound with the upper bound we finally have with

the choice p = 1 that

C(2)r ≤ C(2)(log
L

l
)−1/2(

∫
B(x0,2r)

hf (x)2 dx)1/2.

This gives the claim.

3 Metric conditions for µ-homeomorphisms

In this section we will prove Theorems 1.4 and 1.3.

Proof of Theorem 1.4. Taking the lim supr→0 in inequality (5) we see that

Hf (x) = lim sup
r→0

Lf (x, r)

lf (x, r)
< ∞

outside a set E of σ-finite length. Moreover, by Theorem 1.1, f is dif-

ferentiable almost everywhere. By an elementary argument one sees that

Hf (x) = hf (x) everywhere in the set where both f is differentiable and

min|e|=1 |Df(x)e| > 0. To employ Theorem 1.2 in [12] (according to which

the conditions Hf (x) < ∞ σ-a.e. and Hf ∈ L2+ε
loc (Ω) guarantee that f ∈

W 1,1
loc (Ω, Ω′)) we would like to have Hf = hf almost everywhere in Ω. The ex-

ceptional set where f is differentiable, hf (x) < ∞, and min|e|=1 |Df(x)e| = 0

thus causes a potential danger. On the other hand, in this set, |Df(x)| = 0,

and it is easy to check that the image of the intersection of this exceptional

set with any line has zero length. Combining this fact with the proof of The-

orem 1.2 in [12] we conclude that f belongs to the Sobolev class W 1,1
loc (Ω, Ω′).

For the proof of 1.3 we need two lemmas, the first of which is a version of

the standard absolute continuity result for quasicormal mappings, tailored

for our setting.
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Lemma 3.1 Let f be a homeomorphism between domains Ω, Ω′ ⊂ R2 such

that

(7) Lf (x, r) ≤ lf (x, r)ϕ(x) whenever B(x, 2r) ⊂ Ω,

where ϕ ∈ L2
loc(Ω). Then f is absolutely continuous on almost all lines

parallel to the coordinate axes.

Proof. Let Q ⊂⊂ Ω be an open 2-interval and suppose Q = I × J where

I =]a, b[∈ R1 and J =]c, d[⊂ R1. For each Borel set E ⊂ I we set η(E) =

|f(E × J)|. Then η is a finite Borel measure in I and hence it has a finite

derivative η′(y) for almost every y ∈ I by the Radon-Nikodym theorem.

Choose y ∈ I such that (i) η′(y) exists and (ii) ϕ ∈ L2({y} × J). The latter

is possible due to the Fubini theorem. We will prove that f is absolutely

continuous on the segment {y} × J which will prove the theorem.

Define J ′ = {y} × J . Now let F ⊂ J ′ be compact. We wish to estimate

H1(fF ). Choose 0 < ε < dist(F, ∂J)/2 and t > 0. Let 0 < δ1 ≤ 1 be the

number given by Lemma 31.1 in [18] for the set F . We will soon state what

this lemma gives us. Choose δ2 such that, if 0 < r < δ2, then |f(x)−f(z)| < t

whenever x, z ∈ Q and |x − z| ≤ 2r. Denote δ = min{δ1, δ2, ε}. Choose

0 < r < δ. Now Lemma 31.1 in [18] gives a covering �1, . . . ,�p of F with

intervals in J ′ so that (i) diam(�i) = r for 1 ≤ i ≤ p, (ii) each point of J ′

belongs to at most two different �i, and (iii) each �i is contained in the

ε-neighborhood of F in J ′.

Now, because ϕ ∈ L2(J ′), there are points xi ∈ �i such that

(8) ϕ(xi) ≤ 2 inf
x∈�i

ϕ(x) < ∞.

Set Ai = B2(xi, r). Now �i ⊂ Ai and Ai ⊂ B
1
(y, r) × J . Because

diam(fAi) < t we have that H1
t (fF ) ≤

∑
diam(fAi) ≤ 2

∑
Li, where

Li = Lf (xi, r). Denote similarly li = lf (xi, r). Using (7) we obtain the

estimate

H1
t (fF )2 ≤ 22

(∑
i

Li

)2

≤ 22

(∑
i

liϕ(xi)

)2

=
22

r

(∑
i

lir
1/2ϕ(xi)

)2

;
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notice that B(xi, 2r) ⊂ Ω. By Hölder’s inequality we further conclude that

H1
t (fF )2 ≤ 22

Ω2r

∑
i

|f(Ai)|
∑

i

rϕ2(xi),

where Ω2 = |B2(0, 1)|. Because no point belongs to more than two of the

sets Ai,
∑

|fAi| ≤ 10 η(B1(y, r)). Since the points xi satisfy (8) we arrive at

H1
t (fF )2 ≤ 10 · 22

Ω2

η(B1(y, r))

r

(∫
F+ε

ϕ2(x) dx

)
.

Here F + ε is the ε-neighborhood of F in J ′. Letting first r → 0 and then

δ1 → 0 and finally ε → 0 and t → 0 we deduce that

H1(fF )2 ≤ C(2)η′(y)

(∫
F

ϕ2(x) dx

)
.

The absolute continuity of f on J ′ follows from this estimate, see Lemma

30.9 in [18].

Lemma 3.2 Let u be a non-negative function so that

(9) exp(C ′u) ∈ L1
loc(Ω)

and let p > 1. Then, for each compact set F ⊂ Ω

(10) exp(εC ′M(χF u)) ∈ Lp
loc(Ω)

where ε depends only on p, and M is the usual Hardy-Littlewood maximal

operator.

The proof of this lemma is a simple computation which is based on the

fact that the Hardy-Littlewood maximal operator is bounded from Lq to Lq

when 1 < q < ∞ and on the expansion of the exponential function as a

power series.

The proof of Theorem 1.3. From Theorem 1.1 we have that f is differentiable

almost everywhere. Next we would like to show that f is absolutely contin-

uous on lines. For this it is enough to show that f is absolutely continuous
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on lines in every square Q ⊂⊂ Ω. Fix such a square Q. Now inequality (5)

gives if r < 1
2
d(Q, ∂Ω) and x ∈ Q that

Lf (x, r) ≤ lf (x, r) exp(CM(χF h2
f )(x)),

where F = {y ∈ Ω : d(y, Q) ≤ 1
2
d(Q, ∂Ω)}. Lemma 3.2 shows that the func-

tion exp(CM(χF h2
f )(x)) ∈ L2

loc(Ω) when the constant C ′ is chosen correctly.

By Lemma 3.1 we see that f is absolutely continuous on almost all lines

parallel to the coordinate axes.

The next goal in our proof is to check that f ∈ W 1,1
loc (Ω, Ω′). Because f is

absolutely continuous on almost all lines parallel to the coordinate axes, it

suffices to show that |Df | ∈ L1
loc(Ω). Here Df is the matrix obtained from

the partial derivatives of the coordinate mappings. It exists at a.e. point of

Ω. Now, for a.e. x ∈ Ω, f is differentiable, Df(x) exists and hf (x) < ∞. Fix

such a point x. Because f was assumed to be sense-preserving, the Jacobian

determinant, Jf (x) has to be non-negative. If Jf (x) > 0, then clearly

(11) |Df(x)|2 ≤ hf (x)Jf (x).

On the other hand, if Jf (x) = 0, then elementary linear algebra shows that

min|e|=1 |Df(x)e| = 0. From the assumption hf (x) < ∞ it then follows that

Df(x) has to be the zero matrix. Thus (11) holds for a.e. x ∈ Ω. Because the

Jacobian of each a.e. differentiable homeomorphism is locally integrable (c.f.

[15, p. 360]) we thus conclude from (11) and our integrability assumption on

hf that |Df | is locally integrable, in fact locally p-integrable for any p < 2.

We are left to show that f ∈ W 1,2
loc (Ω, Ω′). By the previous paragraph, f ∈

W 1,1
loc (Ω, Ω′), Jf ∈ L1

loc(Ω), and

|Df(x)|2 ≤ K(x)Jf (x)

a.e. where K = hf satisfies exp(C ′K2) ∈ L1
loc(Ω). Then exp(λK) ∈ L1

loc(Ω)

for every λ > 0 and [8] or the main theorem in [9] gives us the desired

regularity.

4 The higher dimensional setting

We have similar results in Rn, but the proofs are more technical. For sim-

plicity we only cover the extension of Theorem 1.1 to higher dimensions and
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refer to reader to [10] for the analogs for Theorem 1.3 and Theorem 1.4 in

higher dimensions.

Theorem 4.1 Let f be a homeomorphism between domains Ω, Ω′ ⊂ Rn such

that hf (x) < ∞ outside a set E of σ-finite (n−1)-measure and hf ∈ Lp∗

loc(Ω),

with some n − 1 < p < n. Here p∗ = pn
n−p

. Then

(12) Lf (x, r) ≤ lf (x, r) exp

(
(C(n, p) −

∫
B(x,2r)

hp∗
f (y) dy)

1
p∗

n
n−1

)

for every x ∈ Ω and each r > 0 such that B(x, 2r) ⊂ Ω. In particular, f is

differentiable almost everywhere.

Proof. The first part of the proof is the same as the beginning of the proof

of Theorem 1.1. We simply replace the number 2 there with n. We then end

up with the estimate∫
Rn

ρp(y) dy ≤ C(n, p)(log
L

l
)

p
n

(1−n)

(∫
B(x0,2r)

hf (x)np/(n−p) dx

)(n−p)/n

.

The claim follows from this inequality provided we can find a suitable lower

bound on the p-integral of ρ. Such an estimate is obtained by a simple

modification of the reasoning in [11] (Lemma 2.1 there holds with n replaced

by p when p > n − 1, and in Lemma 2.3 there the set Eb is not needed).

Explicitly we have the lower bound∫
Rn

ρp(y) dy ≥ C(n)rn−p.

For the details see [10]. By combining these two facts the claim follows.
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