
(n, 2)-SETS HAVE FULL HAUSDORFF DIMENSION

THEMIS MITSIS

Abstract. We prove that a set containing translates of every 2-
plane must have full Hausdorff dimension.

1. Introduction

This is a continuation of [4] where a partial result on the problem
under investigation was obtained. Since that paper is unpublished
work, we will reproduce certain parts of it for the sake of completeness.

An (n, 2)-set in Rn is a subset E ⊂ Rn containing a translate of every
2-dimensional plane.

The natural question that arises is whether E must have positive
Lebesgue measure. This turns out to be true in low dimensions. Mar-
strand [3] proved that (3, 2)-sets have positive measure. Bourgain [1]
showed the same for (4, 2)-sets and made a connection with the Kakeya
conjecture. In higher dimensions the question is open. However, it
has been known for some time that if n > 4 then dimH(E) ≥ (2n +
2)/3, where dimH denotes Hausdorff dimension. This follows from the
estimates for the 2-plane transform due to Christ [2]. Recent work by
the author [4] has led to the mild improvement dimH(E) ≥ (2n+ 3)/3.
In the present paper we modify the argument in [4], which in turn is
based on geometric-combinatorial ideas inspired by Wolff [6], to obtain
full dimension. Namely we prove the following.

Theorem 1.1. Suppose n > 4 and let E ⊂ Rn be an (n, 2)-set. Then
dimH(E) = n.

2. Terminology and notation

Sn−1 ⊂ Rn is the (n− 1)-dimensional unit sphere.
B(a, r) is the closed ball of radius r centered at the point a.
For X ⊂ Rn, X⊥ denotes its orthogonal complement.
If e ∈ Sn−1, a ∈ Rn then Le(a) = {a + te : t ∈ R} is the line in the

e-direction passing through the point a.
If e ∈ Sn−1, a ∈ Rn, β > 0 then T βe (a) = {x ∈ Rn : dist(x, Le(a)) ≤

β} is the infinite tube with axis Le(a) and cross-section radius β.
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Lk denotes k-dimensional Lebesgue measure and L0 counting mea-
sure. When the context is clear we will use the notation | · | for all these
measures.

Let Gn be the Grassmannian manifold of all 2-dimensional linear sub-
spaces of Rn equipped with the unique probability measure γn,2 which
is invariant under the action of the orthogonal group. The elements of
Gn will be refered to as direction planes.

If P1, P2 ∈ Gn, then their distance is defined by

d(P1, P2) = ‖projP1
− projP2

‖

where projP : Rn → P is the orthogonal projection onto P .
A set of points or direction planes is called ρ-separated if the distance

between any two of its elements is at least ρ.

If P ∈ Gn, 1 ≤ l ≤ 4, δ > 0 then P l,δ is a rectangle of dimensions
l× l× δ × · · · × δ︸ ︷︷ ︸

n−2

, that is, the image of [0, l]× [0, l]× [0, δ]× · · · × [0, δ]

under a rotation and a translation, such that its faces with dimensions
l × l are parallel to P . Such a set will be refered to as a δ-plate or
simply as a plate. When l = 1 the superscript l will be supressed.

If P l,δ
1 ∩P

l,δ
2 6= ∅ and d(P1, P2) = θ we will say that the plates intersect

at angle θ.

The letter C will denote various constants whose values may change
from line to line. Similarly, Cε will denote constants depending on ε. If
we need to keep track of the value of a constant through a calculation

we will use subscripted letters C1, C2, . . . or the notation C̃. x . y
means x ≤ Cx and x ' y means (x . y & y . x).

Finally, note that

γn,2({P ∈ Gn : d(P, P0) ≤ δ}) ' δ2(n−2) for all P0 ∈ Gn, δ ≤ 1.

So if A ⊂ Gn and B is a maximal δ-separated subset of A then

γn,2(A) . |B|δ2(n−2).

Further, if A ⊂ Gn is δ-separated and B is a maximal η-separated
subset of A with η ≥ δ then

|B| & |A|(δ/η)2(n−2).

3. Auxiliary Lemmas

The following technical lemma allows us to control the intersection
of two plates.
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Lemma 3.1. Let P l,η
1 , P l,η

2 be two plates such that d(P1, P2) ≤ 1/2.
Then there exists a tube T βe (a) with β = Cη/d(P1, P2) such that

P l,η
1 ∩ P

l,η
2 ⊂ T βe (a).

In particular

|P l,η
1 ∩ P

l,η
2 | .

ηn−1

d(P1, P2)
.

Proof. Choose a, b ∈ P l,η
1 ∩ P

l,η
2 so that |a− b| = diam(P l,η

1 ∩ P
l,η
2 ) and

let r = |a − b|, θ = d(P1, P2), e = (a − b)/|a − b|. If r ≤ C1η/θ then
B(a, 2r) ⊂ T βe (a), so we may assume that r ≥ C1η/θ. We can also
assume that P2 is the x1x2-plane, a = 0, b = (b1, 0, b), b ∈ Rn−2. Since
θ ≤ 1/2, by simple linear algebra, we can write P1 = {(s, t, su + tv) :
s, t ∈ R}, where u, v ∈ Rn−2, |u|, |v| . 1. Now, if x = (xi) ∈ Sn−1 then
projP1

(x) = (s0, t0, s0u+ t0v), where

s0 =
(x1 + 〈u, x〉)(1 + |v|2)− (x2 + 〈v, x〉)〈u, v〉

1 + |u|2 + |v|2 + |u|2|v|2 − 〈u, v〉2
,

t0 =
(x2 + 〈v, x〉)(1 + |u|2)− (x1 + 〈u, x〉)〈u, v〉

1 + |u|2 + |v|2 + |u|2|v|2 − 〈u, v〉2
,

u = (0, 0, u), v = (0, 0, v).

Therefore

θ = sup
|x|=1

|projP1
(x)− projP2

(x)| . |u|+ |v|.

Since b ∈ P l,η
1 ∩ P

l,η
2 there exists (s, t, su+ tv) ∈ P1 such that

|b1 − s| . η, |t| . η, |su+ tv − b| . η, |b| . η.

Then

|s| ≥ |b| − |b| − |b1 − s| ≥ r − Cη ≥ (1− CC−1
1 )r & r

for C1 sufficiently large. Hence

|u| ≤ |su+ tv − b|+ |tv|+ |b|
|s|

.
η

r
.

Consequently

|v| = |v|+ |u| − |u| ≥ C−1θ − Cη/r ≥ (C−1 − CC−1
1 )θ & θ

for C1 large enough.
Now let y = (yi) ∈ P l,η

1 ∩ P
l,η
2 . Then there exist z1 = (s1, t1, s1u +

t1v) ∈ P1, z2 = (s2, t2,0) ∈ P2 such that |y − z1| . η, |y − z2| . η.
Therefore

|s1u+ t1v| . η, |s1| ≤ |z1| ≤ |z1 − y|+ |y| . η + r . r.
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It follows that

|t1| ≤
|s1u+ t1v|+ |s1u|

|v|
.
η + r(η/r)

θ
.
η

θ
.

Hence

dist(y, x1 − axis) ≤ |y − (s1, 0,0)| ≤ |y − z1|+ |t1|+ |s1u+ t1v|
. η + η/θ + η . η/θ.

We conclude that

dist(y, Le(0)) ≤ |y − y1b
−1
1 b| ≤ dist(y, x1 − axis) + |y1||b1|−1|b|

. η/θ + η . η/θ

proving the first assertion of the lemma. To prove the second assertion,
note that

|P l,η
1 ∩ P

l,η
2 | ≤ |P

l,η
1 ∩ T βe (a)| . ηn−1

d(P1, P2)
.

The proof of Theorem 1.1 will be, essentially, a reduction to the 3-
dimensional case via the Radon transform. We give the definitions.

For a function f : R3 → R satisfying the appropriate integrability
conditions, the Radon transform

Rf : S2 × R→ R

is defined by

Rf(e, t) =

∫
〈e,x〉=t

f(x)dL2(x).

It is proved in Oberlin and Stein [5] that for any measurable set E ⊂ R3

one has the following estimate.

‖RχE‖3,∞ . ‖χE‖3/2

where

‖RχE‖3,∞ =

∫
S2

(sup
t

RχE(e, t))3dσ(e)

1/3

and dσ is surface measure.
We can discretize this result as follows.

Lemma 3.2. Suppose E is a set in R3, λ ≤ 1 and let {Pk}Mk=1 be a

δ-separated set in G3 such that for each k there is plate P l,Cδ
k satisfying

|P l,Cδ
k ∩ E| ≥ λ|P l,Cδ

k |.
Then

|E| & λ3/2M1/2δ.
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Proof. For each e ∈ S2 let Pe be the plane with normal e passing
through the origin. Then there is a δ-separated set {ek}Mk=1 on S2 such
that Pk = Pek . Note that since 1 ≤ l ≤ 4, for each e ∈ B(ek, δ/2) ∩ S2

we have

λδ ≤ |P l,Cδ
k ∩ E| ≤

∫
Ie

L2((Pe + x) ∩ E)dL1(x)

where Ie is an interval on P⊥e with L1(Ie) . δ. Therefore there exists
xe ∈ Ie such that

λ . L2((Pe + xe) ∩ E).

Hence

λ . sup
t

RχE(e, t).

We conclude that

λ3δ2M .
∑
k

∫
B(ek,δ/2)∩S2

(sup
t

RχE(e, t))3dσ(e)

≤
∫
S2

(sup
t

RχE(e, t))3dσ(e)

= ‖RχE‖3
3,∞ . ‖χE‖3

3/2 = |E|2.

This, in turn, gives rise to the following higher dimensional analogue.

Lemma 3.3. Suppose E is a set in Rn, λ ≤ 1, Π ⊂ Rn is a 3-plane
and {Pk}Mk=1 is a δ-separated set in Gn such that for each k there exists
a plate P δ

k satisfying

P δ
k ⊂ ΠC̃δ and |P δ

k ∩ E| ≥ λ|P δ
k |

where ΠC̃δ = {x ∈ Rn : dist(x,Π) ≤ C̃δ} is the C̃δ-neighborhood of Π.
Then

|E ∩ ΠC̃δ| & λ3M1/2δn−2.

Proof. Whithout loss of generality we may asssume that Π is the x1x2x3-

plane. Since P δ
k ⊂ ΠC̃δ there is a direction plane Qk ⊂ Π such that

d(Pk, Qk) . δ. Therefore we can find a plate Q2,C1δ
k with P δ

k ⊂ Q2,C1δ
k .

It follows that

|Q2,C1δ
k ∩ E ∩ ΠC̃δ| ≥ λδn−2.

Let B be a maximal C2δ-separated subset of {Pk}Mk=1 and put B′ =
{Qk : Pk ∈ B}. Then for Qj, Qk ∈ B′, j 6= k, we have

d(Qj, Qk) ≥ d(Pj, Pk)− d(Pj, Qj)− d(Pk, Qk) ≥ (C2 − C)δ ≥ δ

for C2 sufficiently large.
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Now for each Qk ∈ B′ let

Lk =

{
x ∈ B(0, C̃δ) ∩ Π⊥ : L3(Q2,C1δ

k ∩ E ∩ (Π + x)) ≤ λδ

C3

}
,

Hk =

{
x ∈ B(0, C̃δ) ∩ Π⊥ : L3(Q2,C1δ

k ∩ E ∩ (Π + x)) ≥ λδ

C3

}
.

Note that

L3(Q2,C1δ
k ∩ E ∩ (Π + x)) . δ, for all x ∈ B(0, C̃δ) ∩ Π⊥.

Hence

λδn−2 ≤ |Q2,C1δ
k ∩ E ∩ ΠC̃δ|

=

∫
B(0,C̃δ)∩Π⊥

L3(Q2,C1δ
k ∩ E ∩ (Π + x))dLn−3(x)

=

∫
Lk

L3(Q2,C1δ
k ∩ E ∩ (Π + x))dLn−3(x)

+

∫
Hk

L3(Q2,C1δ
k ∩ E ∩ (Π + x))dLn−3(x)

≤ λδ

C3

Cδn−3 + CδLn−3(Hk).

Therefore, Ln−3(Hk) & λδn−3 for C3 sufficiently large.
Next, let M ′ = |B′| and define

L =

{
x ∈ B(0, C̃δ) ∩ Π⊥ : |{k : x ∈ Hk}| <

λM ′

C4

}
,

H =

{
x ∈ B(0, C̃δ) ∩ Π⊥ : |{k : x ∈ Hk}| ≥

λM ′

C4

}
.

Then

λδn−3M ′ .
∑
k

∫
χHk =

∫
H

∑
k

χHk +

∫
L

∑
k

χHk

≤ M ′Ln−3(H) +
λM ′

C4

Ln−3(L)

≤ M ′Ln−3(H) +
λM ′

C4

Cδn−3.

Therefore Ln−3(H) & λδn−3 for C4 sufficiently large.
Note that for each x ∈ H there are at least λM ′/C4 plates in Π + x,

that is, plates in a copy of R3, with δ-separated direction planes and
such that the 3-dimensional measure of their intersection with E∩(Π+
x) is at least C−1λδ. Hence, by Lemma 3.2

L3(E ∩ (Π + x)) & λ3/2(λM ′)1/2δ.
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We conclude that

|E ∩ ΠC̃δ| ≥
∫
H

L3(E ∩ (Π + x))dLn−3(x)

& λδn−3λ3/2(λM ′)1/2δ

' λ3M1/2δn−2.

4. The main argument

Theorem 1.1 will be a consequence of the following.

Proposition 4.1. Suppose E is a set in Rn, λ ≤ 1 and {Pj}Mj=1 is a

δ-separated set in Gn with diam({Pj}Mj=1) ≤ 1/2, such that for each j

there is plate P δ
j satisfying

|P δ
j ∩ E| ≥ λ|P δ

j |.
Then

|E| ≥ C−1
ε δελ(n+2)/2M1/2δn−2

Proof. The idea of the proof is to find a single plate with high multi-
plicity and then apply repeatedly Lemma 3.3 to the plates intersecting
it. To this end fix a number µ and let

C′µ =

{
P δ
j : |{x ∈ P δ

j ∩ E : |{k : x ∈ P δ
k}| ≤ µ}| ≥ λ

2
δn−2

}
,

C′′µ =

{
P δ
j : |{x ∈ P δ

j ∩ E : |{k : x ∈ P δ
k}| ≥ µ}| ≥ λ

2
δn−2

}
.

Then {
P δ
j

}M
j=1

= C′µ ∪ C′′µ.

We consider two cases.

CASE I. (Low multiplicity) C′′µ = ∅.
CASE II. (High multiplicity) C′′µ 6= ∅.

In case I, for each 1 ≤ j ≤M let

A′j =
{
x ∈ P δ

j ∩ E : |{k : x ∈ P δ
k}| ≤ µ

}
.

Then

|E| ≥ |
M⋃
j=1

A′j| ≥
1

µ

M∑
j=1

|A′j| ≥
1

2

M

µ
λδn−2.

Therefore

µ ≥ 1

2

M

|E|
λδn−2.
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So letting

µ0 =
1

4

M

|E|
λδn−2 (1)

we see that we cannot have case I for µ0. Consequently, there is a plate
P δ := P δ

j0
such that

|{x ∈ P δ ∩ E : |{k : x ∈ P δ
k}| ≥ µ0}| ≥

λ

2
δn−2.

Note that for each x ∈ P δ ∩ E with |{k : x ∈ P δ
k}| ≥ µ0 we have

{k : x ∈ P δ
k} =

log(C/δ)⋃
i=1

{k : x ∈ P δ
k and δ2i−1 ≤ d(Pk, P ) < δ2i}.

Therefore, by the pigeonhole principle, there is an integer i(x) with
1 ≤ i(x) ≤ log(C/δ) such that

|{k : x ∈ P δ
k and δ2i(x)−1 ≤ d(Pk, P ) < δ2i(x)}| ≥ (log(C/δ))−1µ0.

And so,

{x ∈ P δ ∩ E : |{k : x ∈ P δ
k}| ≥ µ0}

=

log(C/δ)⋃
i=1

{x ∈ P δ ∩ E : |{k : x ∈ P δ
k and δ2i−1 ≤ d(Pk, P ) < δ2i}|

≥ (log(C/δ))−1µ0}.
Applying the pigeonhole principle again, we see that there exists a
number ρ := δ2i0−1 and a set A ⊂ P δ ∩ E of measure

|A| & (log(C/δ))−1λδn−2 (2)

such that for every x ∈ A
|{k : x ∈ P δ

k and ρ ≤ d(Pk, P ) < 2ρ}| ≥ (log(C/δ))−1µ0. (3)

Heuristically, (2) and (3) tell us that a large number of plates intersect
P δ at approximately the same angle. We are going to estimate this
number using the bound for the measure of their pairwise intersections.
To do this, define

D = {P δ
k : P δ

k ∩ P δ 6= ∅ and ρ ≤ d(Pk, P ) < 2ρ}.
Then, by Lemma 3.1, we have

|D| &
∑

k:P δk∈D

|P δ
k ∩ P δ| ρ

δn−1

=
ρ

δn−1

∫
P δ

∑
k:P δk∈D

χP δk

≥ ρ

δn−1

∫
A

∑
k:P δk∈D

χP δk
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≥ ρ

δn−1
|A|(log(C/δ))−1µ0

& (log(C/δ))−2λ2ρ

δ

M

|E|
δn−2. (4)

Where the last inequality follows from (1) and (2) and the one before
last from (3).

We are now in a position to carry out a geometric construction, in
the spirit of [6], which will allow us to use Lemma 3.3.

Let {ei}i be a maximal δ/ρ-separated set of points on the (n − 3)-
dimensional unit sphere Sn−1 ∩ P⊥ and let

Πi = c+ Π′i

where c is the center of P δ and Π′i is the 3-plane spanned by ei and P .

Then for each P δ
k ∈ D there exists an i such that P δ

k ⊂ ΠC̃δ
i , where ΠC̃δ

i

is the C̃δ-neighborhood of Πi. To see this, let y ∈ P δ
k , w ∈ P δ

k ∩ P δ.
Then there exists z ∈ Pk with |z| . 1, |y − w − z| . δ. Write

z = z1 + z2 ∈ P ⊕ P⊥,

c− w = w1 + w2 ∈ P ⊕ P⊥.
Then |z2| . ρ, |w2| . δ. Choose ei so that |z2 − |z2|ei| . δ. Hence

y = ((y − w − z) + (z2 − |z2|ei)− w2) + (z1 − w1 + |z2|ei) + c ∈ ΠC̃δ
i .

Therefore, if we let

Di =
{
P δ
k ∈ D : P δ

k ⊂ ΠC̃δ
i

}
then

D =
⋃
i

Di.

Now let γ = λ(log(1/δ))−1 and consider two cases.

CASE I. δ ≤ γρ.
CASE II. δ ≥ γρ.

In case I let

X = {x ∈ Rn : dist(x, c+ P ) ≤ γρ} .
Then for each P δ

k ∈ D

P δ
k ∩ X ⊂ P 2γρ

k ∩ X.

Hence, by Lemma 3.1, P δ
k ∩ X is contained in a tube of cross-section

radius Cγ. Therefore

|P δ
k ∩ (E ∩ X{)| = |P δ

k ∩ E| − |P δ
k ∩ E ∩ X|

≥ |P δ
k ∩ E| − |P δ

k ∩ X|
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≥ λδn−2 − Cλ(log(1/δ))−1δn−2

≥ λ

2
δn−2

for δ sufficiently small.
Now, if dist(x, c+ P ) ≥ γρ then x belongs to at most Cγ−(n−3) sets

ΠC̃δ
i . To see this suppose c = 0, x ∈ ΠC̃δ

i and write x = u+w ∈ P⊕P⊥.
Then |w| ≥ γρ, |w−〈w, ei〉ei| . δ. Therefore, either |w−|w|ei| . δ, or
|w+ |w|ei| . δ. We conclude that the set of all possible ei is contained
in

B(w/|w|, Cδ/(γρ)) ∪B(−w/|w|, Cδ/(γρ))

and therefore has cardinality at most Cγ−(n−3). Consequently

|E| ≥ |
⋃
i

E ∩ X{ ∩ ΠC̃δ
i |

& γn−3
∑
i

|(E ∩ X{) ∩ ΠC̃δ
i |

& γn−3λ3δn−2
∑
i

|Di|1/2

where the last inequality follows from Lemma 3.3 applied to the set
E ∩ X{, the families of plates {Di}i and the 3-planes {Πi}i.

In case II, since |{Πi}i| . (ρ/δ)n−3, we have

|E| ≥ |
⋃
i

E ∩ ΠC̃δ
i |

& (δ/ρ)n−3
∑
i

|E ∩ ΠC̃δ
i |

≥ γn−3
∑
i

|E ∩ ΠC̃δ
i |

& γn−3λ3δn−2
∑
i

|Di|1/2

with the last inequality true by Lemma 3.3 applied to the set E, the
families of plates {Di}i and the 3-planes {Πi}i.

We conclude that in either case

|E| & γn−3λ3δn−2
∑
i

|Di|1/2. (5)

To estimate the sum above, note that ΠC̃δ
i , being the C̃δ-neighborhood

of a copy of R3, can contain at most C(ρ/δ)2 plates whose direction
planes are δ-separated and at distance approximately ρ from P . There-
fore

|D| ≤
∑
i

|Di| .
ρ

δ

∑
i

|Di|1/2. (6)
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Combining (4), (5) and (6) we obtain

|E| ≥ C−1
ε δ2ελn+2 M

|E|
δ2(n−2)

where the logarithmic factors have been absorbed into C−1
ε δ2ε. Conse-

quently

|E| ≥ C−1
ε δελ(n+2)/2M1/2δn−2

proving the proposition.

5. Proof of Theorem 1.1

Let F be an (n, 2)-set. Using measure theory, we can find a compact
set E ⊂ F and a set A ⊂ Gn of positive measure so that diam(A) ≤ 1/2
and for every P ∈ A there is a square SP of unit area such that SP is
parallel to P and

L2(SP ∩ E) ≥ 1/2.

Fix a covering {B(xi, ri)} of E and let

Ik =
{
i : 2−k ≤ ri ≤ 2−(k−1)

}
, νk = |Ik|,

Ek = E ∩
⋃
i∈Ik

B(xi, ri), Ẽk =
⋃
i∈Ik

B(xi, 2ri).

Then, by the pigeonhole principle, one can find a k and a set B ⊂ A

of measure at least C−1k−2 so that

L2(SP ∩ Ek) & k−2, for all P ∈ B.

Let {Pj}Mj=1 be a maximal 2−k-separated set in B. Then

M & k−222k(n−2)

and for each Pj there is a plate P 2−k
j such that

|P 2−k

j ∩ Ẽk| & k−2|P 2−k

j |.
So, by Proposition 4.1

|Ẽk| ≥ C−1
ε k−α2−kε

where α = n+ 3. On the other hand

|Ẽk| . νk2
−kn.

Therefore

νk ≥ C−1
ε k−α2k(n−ε).

Consequently∑
i

rn−2ε
i & νk2

−k(n−2ε) ≥ C−1
ε k−α2kε ≥ C̃−1

ε .

We conclude that dimH(F ) = n.
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