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Abstract

We establish an essentially sharp modulus of continuity for map-

pings of subexponentially integrable distortion.

1 Introduction

We consider mappings f 2 W 1;1
loc

(
;Rn); where 
 � R
n is a domain. Such a

mapping is said to have �nite distortion if the following three conditions are

satis�ed:

1. f 2 W 1;1
loc

(
;Rn):

2. The Jacobian determinant J(x; f) of f is locally integrable.

3. There is a measurable function K
O
= K

O
(x) � 1; �nite almost every-

where, such that f satis�es the distortion inequality

jDf(x)jn � K
O
(x)J(x; f) a.e. (1)
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Notice that when K
O
2 L1; we recover the class of mappings of bounded

distortion, also called quasiregular mappings. In this case, f is locally Hölder

continuous with exponent K�1
O

and this exponent is sharp. By this we mean

that f has such a representative; this comment also applies to what follows.

Recently, (non-constant) mappings of �nite distortion with subexponentially

integrable distortion K
O
have been shown to share many of the nice proper-

ties of mappings of bounded distortion such as being open and discrete [5],

[12], [14]. Here the subexponential integrability of K
O
requires that

exp(A(K
O
)) 2 L1

loc
(
)

with A smooth and strictly increasing, with

(i)

Z
1

1

A0(t)

t
dt =1; and so that

(ii) there exists t0 2 (0;1) such that A0(t)t increases to in�nity for t � t0.

In particular, under this assumption, a mapping f of �nite distortion is con-

tinuous. The integrability assumption on K
O
is sharp as regards continuity

(and openness and discreteness) in the sense that mappings of �nite distor-

tion with exp(B(K
O
)) 2 L1

loc
(
) and without a continuous representative can

be constructed whenever
R
1

1

B
0(t)

t

dt <1; see [14].

Let us consider the case exp (�K
O
) 2 L1

loc
(
): By the results in [7], f then

has (locally) a modulus of continuity of the type

jf(x)� f(y)j � C= log log(R=jx� yj):

It is also known that better bounds can be obtained when the the constant

� is su�ciently large: given s > 0; the (local) modulus of continuity

jf(x)� f(y)j � C(log(R=jx� yj))�s

holds provided � � �(s; n): This conclusion is established in [6] as a corollary

to a surprising regularity property of mappings with exponentially integrable

distortion that does not hold for small �: In this paper we establish an es-

sentially sharp modulus of continuity by a di�erent technique.
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Theorem 1.1 Let f : 
 ! R
n be a mapping of �nite distortion whose

distortion function K
O
satis�es the integrability condition

K :=

Z
B

exp(�K
O
(x)) dx <1 (2)

where � > 0 and B = B(x0; R) �� 
. Then for every small � > 0 and all

x; y 2 B(x0;
�
R

8

�
e

[ n

!n�1
K]

1�e
n ) we have the estimate

jf(x)� f(y)j � C
K;R;n;�

(�)

�R
B

J(z; f) dz
� 1
n

log
�

n
��

�
nK

!n�1jx�yj
n

� : (3)

Here !
n�1 is the surface measure of @B(0; 1):

The following example shows that our modulus of continuity is essentially

sharp.

Example 1.2 Let � > 0. Then there exists a continuous mapping f :

B(0; 1)! R
n of �nite distortion such thatZ

B(0;1)

exp(�K
O
(x; f)) dx <1 (4)

and points x
j
; y

j
2 B(0; 1) so that x

j
! 0, y

j
! 0 and

jf(x
j
)� f(y

j
)j log�

n
+�

�
1

jx
j
� y

j
j

�
!1 (5)

for every � > 0.

We believe that the claim of Theorem 1.1 holds with the exponent �=n;

but we have not been able to verify this.

Theorem 1.1 is new even for homeomorphic solutions to the Beltrami

equation in the plane. By the results in [1] and [9], one obtains a logarithmic

modulus of continuity of the type of given in Theorem 1.1 for solutions to

the Beltrami equation but with a worse exponent.

By the discussion above and Theorem 1.1, one would expect for an essen-

tially sharp modulus of continuity even under the weaker assumption that

exp A(K
O
) 2 L1

loc
(
) with A satisfying (i) and (ii). This is indeed the case

and such a result will be given in Section 4.
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Let us close this introduction by brie�y sketching the proof of Theorem

1.1. We mimic the lines of reasoning by Morrey [16] and Reshetnyak [17]

for the case of mappings of bounded distortion as follows. We prove a decay

estimate on the integrals of the Jacobian of f over balls by establishing

a di�erential inequality for these integrals. This is done by employing a

suitable isoperimetric inequality established in [8]; the crucial point behind

the isoperimetric inequality is that, under our assumptions, the pointwise

Jacobian of f coincides with the distributional Jacobian. In the (classical)

case of mappings of bounded distortion, the decay estimate on the Jacobian

guarantees that f belongs to a Morrey class and is thus Hölder continuous

[16], [17], [10]. In our setting, the decay order is too weak to imply even

continuity for a general mapping. To bypass this di�culty, we insert the

fundamental ideas from our initial proof of continuity in [7] to show that,

for our mappings, the decay order su�ces to yield the desired modulus of

continuity.

2 Orlicz spaces

Theorem 1.1 will be obtained as a corollary to a more general result. Let

us replace the assumption exp(�K
O
) 2 L1

loc
(
) with exp(A(K

O
)) 2 L1

loc
(
),

where A is an Orlicz function. We call a in�nitely di�erentiable and strictly

increasing function A : [0;1) ! [0;1) with A(0) = 0 and lim
t!1

A(t) = 1
an Orlicz function. We will assume for all 
0 �� 
 thatZ


0
expA(K

O
(x)) dx <1; (6)

where Z
1

1

A0(s)

s
ds =

1

�

Z �

q
C

exp(A(1))

0

dt

tA�1
�
log C

t
�

� =1; (7)

for all C; � > 0. This is condition (i) from the introduction. We wish to

warn the reader that conditions (6) and (7) do not require K
O
even to be

locally integrable and thus an additional technical assumption on A has to

be posed. To �ll up this gap we assume that A satis�es condition (ii): tA0(t)

increases for large t to in�nity.
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Proposition 2.1 Assume that A is an Orlicz function satisfying (i) and

(ii). Then we have the point-wise inequality

P (KJ) � J + exp(A(K))� 1 (8)

for all K; J � 0, where the Orlicz function P satis�es the integrability con-

dition Z
1

1

P (s)

s2
=1 (9)

and also the technical condition that for every � > 0 we have

(t�1P (t))0 � 0 � (t��1P (t))0 (10)

for all t � t2:1(�;A).

We refer to [14, Lemma 2.1 and Lemma 2.3] for the proof of Proposition 2.1.

Lemma 2.2 Assume that A is an Orlicz function satisfying (ii) and let p 2
[1;1). Then there exists t2:2 = t2:2(p;A) 2 (0;1) such that the function

t! t�pexp(A(t))

is increasing on (t2:2;1).

Proof. The claim follows from the identity

d

dt
t�pexp(A(t)) = t�p�1exp(A(t))

�
A0(t)t� p

�
:

Lemma 2.3 Assume that A is an Orlicz function satisfying (ii) and let p 2
[1;1). Then there exists t2:3 = t2:3(p;A) 2 (0;1) such that the function

t! t

A�1(log tp)

is increasing on (t2:3;1).

Proof. Because

d

dt
exp

�A(t)

p

�
t�1 = exp

�A(t)

p

�
t�2
�
1

p
A0(t)t� 1

�
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we �nd a number ~t0(p;A) such that exp
�
A(t)

p

�
t�1 is increasing for t > ~t0.

We conclude that t

A�1(log tp)
=

exp
�
A(A�1(p log t))

p

�

A�1(p log t)
is increasing on (t2:3;1),

where t2:3 = exp
�
A(~t0)

p

�
.

Lemma 2.4 Assume that A is an Orlicz function satisfying (ii) and let p 2
[1;1). Then there exists t2:4 = t2:4(p;A) 2 (0;1) such that the function

t! exp(A(t
1
p ))

is convex on (t2:4;1).

Proof. Because

d

dt
exp(A(t

1
p )) =

1

p
exp(A(t

1
p ))A0(t

1
p )t

1
p
�1;

it su�ces to show that the function

t! exp(A(t
1
p ))

t

is increasing for large values of t. This holds by Lemma 2.2 and so the claim

follows.

3 Isoperimetric-type inequality

A crucial tool in establishing the correct modulus of continuity in our case is

the following integral-type isoperimetric inequality for mappings in the space

ff 2 W 1;1
loc

(
;Rn) : P (jDf jn) 2 L1
loc
(
) and J(x; f) � 0 a.e. in 
g.

Lemma 3.1 Assume that an Orlicz function P satis�es the divergence con-

dition (9) and the technical condition (10). Let f 2 W 1;1
loc

(
;Rn), n � 2,

satisfy P (jDf jn) 2 L1
loc
(
) with J(x; f) � 0 almost everywhere in 
. Then

for each B(x0; R) �� 
, we haveZ
B(x0;r)

J(z; f) dz � (n n�1
p
!
n�1)

�1

�Z
@B(x0;r)

jDf(z)jn�1 dz
� n

n�1

(11)

for almost every 0 < r < R.
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We refer to [8, Proposition 5.1] for the proof of Lemma 3.1. The proof of

Lemma 3.1 is based on the fact that we can integrate by parts against the

Jacobian under the assumptions of Lemma 3.1. This means thatZ



'(x)J(x; f) dx = �
Z



f
i
J(x; f1; :::; fi�1; '; fi+1; :::; fn) dx (12)

for all test functions ' 2 C1

0 (
) and each index i = 1; :::; n.

We close this section by giving a simple proof for a weaker version of

the isoperimetric-type inequality. This is weaker in two senses. The power of

jDf j will be larger than n�1, and the constant somewhat larger. This weaker

version is shown below to yield a version of Theorem 1.1 with �

n

replaced by
�

n
2
Ap(n)

, where p 2 (n� 1; n).

Lemma 3.2 Under the assumptions of Lemma 3.1, for all p 2 (n � 1; n),

we have thatZ
B(x0;r)

J(z; f) dz � A
p
(n)

n�1
p
!
n�1

j@B(x0; r)j
n

n�1

�
�
Z
@B(x0;r)

jDf(z)jp dz
�n

p

(13)

for almost every 0 < r < R. The constant A
p
(n) is given by the formula

A
p
(n) =

�
!
n�1

!
n�2

� 1
p

�Z
�

0

sin
1�n
p�1 (�) d�

� p�1

p

: (14)

Because

� � A
p
(n) � �

p� 1

p� n+ 1
;

see [10, Lemma 3.10.1], (13) is weaker than (11).

Proof. Let j 2 f1; 2; 3:::g. Choose a molli�er � 2 C1

0 (B(0; 1)) and let

�
j
(x) = jn�(jx) and '

j
= �

j
� �

B(x0;r�1=j). Then '
j
2 C1

0 (
) when j is

su�ciently large and supfjr'
j
(x)j : x 2 
g � j.

Because p > n� 1; the mapping f is continuous on @B(x0; r) for almost

every r 2 (0; R): Fix such an r and pick a 2 @B(x0; r): By [3] or [2, Theorem
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1.1], we know that we can integrate by parts against the Jacobian and so����
Z



'
j
(x)J(x; f) dx

���� =

�����
Z



(f1(x)� f1(a))J(x; 'j
; f2; :::; fn) dx

����
�

Z



jf1 � f1(a)jjr'j
jjDf jn�1

� osc(f1; @B(x0; r))j

Z
r

r�
1
j

Z
@B(x0;s)

jDf jn�1 (15)

for almost every r 2 (0; R). Here we used the standard notation

osc(f1; @B(x0; r)) = sup
@B(x0 ;r)

f1(x)� inf
@B(x0;r)

f1(x):

Letting j !1 and using the monotone convergence theorem and Lebesgue

di�erentiation theorem, we conclude thatZ
B(x0;r)

J(x; f) dx � osc(f1; @B(x0; r))

Z
@B(x0;r)

jDf(x)jn�1 dx (16)

for almost every r 2 (0; R): The oscillation lemma ([10, Lemma 3.10.1]) tells

us that

osc(f1; @B(x0; r)) � A
p
(n)r

�
�
Z
@B(x0;r)

jrf1jp
� 1

p

; (17)

where the constant A
p
(n) is given by the formula (13). Combining the in-

equality (16) with the oscillation lemma and using Hölder's inequality, we

conclude thatZ
B(x0;r)

J(z; f) dz � A
p
(n)

n�1
p
!
n�1

j@B(x0; r)j
n

n�1

�
�
Z
@B(x0;r)

jDf(z)jp dz
�n

p

(18)

for almost every 0 < r < R, as desired.

4 Proof of Theorem 1.1

The elements in the Sobolev space W 1;1
loc

(
) are equivalence classes of func-

tions which agree almost everywhere in 
. In order to study the �ne prop-

erties of a function u 2 W 1;1
loc

(
), it is convenient to use the representative ~u,

de�ned by the formula

~u(x) = lim
r!0

sup�
Z
B(x;r)

u(z) dz:
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If f 2 W 1;1
loc

(
;Rn), then we set ~f = ( ~f1; :::; ~fn). It is well known that if

v : Rn ! R is locally integrable, then

lim
r!0

�
Z
B(x;r)

jv(x)� v(z)j dz = 0

for almost all x 2 R
n , and thus ~f = f almost everywhere in 
:

Let A be an Orlicz function satisfying the integrability condition (7),

n 2 f2; 3; 4:::g, K > 0 and � > 0. We introduce the strictly increasing

function �(r) = �A;K;n;�
(r) de�ned for 0 < rn < nK

!n�1
by the formula

�A;K;n;�
(r) = sup

n
t 2 (0;

r

2
) :

Z
r=2

t

ds

sA�1

�
log nK

!n�1s
n

� ds � �
o
: (19)

Now we can formulate our main theorem. After stating the result we show

that this technical version easily yields Theorem 1.1; for a slightly simpler

version see Remark 4.4 below.

Theorem 4.1 Assume that an Orlicz function A satis�es (i) and (ii). Let

f : 
 ! R
n be a mapping of �nite distortion whose distortion function

satis�es the integrability condition

K =

Z
B

exp(A(K
O
(x))) dx <1; (20)

where B = B(x0; R) �� 
. Then, for all small � > 0, we have

��� ~f(x)� ~f(y)
��� � CA;K(n; �)exp

0
@(�� 1)

Z
R

2��1(jx�yj)

dt

tA�1

�
logCA;n(�)

nK

!n�1t
n

�
1
A

�Z
B

J(z; f) dz

� 1
n

(21)

whenever x; y 2 B(x0; � (R=4)).

We will split the proof of Theorem 4.1 into two parts, Lemma 4.2 and

Lemma 4.3. Before we go to the proof of Theorem 4.1, let us show how

Theorem 1.1 follows from Theorem 4.1: Let A(t) = �t, � > 0 and s(r) =�
r

2

�
e

[ nK

!n�1
]
1�e
n . First we observe thatZ

r=2

s(r)

dt

tA�1

�
log nK

!n�1t
n

� =
�

n

9



and so �A;K;n;�=n
(r) � s(r) for all r < n

q
nK

!n�1
. Furthermore

exp

0
@(�� 1)

Z
R

2s�1(jx�yj)

dt

tA�1

�
logCA;n(�)

nK

!n�1t
n

�
1
A =

0
@ log

�
CA;n(�)

nK

!n�1R
n

�
log
�
CA;n(�)

2n+
n
e

[ nK

!n�1jx�yj
n ]

1
e

�
1
A

�

n
(1��)

and so Theorem 1.1 follows.

Lemma 4.2 Under the hypothesis of Theorem 4.1, we have

��� ~f(x)� ~f(y)
���n Z R=2

r

dt

tA�1

�
log nK

!n�1t
n

� � CA;K(n)

Z
B(x0;R)

J(z; f) dz (22)

whenever x; y 2 B(x0; r) � B(x0; R=2).

Proof. Combining the distortion inequality jDf(x)jn � K
O
(x)J(x; f) with

Proposition 2.1, we obtain that P (jDf jn) 2 L1
loc
(
), where

R
1

1

P (s)

s
2 =1 and

for every � > 0 the function t ! t��1P (t) is increasing for all t � t2:1(A; �).
Using Proposition 2.6 in [14] and Proposition 2.4 in [14], we conclude that the

coordinate functions of f are weakly monotone (see [7, De�nition 1.5]). This

is based on the fact that J(�; f) coincides with the distributional Jacobian i.e.
(12) holds. Let p = n� 1

2
, r < R=2 and x; y 2 B(x0; r). Then jDf j 2 Lp

loc
(
).

Using Lemma 7.2 in [7] that holds for mappings whose coordinate functions

are weakly monotone we have the estimate

j ~f(x)� ~f(y)j
C(n; p)t

�
�
�
Z
@B(x0;t)

jDf jp
� 1

p

(23)

for almost every t 2 [r; R]. Write B
s
= B(x0; s) and A

i
= B2ir n B2i�1

r
, for

all i 2 f1; 2; :::g. De�ne

G
i
=
n
t 2 [2i�1r; 2ir] :

Z
@Bt

exp(A(K
O
(x))) dx � 3

2i�1r

Z
Ai

exp(A(K
O
(x))) dx

o

10



for all i 2 f1; 2; :::g \ [1; log2
R

r

] = I. Because 2r � R, we see that I 6= ;.
Using Fubini's theorem, we conclude that

jG
i
j � 2i�1

2
r;

for all i 2 I. Combining the distortion inequality and Hölder's inequality

with the inequality (23), we have that

j ~f(x)� ~f(y)jn
C(n; p)tn

�
�
�
Z
@Bt

jK
O
(x)j

p

n�p

�n�p

p

�
Z
@Bt

J(x; f) dx (24)

for almost every t 2 [r; R]. By Lemma 2.2, we �nd a number t2:2(
p

n�p
;A) such

that the function t ! t�
p

n�p expA(t) is increasing on (t2:2;1). Let t 2 [r; R]

be such that �
R
@Bt

exp(A(K
O
(x))) dx <1; and pick � so that

expA(�) = �
Z
@Bt

exp(A(K
O
(x))) dx:

Write � = maxf�; t2:2g. Then we estimate

�
Z
@Bt

jK
O
(x)j

p

n�p dx � 1

j@B
t
j

Z
@Bt\fjKOj>�g

jK
O
(x)j

p

n�p dx

+

Z
@Bt\fjKOj��g

jK
O
(x)j

p

n�p dx

� �
p

n�p

A(�)
�
Z
@Bt

exp(A(K
O
(x))) dx+ �

p

n�p � 2�
p

n�p :

It follows that

j ~f(x)� ~f(y)jn
t

� C(p; n)�

Z
@Bt

J(x; f) dx (25)

and thus

j ~f(x)� ~f(y)jn
t

� C(p; n;A)A�1

�
log

�
�
Z
@Bt

exp(A(K
O
(x))) dx

��
Z
@Bt

J(x; f) dx (26)

for almost every t 2 [r; R]. Fix i 2 I. For almost every t 2 G
i
, we have that

j ~f(x)� ~f(y)jn
t

� C(p; n;A)A�1

�
log

�
6K

!
n�1tn�12ir

��Z
@Bt

J(x; f) dx:

(27)
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Integrating this estimate over the set G
i
with respect to t, we arrive at

j ~f(x)� ~f(y)jn
Z
Gi

dt

tA�1

�
log 6nK

!n�1t
n

� � C(p; n;A)

Z
Ai

J(x; f) dx: (28)

By Lemma 2.3, we �x t2:3 = t2:3(n;A) � 1 so that the function h : t !�
tA�1

�
log
�

1
t
n

����1
is decreasing on (0; 1

t2:3
). Then the function t! h( t

t2:3

n

p
!n�1

6nK
)

is decreasing on (0; n

q
6nK
!n�1

) � (0; R). Combining this with the estimate

jG
i
j � 2i�1

2
r, we conclude that

j ~f(x)� ~f(y)jn
Z 2ir

2i�23r

dt

tA�1

�
log

t
n

2:3nK

!n�1t
n

� � C(p; n;A)

Z
Ai

J(x; f) dx: (29)

BecauseZ 2ir

2i�23r

dt

tA�1

�
log

t
n

2:3nK

!n�1t
n

� =

Z 2i�23r

2i�1
r

ds

(s+ 2i�2r)A�1

�
log
�

t
n

2:3nK

!n�1(s+2i�2
r)n

��

�
Z 2i�23r

2i�1
r

1

3

ds

sA�1

�
log

t
n

2:3nK

!n�1s
n

� ; (30)

we obtain the estimate

j ~f(x)� ~f(y)jn
Z 2ir

2i�1
r

dt

tA�1

�
log

t
n

2:3nK

!n�1t
n

� � C(p; n;A)

Z
Ai

J(x; f) dx: (31)

Summing over the set I, we arrive at

j ~f(x)� ~f(y)jn
Z

R=2

r

dt

tA�1

�
log

t
n

2:3nK

!n�1t
n

� � C(p; n;A)

Z
BR

J(x; f) dx: (32)

In the case t 2 (0; n

q
nK

!n�1t2:3
), we have that

1

tA�1

�
log

t
n

2:3K

t
n

� =
1

t2:3

t2:3

tA�1

�
log

t
n

2:3nK

!n�1t
n

�
� 1

t2:3

1

tA�1

�
log nK

!n�1t
n

� : (33)

12



Here we used the fact that the function s ! s

A�1(log sn)
is increasing on

(t2:3;1). Furthermore

sup

(
tA�1

�
log

t
n

2:3nK

!n�1t
n

�
tA�1

�
log nK

!n�1t
n

� :
nK

!
n�1t2:3

� tn � Rn

�
� nK

!
n�1

�)
� CA;K(n)

(34)

and so also in the case Rn � tn � nK

!n�1t2:3
, we have the inequality

tA�1

�
log

nK

!
n�1tn

�
� CA;K(n)tA�1

�
log

tn2:3nK

!
n�1tn

�
: (35)

Combining the inequality (32) with the estimates (33) and (35) we complete

the proof of Lemma 4.2.

Inequality (22) together with the following lemma give us the desired

modulus of continuity.

Lemma 4.3 Under the hypothesis of Theorem 4.1, for every small � > 0,

we have

Z
B(x0;r)

J(x; f) dx � 2exp

0
@(�� n)

Z
R

2r

dt

tA�1

�
logCA;n(�)

nK

!n�1t
n

�
1
A

Z
B(x0;R)

J(x; f) dx (36)

whenever r 2 (0; R=2).

Proof. Using Proposition 2.1 we see that the assumptions of Lemma 3.1 are

ful�lled, and so

Z
B(x0;s)

J(x; f) dx � (n n�1
p
!
n�1)

�1 j@B(x0; r)j
n

n�1

�
�
Z
@B(x;s)

jDf jp
�n

p

(37)

for almost every 0 < s < R and all p � n� 1. To get the sharp estimate, we

will later take p = n�1; the general value of p allows us to show that already

Lemma 3.2 is su�cient to establish a logarithmic modulus of continuity.

Write B
r
= B(x0; r). Fix � 2 (0; 1), p 2 [n � 1; n), and i 2 f1; 2; 3; :::g.

13



We denote the interval (R2��i; R2��(i�1)) by 4
i;�
and the annulus B

R2��(i�1) n
B
R2��i by A

i;�
. Using Fubini's theorem we observe that for every � > 0 the

set

E
i
=

(
t 2 4

i;�
:

Z
@Bt

jDf jp � (1 + �)

j4
i;�
j

Z
Ai;�

jDf(x)jp dx
)

(38)

has a positive measure.

Choosing r 2 4
i;�

so that r lies in the set E
i
and so that the inequality (37)

holds, we obtain the estimateZ
B
R2��i

J(x; f) dx �
Z
Br

J(x; f) dx � (n n�1
p
!
n�1)

�1 j@B
r
j n

n�1

�Z
@Br

jDf jp
�n

p

� (n n�1
p
!
n�1)

�1

�
1 + �

j4
i;�
j

�n

p

j@B
r
j n

n�1
�

n

p

 Z
Ai;�

jDf(x)jp dx
! n

n�1

By Lemma 2.4 we can �x t2:4 = t2:4(p=(n � p);A) 2 (0;1) so that the

function t! expA
�
t
n�p

p

�
is convex on (t2:4;1). We set

~K
O
(x) =

8<
:KO

(x); K
O
(x) > t2:4

t2:4; K
O
(x) � t2:4:

(39)

Combining the distortion inequality jDf(x)jn � ~K
O
(x)J(x; f) with Hölder's

inequality, we �nd thatZ
B
R2��i

J(x; f) dx � (n n�1
p
!
n�1)

�1

�
1 + �

j4
i;�
j

�n

p

j@B
r
j n

n�1
�

n

p

 Z
Ai;�

j ~K
O
j

p

n�p

!n�p

p Z
Ai;�

J(x; f) dx: (40)

Jensen's inequality applied to the convex function (t2:4;1) ! (0;1) : � !
expA

�
�

n�p

p

�
yields

Z
B
R2��i

J(x; f) dx � (n n�1
p
!
n�1)

�1

�
1 + �

j4
i;�
j

�n

p

jA
i;�
j
n�p

p

j@B
r
j n

n�1
�

n

p A�1

 
log�
Z
Ai;�

expA( ~K
O
)

!Z
Ai;�

J(x; f) dx

14



and computations show that

Z
B
R2��i

J(x; f) dx �
�
1 + �

n

�n

p

�
2�n � 1

2� � 1

�n�p

p

R2��i j4
i;�
j�1

A�1

�
log

�
expA(t2:4)nK2�n

!
n�1Rn2��n(i�1)(2�n � 1)

��
Z
Ai;�

J(x; f) dx (41)

Letting � ! 0, using the elementary inequalities �a log 2 � 2a� � 1 �
�a2a� log 2 for all �; a � 0 and the fact that � � 1; we conclude that

Z
B
R2��i

J(x; f) dx � 2
n�

p

n
R2��iA�1

 
log

~CnK

!
n�1Rn2��n(i�1)�

!
Z
Ai;�

J(x; f) dxj4
i;�
j�1: (42)

Here and also in what follows we denote the constant expA(t2:4(p=(n�p);A))

by ~C. At this point we would like to warn the reader that the constant ~C

tends to in�nity if we let p! n.

Next we introduce two auxiliary functions. We set

u
i;�
(x) =

Z
B
R2��i

J(x; f) dx+
x�R2��i

j4
i;�
j

Z
Ai;�

J(x; f) dx

and

u
�
=

1X
i=1

u
i;�
(x)�[R2��i;R2��(i�1))(x)

for every x 2 R. Using the inequality (42), we see that

u
i;�
(x) �

h2n�

p

n
R2��iA�1

 
log

~CnK

!
n�1Rn2��n(i�1)�

!
+ x� R2��i

i
u0
i;�
(x) (43)

for all x 2 4
i;�
. Combining the inequality R2��(i�1) � R2��i � R2��i2�

with the fact that
h
A�1(log

~
CnK

!n�1R
n2��n(i�1)

�

)
i�1

�
h
A�1(log 2�n ~

CnK

�!n�1R
n )
i�1

= B
�

(notice that B
�
! 0, as �! 0), we conclude with

u
i;�
(x) �

 
2
n�

p

n
+ 2B

�
�

!
xA�1

 
log

~CnK

!
n�1xn�

!
u0
i;�
(x) (44)
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for all x 2 4
i;�
.

Fix � 2 (0; R=106) and de�ne

v
�;�
(x) = exp

 
�
Z

x

�

� 
2
n�

p

n
+ 2B

�
�

!
tA�1

 
log

~CnK

!
n�1tn�

!��1
dt

!
(45)

for all x 2 (�; R). Using the inequality (44), we see that

d

dx
(v

�;�
u
�
)(x) = v

�;�
(x)

�
�
  

2
n�

p

n
+ 2B

�
�

!
xA�1

 
log

~CnK

!
n�1xn�

!!�1

u
�
(x) + u0

�
(x)

�
� 0 (46)

for all x 2 (�; R) \ [1
i=14i;�

and so the continuous function v
�;�
u
�
is non-

decreasing on (�; R). Let 2r 2 (�; R � �). Choosing i
r
2 N so that r 2

[R2��ir ; R2��(ir�1)), we �nd that

v
�;�
(r)

Z
B
R2��ir

J(x; f) dx � 2v
�;�
(R� �)

Z
BR��

J(x; f) dx: (47)

Since the Jacobian of f is non-negative almost everywhere this yields the

estimateZ
B
2��2r

J(x; f) dx � 2exp

�
�
Z

R��

2r

� 
2
n�

p

n
+ 2B

�
�

!
t

A�1

 
log

~CnK

!
n�1tn�

!��1
dt

�Z
BR��

J(x; f) dx: (48)

Letting � ! 0 and using the estimate � � 1, we �nd that

Z
Br

J(x; f) dx � 2exp

�
�
Z

R

2r

� 
2
n�

p

n
+ 2B

�
�

!
t

A�1

 
log

~CnK

!
n�1tn�

!��1
dt

�Z
BR

J(x; f) dx (49)

for all 0 < r < R=2. Choosing p = n � 1, the constant ~C depends only on

A and n. Furthermore, using the fact that 2
n�

n�1

n

+ 2B
�
� ! 1

n

, as � ! 0, we

obtain the desired inequality (36).
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Now we complete the proof of the entire theorem as follows.

Given x 2 B(x0; �
�
R

4

�
) we consider the ball B(x0; r), r = ��1

A;n;�
(jx � x0j).

By Lemma 4.2 we have the estimate

j ~f(x)� ~f(x0)j � CA;K(n; �)

�Z
B(x0;r)

J(z; f) dz

� 1
n

: (50)

Using Lemma 4.3 we further obtain the estimate

Z
B(x0;r)

J(z; f) dz � 2exp

0
@(�� n)

Z
R

2r

dt

tA�1

�
logCA;n(�)

nK

!n�1t
n

�
1
A

Z
B(x0;R)

J(x; f) dx: (51)

Combining the inequality (50) with the estimate (51) we �nally conclude the

desired modulus of continuity (21).

Remark 4.4 The integral in (21) of Theorem 4.1 can be taken from jx� yj
to R when jx � yj is su�ciently small. To see this, notice that the ratio

of this integral, taken from jx � yj to ��1(jx � yj); with the corresponding

integral from jx� yj to R; tends to zero when jx� yj tends to zero. Thus the

small error made in changing the limits can be imbedded in the estimate by

changing the � in front of the integral in (21) to 2�: We leave the details to

the reader.

Remark 4.5 If we use the inequality (13) instead of the isoperimetric in-

equality (11) in the proof of Lemma 4.3, then under the assumptions of

Lemma 4.3, for every small � > 0, we haveZ
B(x0;r)

J(x; f) dx � 2exp

0
@��� 1

A
n��(n)

�Z
R

2r

dt

tA�1

�
logCA;n(�)

nK

!n�1t
n

�
1
A

Z
B(x0;R)

J(x; f) dx (52)

whenever r 2 (0; R=2). The constant A
n��(n) is given by the formula (14).

This results in the claim of Theorem 4.1 with �� 1 replaced by �� 1
nAn��(n)

,

which is weaker than our claim. However in the setting of Theorem 1.1, this

weaker estimate still gives us a logarithmic modulus of continuity, this time

with the exponent �

n
2
An��(n)

� �.
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5 Construction of Example 1.2

We close this paper by showing that the modulus of continuity we gave above

in Section 4 cannot be substantially improved on. To see that Example 5.1

quali�es for that purpose, make a change of variables to reduce the integrand

to the form given in Theorem 4.1, and notice that the role of ��1 is not

signi�cant when jx � yj is small; see Remark 4.4. Example 1.2 is contained

as a special case in Example 5.1.

Example 5.1 Assume that an Orlicz function A satis�es (i). Then there

exists a continuous mapping of �nite distortion f : B(0; 1)! R
n such thatZ

B(0;1)

exp(A(K
O
(x; f))) dx <1 (53)

and points x
j
; y

j
2 B(0; 1) so that x

j
! 0, y

j
! 0; and

jf(x
j
)� f(y

j
)j exp

 Z 1=2

jxj�yj j

ds

sA�1
�

n

1+�
log 1

s

�
!
!1 (54)

for every � > 0.

Let r 2 (0; 1). Given a ball B = fx 2 R
n : jx � aj < rg and � > 0 we

consider the radial stretching

g(x) = a+ r
x� a

jx� aj�r(jx� aj); (55)

where

�
r
(t) = exp

 
�
Z

r

t

ds

sA�1
�

n

1+�
log 1

s

�
!

for all t 2 (0; r). We may calculate Jacobian of g by using the familiar

formula

J(x; g) = rn�0
r
(jx� aj)

�
�
r
(jx� aj)
jx� aj

�
n�1

(56)

(see the equations (5.43 and (5.44) in [10])). The distortion function is

K
O
(x; g) =

jDg(x)jn
J(x; g)

=
�
r
(jx� aj)

jx� aj�0
r
(jx� aj) (57)
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see the formula (5.49) in [10]. Here we used the assumption jx � aj < 1.

Using polar coordinates we compute the integral of the Jacobian asZ
B

J(x; g) dx =
!
n�1

n
rn
Z

r

0

�n�1
r

(t)�0
r
(t) dt =

!
n�1

n
rn�n

r
(t)

����
r

0

= jBj: (58)

Combining the equation (57) with the fact that

t�0
r
(t)

�
r
(t)

=
1

A�1
�

n

1+�
log 1

t

�
we see that Z

B

exp(A(K
O
(x; g))) dx =

Z
B

�
1

jxj

� n

1+�

dx: (59)

We will now glue together several versions of g with variable �; r; and a:

Let �
i
= 1

i

, i = 2; 3; :::. For all i = 2; 3; 4::: we choose r
i
2 (0; 2�i] so

that
R
B(0;ri)

jxj�
n

1+�i dx � 2�i. Let a
i
= (2�i+2; 0; :::; 0); for i � 4; set B

i
=

B(a
i
; r

i
); and de�ne G = [

i�4Bi
:

De�ne the mapping f : B(0; 1)! R
n by setting

f(x) =

8<
:ai + r

i

x�ai

jx�aij
�
ri
(jx� a

i
j) for x 2 B

i
;

x for x 2 B(0; 1) nG:
(60)

On account of the formula (59) we �nd that

Z
G

exp(A(K
O
(x; f))) �

1X
i=2

2�i <1: (61)

We also have the trivial estimateZ
B(0;1)nG

exp(A(K
O
(x; f))) � exp(A(1))jB(0; 1)j: (62)

Thus (53) holds.

To verify that J(�; f) 2 L1(B(0; 1)) we use the equation (58),

Z
G

J(x; f) dx �
1X
i=1

jB
i
j <1: (63)
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and the trivial estimateZ
B(0;1)nG

J(x; f) = jB(0; 1) nGj: (64)

Let us now explain how to choose the points x
i
; y

i
. Set x

i
= a

i
: If y

i
2 B

i
,

then

jf(x
i
)� f(y

i
)j = r

i
�
ri
(jx

i
� y

i
j)

= r
i
exp

0
@� Z ri

jxi�yij

ds

sA�1

�
n

1+�i
log 1

s

�
1
A :

Using the changes of variable A(t) = n

1+k�i
log 1

s

, k = 1; 2; we see that

r
i
exp

0
@� Z ri

jxi�yij

ds

sA�1

�
n

1+�i
log 1

s

�
1
A � i exp

0
@� Z 1=2

jxi�yij

ds

sA�1

�
n

1+2�i
log 1

s

�
1
A

when y
i
chosen to be su�ciently close to x

i
: The claim follows by noting that

A�1

�
n

1 + �
log

1

s

�
� A�1

�
n

1 + 2�
i

log
1

s

�

when 2�
i
� �:
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