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1 Introduction

We call a mapping f 2 W
1;1
loc (
;R

n) a mapping of �nite distortion if it

satis�es

jDf(x)jn � K(x)J(x; f) a.e.;

where K(x) < 1 and if also J(�; f) 2 L1
loc(
). Here and in the sequel


 � R
n is open, connected, and bounded. The basics of the theory of

mappings of �nite distortion have been established in the papers [1], [2], [3],

[4], [5], [10], [11] and [12], also see the monograph [7]. In these works it has

been demonstrated that (sub)exponential integrability in the sense described

below is both su�cient and essentially necessary for the validity of many

basic properties similar to those of mappings of bounded distortion, that is,

mappings of �nite distortion with K 2 L1: However, there are still many

other properties of mappings of bounded distortion, also called quasiregular

mappings, for which no analog is known in our more general setting, see the

monographs [13], [14], [8], [16].

The purpose of this note is to study the question of removable singu-

larities for bounded mappings of �nite distortion. Our principal message is

that su�ciently small sets are indeed removable under the (sub)exponential

integrability assumption on K whereas even a single point can fail to be

removable under weaker integrability assumptions.

Let us next describe what we mean by (sub)exponential integrability. Let

� : [0;1) ! [0;1) be a strictly increasing, di�erentiable function. We call

such functions Orlicz functions and we make the following two assumptions:

(�-1)

Z
1

1

�0(t)

t
dt =1;
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(�-2) lim
t!1

t�0(t) =1.

We will prove our removability results under the assumption that exp(�(K))

is integrable with � satisfying the above two conditions. Both of them

are needed but the second could be replaced with some other regularity

requirement on �: Notice that (�-1) and the integrability of exp(�(K)) do

not even guarantee the L1-integrability of K: The role of (�-2) is to take

care of such pathologies, see [12]. It is often automatically guaranteed, as

for �(t) = �t; �(t) = t(log(e+ t))�1; and for most of the functions that are

close to being linear (or that grow faster). Our removability theorem will

be given in terms of a capacity associated to �: In order to introduce this

capacity, we �rst de�ne

 (t) = t exp(�(t)): (1.1)

Because  is strictly increasing, we may de�ne an increasing function h :

[0;1)! [0;1) by setting

h(t) = tn
�
 �1(t2n)

�
n�1

: (1.2)

We say that a compact subset E � 
 has zero h-capacity, cap
h
(E) = 0, if

inf

�Z



h(jruj) : u 2 C1

0 (
); u(x) = 18x 2 G for some open G � E

�
= 0:

Using the h-capacity, we give the following result.

Theorem 1.1. Let � and h be as above, such that the assumptions (�-1)

and (�-2) hold. Let E � 
 be a compact set whose h-capacity is zero. If

f : 
 nE ! R
n is a bounded mapping of �nite distortion such thatZ


nE

exp(�(K(x))) <1;

then f extends to a mapping of �nite distortion in 
.

In Section 2 we show that { under the assumptions (�-1) and (�-2)

{ each singleton has zero h-capacity. It is then easy to further construct

Cantor sets whose h-capacity is zero.

There are previous results related to Theorem 1.1. When K 2 L1; our

claim is the counterpart of the basic result that sets of zero conformal capac-

ity are removable for bounded quasiregular mappings. In that setting also

much larger sets are removable, see [6], [8]. In our setting, improvements

of that type on Theorem 1.1 appear to require tools that are not yet avail-

able, see however [1] for the planar case which is somewhat easier. When

�(t) = �t; the claim of Theorem 1.1 has been proven in [2], [3]. Also see [15]

for the removability of a point for homeomorphic mappings when �(t) = �t:
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As practical examples, assumptions (�-1) and (�-2) are satis�ed for

�(t) = t ;
t

log(e+ t)
;

t

log(1 + t) log log(ee + t)
; : : :

for any string of iterated logarithms. The corresponding capacity functions

can (up to a multiplicative constant) be estimated from above as follows:

if �(t) = t then h(t) � tn
�
log(e+ t)

�
n�1

;

if �(t) =
t

log(e+ t)
then h(t) � tn

�
log(e+ t) log log(ee + t)

�
n�1

; : : : :

One could also formulate Theorem 1.1 in terms of Hausdor� measures

arising from general gauge functions associated to h; but we have chosen,

for technical reasons, to restrict ourselves to the capacity setting.

Our second result demonstrates the necessity of (�-1) for Theorem 1.1.

Theorem 1.2. Let � be an Orlicz-function such thatZ
1

1

�0(s)

s
ds <1: (1.3)

Let Q be a closed cube in R
n , centered at the origin. Then there exists a

bounded, continuous mapping f : Q n f0g ! R
n of �nite distortion such thatZ

Qnf0g

exp
�
�(K(x))

�
<1;

but so that f does not extend to a mapping of �nite distortion in Q.

Notice that, for example, the following functions � do not satisfy as-

sumption (�-1) when � > 0 and thus satisfy (1.3) (but do satisfy (�-2)):

�(t) =
t

t�
;

t

log1+�(e+ t)
;

t

log(e+ t) log1+� log(ee + t)
; : : : :

We will prove Theorem 1.1 by extending the corresponding argument

given in [2], [3] for the case �(t) = �t to our more general setting in Section 2.

This partially relies on recent results in [12] but requires some improvements

on the prior arguments. The construction for Theorem 1.2 is based on a

modi�cation of the constructions given in [10], [12]. This will be explained

in Section 3.

2 Proof of Theorem 1.1

Let us de�ne two auxiliary Orlicz-functions:

 (t) = t exp(�(t));

g(s) =
s

 �1(s)
� 1; s > 0; and g(0) = 0:

(2.1)
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We notice that  is strictly increasing so that the inverse function  �1 makes

sense. We immediately have

g( (t)) = exp(�(t))� 1: (2.2)

We then have the following ([12], lemma 2.1).

Lemma 2.1. Assume that � satis�es (�-1). Then

(a)

Z
1

1

g(s)

s2
ds =1 and

(b) given a; b � 0 we have

g(ab) � a+ exp(�(b))� 1:

Recall that the function h was de�ned as h(t) = tn
�
 �1(t2n)

�
n�1

. The

following lemma shows that Theorem 1.1 is not empty: singletons have h-

capacity zero.

Proposition 2.2. Let h, � and 
 be as above, such that assumptions (�-1)

and (�-2) hold. Then

cap
h
(fxg) = 0 for every x 2 
:

We record the following result from [9] that we employ for the proof of

Proposition 2.2.

Lemma 2.3. If ' : [0;1)! [0;1) is decreasing andZ
1

1

'
1

n (t) dt =1;

then there exists a radial function u 2 W
1;n
0 (B(0; 1)) such that u > 0, u is

continuous in B(0; 1) n f0g, u(x)!1 as jxj ! 0 andZ
B(0;1)

jruj'
1�n

n (jruj) <1:

We are now ready to prove Proposition 2.2.

Proof. Without loss of generality, assume that x = 0 and B(0; 1) � 
. Let

'(t) =
�
t  �1(t2n)

��n
. Then ' is decreasing and di�erentiable in (0;1).

By change of variables,Z
1

1

'
1

n (t) dt =

Z
1

1

dt

t �1(t2n)
=

Z
1

1

1

t

�
g(t2n)

t2n
+

1

t2n

�
dt

>

Z
1

1

g(t2n)

t2n+1
dt =

Z
1

1

g(s)

2n s2
ds =1:
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Thus, by Lemma 2.3, there exists a radial function u 2W 1;n(B(0; 1)), con-

tinuous in the punctured unit ball, for which u(x)!1 as jxj ! 0 andZ
B(0;1)

h(jruj) =

Z
B(0;1)

jruj'
1�n

n (jruj) =M <1:

We can further assume that the support of u is contained in the unit ball.

De�ne u
k
= minf 1

k

u; 1g. Since u 2W
1;n
0 (B(0; 1)) and grows to in�nity as jxj

tends to zero, functions u
k
are valid test functions for h-capacity for every

positive k. Then, using the fact that that  �1 is increasing, we haveZ



h(jru
k
j) =

Z
B(0;1)

h(jru
k
j) =

Z
B(0;1)

jru
k
j
n

�
 �1(jru

k
j
2n)
�
n�1

= k�n
Z
B(0;1)

jrujn
�
 �1(k�2njruj2n)

�
n�1

� k�n
Z
B(0;1)

jrujn
�
 �1(jruj2n)

�
n�1

= k�n
Z
B(0;1)

h(jruj) = k�nM ! 0

as k !1.

We need two more lemmas. The �rst one is from [12], proposition 2.6.

Lemma 2.4. Let � and g be as above, such that assumptions (�-1) and

(�-2) hold. If f 2W
1;1
loc (
) andZ




g(jrf jn) <1;

then the pointwise Jacobian J(x; f) is locally integrable, and J(x; f) coin-

cides with the distributional Jacobian.

The latter conclusion of the lemma says that we can integrate by parts

against the Jacobian, that is,Z



�J(x; f) dx = �

Z



f
i
J(x; f1; : : : ; fi�1; �; fi+1; : : : ; fn) dx

for each i = 1; : : : ; n and all � 2 C1
0 (
).

Lemma 2.5. Let h, g and � be as above, such that assumptions (�-1) and

(�-2) are valid. Then the following holds.

1. There exists a constant C = C(n;�) > 0 such that for every a; b � 0

an�1b � g(an) + h(b) + C:

2. For every a � 0 there exists a constant M =M(a; n;�) > 0 such that

h(a+ t) �M +Mh(t) 8 t � 0:
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Proof. 1. We have three cases:

(i) a � b : Then an�1b � bn � h(b), when b is su�ciently large. Thus we

may choose C so that the claim holds in this case.

(ii) b < a and b < a

 
�1(an)

: Then an�1b � a
n

 
�1(an)

= g(an) + 1.

(iii) a

 
�1(an)

< b < a : Claim: For every � > 0 there exists a constant

L = L(n;�; �) > 0 such that a� >  �1(an) for every a � L.

Proof of the claim: We show that a
�

 
�1(an)

! 1 as a ! 1. Recall

that, by (�-2), t�0(t)!1 when t tends to in�nity. This implies that,

for each s > 0; there is t
s
> 0 so that �(t) � s log t for t > t

s
: Be-

cause  (t) = t exp(�(t)); we conclude that  exceeds each polynomial

growth rate for su�ciently large t: The claim follows.

Now, for a large enough, a
1

2 < a

 
�1(an)

< b. Because  �1 is increasing,

we have

an�1b � bn
�
 �1(an)

�
n�1

+ C(n;�)

� bn
�
 �1(b2n)

�
n�1

+C(n;�) = h(b) + C(n;�):

2. A simple but tedious calculation using the de�nitions (1.1), (1.2), (2.1)

of  ; g; and h gives us the estimate

h0(t) � (2(n� 1) + n)tn�1
�
 �1(t2n)

�
n�1

for all t > 0; and using the previous claim we obtain the estimate

h0(t) � tn + C

for all t where C = C(n;�): Now

h(a+ t)� h(t) =

Z
a+t

t

h0(t) � Ca+ a(t+ a)n

� Ca+ 2nan+1 + 2natn �M +Mtn:

Proof of Theorem 1.1. The idea of the proof is similar to that of the proof

of a weaker result given in [3]. By Lemma 2.4 it su�ces to prove thatZ
F

g(jDf jn) <1 (2.3)

for every compact set F � 
. Indeed, it then follows that f 2W
1;1
loc (
;R

n),

and other claims follow by applying Lemma 2.4. Although inequality (2.3)

is assumed for the entire 
 in Lemma 2.4, it su�ces to consider integrals

over compact sets, as we only need local conclusions of Lemma 2.4.

Fix a compact set F � 
. Then there exists a test function � 2 C1
0 (
) such

that 0 � � � 1 and � = 1 in F . Since cap
h
(E) = 0, there exists a sequence

(�
j
) with properties
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(i) �
j
2 C1

0 (
) for every j 2 N,

(ii) 0 � �
j
� 1 for every j 2 N,

(iii) for every j 2 N there exists an open U
j
� E such that �

j
= 1 in U

j
,

(iv) lim
j!1 �

j
(x) = 0 for almost every x 2 
; and

(v) lim
j!1

R


h(jr�

j
j) = 0.

De�ne '
j
= (1� �

j
)� 2 C1

0 (
 nE). We want to show thatZ



g(j'
j
Df jn) � C <1: (2.4)

This would prove the theorem, since by the choice of � and Fatou's lemma,Z
F

g(jDf jn) �

Z



g(j�Df jn) =

Z



lim
j!1

g(j'
j
Df jn)

� lim inf
j!1

Z



g(j'
j
Df jn) � C:

First of all, the function g is, as an Orlicz-function, increasing. Thus we can

use the �nite distortion property of f to obtain the estimateZ



g(j'
j
Df jn) �

Z



g
�
j'
j
j
nJ(x; f)K(x)

�
: (2.5)

By Lemma 2.1 (b),Z



g
�
j'
j
j
nJ(x; f)K(x)

�
�

Z



j'
j
j
nJ(x; f) +

Z



exp
�
�(K(x))

�
By our assumptions, the second term on the right hand side is bounded and

the sum of the two terms is �nite. Furthermore, Lemma 2.4 allows us to

integrate by parts to handle the �rst term on the right hand side:Z



j'
j
j
nJ(x; f) � njjf jj1

Z



j'
j
j
n�1

jr'
j
jjDf jn�1:

The �rst part of Lemma 2.5 shows that the right hand side is no more than

njjf jj1

�Z



g(j'
j
j
n

jDf jn) +

Z



h(jr'
j
j) + C

�
: (2.6)

Since we assumed f to be bounded, we may (by scaling f) assume that

njjf jj1 � 1=2: Then the term containing the integral of g in (2.6) can be

moved to the left hand side of (2.5) and thus can be forgotten.

Furthermore

jr'
j
j = jr((1 � �)�)j = j(1 � �)r� � �r�

j
j:
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Because the function h is increasing we conclude thatZ



h(jr'
j
j) �

Z



h(j(1 � �)r�j + j�r�
j
j) �

Z



h(jr�j + jr�
j
j): (2.7)

Since jr�j is bounded, we can apply the second part of Lemma 2.5 to the

term on the right hand side of inequality (2.7):Z



h(jr�j+ jr�
j
j) �M j
j+M

Z



h(jr�
j
j):

By the choice of the functions �
j
, the second term on the right hand side

tends to zero. Combining this with preceding discussion results in the in-

equality (2.4) and the proof is thus complete.

3 Proof of Theorem 1.2

We will modify the construction made in [12] (see also [10]) in order to give

the desired mapping. The initial idea for constructions of this type goes

back, at least, to [6]. In practise, what we do is to use several suitably

modi�ed versions of the mapping given in [12]. We have not found out a

slick way to reduce our construction to the existing ones and thus we, for

the convenience of the reader, give a rather detailed reasoning.

We will use the cubic norm kxk = max
i
jx
i
j as our standard norm from now

on. Using the cubic norm, the x0-centered closed cube with edge length

2r > 0 and sides parallel to coordinate axes can be represented in the form

Q(x0; r) = fx 2 R
n : kx� x0k � rg:

We then call r the radius of Q. We will denote by C constants that depend

only on the euclidean dimension and the Orlicz-function �. Constants may

have varying values at di�erent times.

We will give a mapping f : Q2 ! R
n , Q2 = Q(0; 2); so that J(x; f) < 0 a.e.

and so that the rest of the requirements hold; the desired mapping for Q2

is then obtained by employing an auxiliary re
ection in a hyperplane. The

case of a general cube reduces to this by scaling.

First we introduce a sequence of compact sets in the unit cube Q0 = fx 2

R
n : jjxjj � 1

2
g whose intersection is a Cantor set.

The unit cube Q0 is �rst divided into 2n cubes with radius 1=4, which are

each in turn divided into a subcube with radius (1=4)=2 and a di�erence

of two cubes which we refer to as an annulus. The family Q1 consists of

these 2n subcubes. The remainder of the construction is then self-similar.

The subcube is divided into 2n cubes which are each in turn divided into

a subcube with radius 4�2=2 and an annulus. The family Q2 consists of

these 22n subcubes (see Figure 1). Continuing this way, we get the families

Q
k
; k = 1; 2; 3; : : : , for which the radius of Q 2 Q

k
is r(Q) = r

k
= 2�2k�1
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and the number of cubes in Q
k
is #Q

k
= 2nk. It easily follows that the

resulting Cantor set is of measure zero.

Next we take a Whitney decomposition around the origin so that the re-

Q1 Q2

Figure 1: Families Q1 and Q2.

sulting cubes cover the set Q2nf0g: the �rst series of Whitney cubes consists

of the closures of those dyadic cubes (from now on, we call the closures also

dyadic) with radius 1
2
whose union covers the annulus Q2 nQ(0; 1), and then

the j:th series consists of 22n � 2n cubes with radius 2�j , j = 1; 2; : : : . We

make the previous Cantor construction in each of these cubes, using the

scaling factor 2�j . The construction of our mapping will be the same for

each of our cubes of radius 2�j ; modulo translations. We will describe the

construction for a cube of radius 2�j ; centered at the origin.

The common radius of all cubes of the k:th generation of the Cantor con-

struction is r
jk
= 2�j�2k�1; and there are 2nk = #Q

jk
of them. We consider

positive real numbers �
jk

such that

1X
k=1

�
jk
= c

j
<1;

where c
j
and the �

jk
:s will be determined later.

De�ne f
j;0(x) = x, and for every k = 1; 2; : : : set

'
jk
(r) =

(
2�j�k�1

�
1 +

2rjk�r

rjk

�
jk

�Q
k�1
i=1

�
1 + �

ji

�
; r

jk
� r � 2r

jk

2�j�k�1 r

rjk

Q
k

i=1

�
1 + �

ji

�
; 0 � r � r

jk

and

f
jk
(x) =

8<
:
f
j;k�1(x); x 62

S
Q2Qk

2Q

f
j;k�1(z(Q)) +

x�z(Q)

kx�z(Q)k
'
jk

�
kx�z(Q)k

�
; x 2 2Q; Q 2 Q

k
:

Here z(Q) is the center of the cube Q.

Now, since the series
P

k
�
jk

converges, the in�nite product of the terms
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1 + �
jk

converges as well:

1Y
k=j

�
1 + �

jk

�
= C 0

j
<1:

Thus the sequence (f
jk
)1
k=1 converges uniformly to a limit mapping fj. No-

tice that f
j
�xes the boundary of our cube centered at the origin.

f1

Figure 2: The mapping f1 acting on 2Q; Q 2 Q1.

We do this for all j and produce the mapping f as described above.

Now, f is absolutely continuous on almost all lines parallel to the coordinate

axes, and J(x; f) < 0 for almost every x 2 Q2. In addition, f is continuous,

since every f
j
is a uniform limit of continuous mappings and the f

j
:s keep

boundaries �xed. We have to show that

(i)
R
K

jDf j <1 for all compact K � Q2 n f0g,

(ii)
R
Q2

exp(�(K)) <1,

(iii) J(�; f) 2 L1
loc (Q2 n f0g), but

(iv) J(�; f) =2 L1
loc (Q2), and

(v) f is bounded.

Fix one of the cubes Q
j
in the j:th series of the Whitney decomposition.

Furthermore, �x one of the cubes in the k:th generation of the Cantor con-

struction inside Q
j
. The mapping f is radial in the annulus int (2Q n Q),

with respect to the cubic metric;

f(x) =
x

jjxjj
'
jk
(jjxjj):

Recall ((c.f. [8]) that for f(x) = x

jxj
'(jxj); with ' radial,

Df(x) =
'(jxj)

jxj
I+

�
'0(jxj)�

'(jxj)

jxj

�
x
 x

jxj2
;
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where x
 x is the n� n matrix whose i; j-entry equals x
i
x
j
, and

J(x; f) = '0(jxj)

�
'(jxj)

jxj

�
n�1

:

Thus we obtain the estimates

jDf(x)j � max

�
'
jk
(jjxjj)

jjxjj
;
��'0
jk
(jjxjj)

��� (3.1)

and

J(x; f) �
'0
jk

(jjxjj)'n�1
jk

(jjxjj)

jjxjjn�1
(3.2)

for almost every x 2 2Q n Q. Here � means that the right hand side is

bounded by the left hand side from above and below, with constants not

depending on the indices j and k. Furthermore

K(x) =
jDf(x)jn

jJ(x; f)j
� C

'
jk
(jjxjj)

jjxjj
���'0
jk

(jjxjj)
��� + C

0
@ jjxjj

���'0
jk
(jjxjj)

���
'
jk
(jjxjj)

1
A
n�1

� C
�
��1
jk

+ �n�1
jk

�
: (3.3)

Let us �rst show (i). It su�ces to show that for all �xed j0, the modulus of

the di�erential is integrable over the union A
j0
of all Whitney cubes up to

j0:th series. By equation (3.1),

jDf(x)j � C
'
jk
(jjxjj)

jjxjj
+ C

��'0
jk
(jjxjj)

��
� C2�j�k�1

�
1 + �

jk

r
jk

+
�
jk

r
jk

�
k�1Y
i=1

�
1 + �

ji

�
� C2k+1

kY
i=1

�
1 + �

ji

�

for almost every x 2 2Q n Q for Q of radius 2�j�2k�1: Now, since the

integral of the modulus of the di�erential is same in every cube Q
j
in the

j:th Whitney series, we have

Z
Aj0

jDf(x)j =

j0X
j=1

(22n � 2n)

Z
Qj

jDf(x)j =

j0X
j=1

(22n � 2n)

1X
k=1

2nk

�

Z
Qjk

jDf(x)j � C

j0X
j=1

1X
k=1

2�jn+(1�n)k
kY
i=1

�
1 + �

ji

�
(3.4)

� C

j0X
j=1

C(j)2�jn
1X
k=1

2(1�n)k <1;
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since n > 1. Thus (i) holds, as long as numbers �
jk

are de�ned as promised

before.

By equations (3.2) and (3.3) we haveZ
Q2

exp
�
�(K(x))

�
� C

1X
j=1

1X
k=1

2�nj�nk exp
�
�
�
C(��1

jk

+ �n�1
jk

)
��
; (3.5)

and

jJ(x; f)j � C2nk
�
1 + �

jk

�
n�1

�
jk

k�1Y
i=1

�
1 + �

ji

�
n

� 2nk�
jk

kY
i=1

�
1 + �

ji

�
n

;

jJ(x; f)j � C2nk�
jk

k�1Y
i=1

�
1 + �

ji

�
n

:

Integrating, as in equation (3.4), over the set A
j0
, we arrive at

Z
Aj0

jJ(x; f)j � C

j0X
j=1

1X
k=1

2nk
Z
Qk

jJ(x; f)j � C

j0X
j=1

2�jn
1X
k=1

�
jk

kY
i=1

�
1 + �

ji

�
n

� C

j0X
j=1

2�jnC(j)

1X
k=1

�
jk
<1:

Hence the Jacobian is locally integrable outside the origin and (iii) holds.

Now,

Z
Q2

jJ(x; f)j � C

1X
j=1

2�jn
1X
k=1

�
jk

k�1Y
i=1

�
1 + �

ji

�
n

: (3.6)

On the other hand, for every Whitney cube Q in the j:th series the following

holds:

jf(x)j =

���� lim
k!1

f
jk
(x)

���� � 1 +

1X
k=1

2�j�k�1
kY
i=1

�
1 + �

ji

�
for every x 2 Q:

(3.7)

By equation (3.3) there exists an L > 0 such that K(x) � L

�jk

for every

x 2 Q2 as long as �
jk
� C 0 for all j; k 2 N and some �xed C 0 > 0. Now

choose a sequence (~�
k
) by setting

~�
k
=

L

��1(k)
:

By the change of variables s = ��1(t) in assumption (1.3), we haveZ
1

1

dt

��1(t)
<1:

12



Thus the sum
P

1

k=1 ~�k, as well as the corresponding product converge.

Next we choose for every j 2 N an index k(j) so large that

2�k exp
�
�
�
L(2�j + 2j(n�1))

��
� 1:

Now we are ready to de�ne the numbers �
jk
. We set

�
jk
=

8><
>:
2j ; k = k(j)

1; k = k(j) + 1

~�
k
; otherwise:

Now, as the �
jk
:s are equal to ~�

k
:s except that there is a \blow-up" term for

each j, the sums
P

1

k=1 �jk, as well as the corresponding product converge

for each j.

Combining the previous choices for �
jk
:s with estimate (3.5), we have

Z
Q2

exp
�
�(K(x))

�
� C

1X
j=1

1X
k=1

2�nj�nk exp
�
�
�
C 0(��1

jk

+ �n�1
jk

)
��

� C

1X
j=1

2�nj
1X
k=1

2�nk exp

�
�

�
L

~�
k

��
+

1X
j=1

2�njC
�
1 + exp(�(C))

�

� C + C

1X
j=1

2�nj
1X
k=1

2�nk exp(k) = C 0 +

1X
j=1

2�nj
1X
k=1

(2�ne)k <1:

Thus (ii) holds. Furthermore, estimate (3.6) yields

Z
Q2

jJ(x; f)j � C

1X
j=1

2�jn
1X
k=1

�
jk

k�1Y
i=1

�
1 + �

ji

�
n

� C

1X
j=1

2�jn(2jn) =1;

which proves (iv). Finally, using (3.7), we obtain

jf(x)j =

���� lim
k!1

f
jk
(x)

���� � 1 +

1X
k=1

2�j�k�1
kY
i=1

�
1 + �

ji

�
� 1 + C 0

1X
k=1

2�k

for every x 2 Q, Q being any of the Whitney cubes with radius 2�j . Here

the constant C 0 does not depend on j, and hence (v) is veri�ed. This �nishes

the proof. �
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