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1. Introduction

Recently systematic studies of mappings of finite distortion have emerged in
the geometric function theory. The connection with deformations of elastic
bodies in the theory of nonlinear elasticity is perhaps a primary motivation
for such studies. The regularity properties of these mappings and solutions of
the associated PDEs are the basic theme in [1], [2], [4], [10], [11], [13], [15],
[18], [20], [21], [25], [26], [27], [29]. Those papers proved rather clearly that the
class of mappings with exponentially integrable distortion function is optimal
in many respects. Other related works on mappings with finite distortion are
[12], [23], [24], [9], [5], [6], [14], [19], [22], [28]. In [10] the authors established,
in even dimensions, improved regularity under the a priori assumption that

the mappings in question have integrable Jacobian determinants. Although
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they did suspect that the results obtained in [10] and [1] remain valid in all
dimensions, there were quite significant obstacles to overcome. In this paper we

continue this theme, refining and extending this earlier work to all dimensions.

Let €2 be an open subset of IR". We shall consider mappings f : 2 — IR"
in the Sobolev class W;.} (Q, IR™). Thus the differential matrix D f(z) € IR™*"

is defined at almost every point x € (.

Definition 1. A mapping f € WII’I(Q, IR™) is said to have finite distortion if:

ocC

i) The Jacobian determinant J(x, f) = detD f(x) is locally integrable.

ii) There is a measurable function K = K(z) > 1, finite almost every-

where, such that

(1) IDf(@)|[" < K(2)J (x, f).

Note that the operator norm of a matrix M is being used here, ||[M|| =
max{|M¢|; || = 1}. If f has finite distortion, then (1) holds for the function
K that is defined to take the value 1 when either J(z, f) = 0 or Df(x) does
not exist and the value ||Df(z)||"/J(z, f) otherwise. We call this function the

distortion function of f.

Every mapping of finite distortion solves a nonlinear system of first order
PDEs, the so-called Beltrami system. This in turn gives rise to a degenerate
elliptic equation of the second order; an analogue of the familiar n-harmonic
equation. Our main idea is to approximate these second order equations by
more regular ones. The solutions of the regular equations approximate our
mapping f. We then exploit a result of [15] which provides a priori estimates
for the solutions of the regular equations. As a final step we show that f
coincides with the weak limit of the regular solutions. More importantly, the

estimates are preserved in passing to the limit.

Theorem 1. For each dimension n > 2 and o > 0 there exists Ao (n) > 1 such

that if f : Q@ — IR" has finite distortion and the distortion function K = K (z)



of f satisfies
/ M@y < 00
Q

for some A\ > \,(n), then

[ |IDf ()] 1og” (1 4 D)l

|Df|s
for all concentric balls B C 2B C Q). Here |D f|p stands for the integral average
of |Df| over the ball B.

) dr < Cy(n) /ZB J(x, f)dz

The assumption in Theorem 1 on the size of A is necessary as is easily
seen by considering the mapping f(z) = m, s >0, for z € B(0,1/2),
that has finite and exponentially integrable distortion.

As a consequence of Theorem 1 and our earlier work in [1], [10] we now
obtain the following modulus of continuity and volume distortion estimates for

mappings of exponentially integrable distortion. These estimates extend the

corresponding results by G. David [4] in the complex plane.

Corollary 1. For each dimension n > 2 and s > 0 there exists \;(n) > 1 such
that if the distortion function K = K (x) of a mapping f :  — R" of finite

distortion satisfies
/ M) dr < o
Q

for some A > Ay(n), then given B(a,2R) C € there is a constant C' so that

C
(2) |f(z) = f(y)] < m

whenever z,y € B(a, R) and

3) (B ¢

P —
— B 1
log®(2 + )
whenever E C B(a, R) is compact.
We close the introduction with a result that extends a removable sin-
gularity theorem from [10], originally only given in even dimensions, to all

dimensions. For the concept of the capacity referred to in the statement see

Section 9.



Theorem 2. There exists a number \(n) > 0 with the following properties.

Let E C R" be a closed set of zero L™ log" ' L—capacity and let
(4) f:Q\E—>R"

be a bounded mapping of finite distortion and assume that the distortion func-
tion K satisfies
/ M@ dr < 00
O\E

for some A > \(n). Then f extends to a mapping of finite distortion in  with

exponentially integrable distortion function.

2. Algebraic Preliminaries

Here we recall some commonly used formulas.

Recall that the adjoint Jacobian matrix Adj D f(z) € IR™*" satisfies the rule
(2.1) D'f(x) Adj Df(x) = J (=, f)I,

where D'f(z) denotes the transpose to Df(x): the entries of Adj Df(z) are
the cofactors of Df(z). In particular

(2.2) |Adj Df (z)[| < | Df ()"

It is well known that the adjoint differential matrix is divergence free
div [Adj Df(z)] =0.

Precisely, this means that

(2.3) | ¢Adj Df (), Dij(a))dz =0

whenever f € W71 (Q, R") and ¢; € C§°(Q, IR"). Here and in the sequel we

(0]9)

use the inner product of matrices defined by
(X,Y) = Trace X'Y .
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This inner product gives rise to another norm in IR"*", called Hilbert—Schmidt
norm and denoted by |M|* = Trace M'M.

To every mapping f of finite distortion there corresponds the Beltrami equation
2
(2.4) D'f(x) Df(x) = J(z, f)»G(x),

where G(x) is the distortion tensor of f: a symmetric, positive definite matrix
of determinant 1. Here G is determined by (2.4) when J(z, f) > 0 and we set
G =1 otherwise.
Associated with G(x) is the energy integral
e = [ Bz, Dhyds.
Q
where E(z, M) = (MG~'(x), M)5.

of mappings with finite distortion that these mappings minimize the energy

It is the essence of the analytic theory

functional, subject to a Dirichlet boundary condition. The Euler-Lagrange
equation takes the form
div A(z, Df) =0,

where A : Q x R™*™ — IR™" is given by

n—2

Az, M) = (MG (z), M) = MG (x).
The energy integrand takes the form
E(z,M) = (A(z, M), M) .
Notice that
E(x, M) > n? det(M)

for any M and that for M = D f(z) and f satisfying the Beltrami equation we
have
E(z,Df) =n?J(z, f).

In particular, our mapping f has finite energy, since J(x, f) is assumed to

be integrable. We shall make use of the following elementary, though quite



involved inequality:

n

2.5) P+ A, M) < K (@) B M)

for M € IR™*".

Using the terminology of the next section, this inequality tells us that
a mapping of distortion K = K(z) gives rise to an n-harmonic couple ® =
[A(z, Df), Df].

3. p-Harmonic couples

A pair ® = [A, M| of matrix fields A(z) and M (x) such that
div A(z) =0
M(z)=DF , FeWp(Q R
is said to be p-harmonic, 1 < p < oo of distortion K = K(z) > 1, if
1 P p— 1 i
(3.1) 2;|M(fv)| + le‘l(ﬂcﬂp*1 < K(z)(A(z), M(z)) -
The energy of ® is defined by
E®] = [ (A(w), M(2)da
Q

In what follows we shall assume that this integral converges. We will be inter-
ested in the distortion K of the exponential class EXP(Q2). Precisely we shall

assume that
(3.2) / MO dy < oo
Q

for a certain A > 0.

Under this condition, the distortion inequality (3.1) implies

M e LPlog " L(Q) and A€ Lvtlog™ L(Q),



by Holder’s inequality in Orlicz spaces.
Recall from the previous section that, for a given mapping f : Q@ — IR" of

exponentially integrable distortion, the pair
® = [A(z, Df), Df(z)]

is an n-harmonic couple of the same finite distortion K = K(x) as in (1.1).
This paper relies on the following a priori estimate concerning integrability

properties of p-harmonic couples.

Theorem 2. Let [A, M] be a p-harmonic couple. For every integer m > 0
there exists A\p(m,n) > 1 such that if (3.2) holds with some XA > \,(m,n) and
QY C Q is relatively compact and M € LP log™ L(§Y'), then

(33) IM12, g 1) < Col@) [ (A), M (@) da

Here the dependence on ' is only in terms of d(Y, 092).

Let us emphasize explicitly here that this result requires the left hand
side to be finite. The proof of Estimate (3.3) can be found in [15]. As a matter
of fact we are going to use it for the exponent p close to n. More specifically,
we always assume that

(3.4) n——=<p<n.

Remark 3.1
It is important to realize that in this range of exponents both A,(m,n) and

C,(£') can be made independent of p.

4. The Approximation

First we approximate the distortion tensor G = G(z) by uniformly elliptic ones

I
G(z) + I 0<e<l.

(4.1 Glr) = ey 0<es
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Here the quotient notation simply means that we multiply the matrix G + €l
by the inverse of I4+eG. We believe that in what follows the analogous symbols
are self-explanatory. In particular we have

G l(z)+el

(4.2) G Y (x) = T ec(0)

€

To ensure convergence of the integrals we will need to work with exponents
1
slightly below the dimension. Then we set p = n — €, where 0 < e < 7 Ac-

cordingly, we introduce the perturbation

n—e

(4.3) Ec(x, M) = (Ac(x, M), M) = (MG, " (z), M) =

of the energy integrand, where
(4.4) Ax, M) :== (MG (z), M)™= MG ()

for z € Q and M € IR™*".

It is a matter of elementary analysis of the eigenvalues of G(x) that we have
1 p—1 p

(4.5) —|MP+—— |A(z, M)|» T < K(z)E(x, M)
p p

with the same distortion function K = K (x) as in (3.1).

Next we fix a ball B compactly contained in €2 and consider the minimizer

h = he : B — IR" of the p-harmonic variational integral

(4.6) &,[h] = /B E.(z, Dh)dz .

This minimizer is taken under to the Dirichlet condition
hef4+W," (B, IR").

This makes sense because f € W'"¢(B, IR") for each ¢ > 0, see the discussion
in the following section. The existence and uniqueness of h, are easily estab-
lished by the usual convexity arguments. The Euler—Lagrange equation for h,
reads as

div Ac(x, Dhe) =0.
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Because the equation is uniformly elliptic, the minimizer A, in fact belongs to

W,(B, IR™) for some ¢ > n — e, see e.g. [8]. We deduce from here that the

oc

pair &, = [A.(x, Dh,), Dh.)] is a p-harmonic couple of distortion K, that is
1 p—1 p_

(4.7) —|Dhe(2)|P + ——|Ac(z, Dh,)|7 T < K(x)E(x, Dh,)
p D

for almost every = € B.
As K satisfies the condition (3.2) with A = A(m, n) sufficiently large, Theorem
2 applies to each h,:

(4.8) DRl ogm 1y < Coman(B) /B E.(z, Dh.)dz

for every relatively compact subset B’ C B. Note that the constant C, ,,(B’)

is independent of €, see Remark 3.1.

Our nearest goal is to show that the mappings h. : B — IR" converge to
some h : B — IR" weakly in every space Wh*(B’ IR"), where 1 < s < n and
B’ is an arbitrary compact subdomain of B. We prove this fact in a few steps.

Let us begin with some integrability properties of the Dirichlet data.

5. |Df| belongs to L"log ' L(Q)

By the definition of mappings of finite distortion, the Jacobian determinant
J(z, f) is (locally) integrable on §2; regarding Theorem 1 we may assume that
the integrability is global. On the other hand, the distortion function K lies
in EXP(€2). We find, by using Holder’s inequality in Orlicz spaces, that

K(z)J(x, f) € Llog ' L(9) .
This, in view of the distortion inequality (2.5), implies
(5.1) IDf| € L"log™ " L(Q) ,

as claimed.



In particular, we extract two elementary consequences from this fact.
First
fewh<Q,R") forevery 0 <e<1.

Second, it is known [16] that (5.1) implies that f belongs to the grand Sobolev
space W™ (Q, IR™), that is

(5.2) lim e/Q IDf ()" dx =0.

e—0

We also observe the following upper semicontinuity formula

(5.3) limsup | E(z,Df)dx <
Q

e—0

< / E(z,Df)dx :n%/ J(z, f)dz .
Q Q
This is immediate from the elementary pointwise inequality

(54)  Bla,M) < [(MG™(@),M)+eM]2] 7 <
< (14 0(MG (x), MY =T + eCs|M|",

where § can be any positive parameter whereas the constant Cs can be quite
large. Applying this inequality to M = Df, and integrating we obtain
limsup [ E.(z,Df)de < (1+ 5)/ E(z, Df)dx
e—0 Q Q

+Cy lime/ IDf|"“da .
e—0 Q

This last limit equals zero and we conclude with inequality (5.3).

6. A Weakly Converging Sequence {hj}

We show here first that there exist positive numbers €; converging to
zero such that the sequence of mappings h; = h,(z) converges to a mapping
h : B — IR", weakly in every space W*(B') with 1 < s < n and relatively

compact subdomains B’ C B.
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Indeed, if we fix B’ CC B, then by the estimate (4.8) we obtain

(6.1) [ 1D “dz < DR gy <
(6.2) < Cpnl(B) / E.(z, Dh.)dx
B
(6.3) < Cn(B) / E.(x, Df)dz <
B
<

2C, (B / E(z, Df) dz
Q
provided e is sufficiently small, depending of course on B’, by (5.3).

Finally, a routine diagonal selection method gives the sequence {h;}.
We next show that the limit mapping h : B — IR"™ actually belongs to
W P(B, IR"), with P(t) = t"log™ (e + t) and satisfies

ocC
(6.4) IDHI g 1) < Conn(B) [ B, Df)da

This estimate follows from the calculation above. Indeed, for sufficiently large

j, with fixed B’, we can write

) n—e; !/
1Dhy|| iy < 2Cma(B) | Elw,Df)ds .

L" % log™ L
Inequality (6.4) follows by simply applying the lower semicontinuity of the

norms || . ||gn-¢ogm r, With ¢ arbitrarily small.
To establish Theorem 1 we need only show that

h(z) = f(z) fora.e. z€Q.

This fact still requires some work due to insufficient regularity of both h and

f. We proceed by first showing that:

7. The Limit Mapping Has Finite Energy

In fact we shall see that h and f have the same energy on the ball B :

/E(a:,Dh)dx - /E(a:,Df)dx:
(7.1) ! !

n

= nE/BJ(x,f)dx.
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As h, is a minimizer of the functional (4.6), we have
/ E.(z, Dh.)dzx < / E.(z, Df)dz
B B

Fix an arbitrary compact set B° C B and numbers § > 0 and 1 < s < n. We

use the algebraic inequality
(7.2) (M(OI+G) ', M) < (MG.', M)
for 0 < e < 0, whose proof will be given at the end of this section. Thus

/B,<Dh(5I+G)‘1,Dh>%dx < lim [ (Dh;(6I +G)™", Dh;)3dx

j—oo JB

< i Dh;G-', Dh;)2d
= jm B< G, j)2dr
< lim |B| 75 UB<Dth;jl,Dhj> 7 x]

]*)00

— B lim {/ Eej(a;,Dhj)dx}

]—)OO

< |BI% lim {/ B (v Df)da:} Y

j—o00
= |B|~ {/ E(x,Df)dx] ’
B
Letting s tend to n yields
/,(Dh,(cSIJrG)‘I,Dh)% < / E(x, Df)dz
B B

Next we may pass to the limit as § — 0. Since B’ was an arbitrary compact

set in B, we conclude with the inequality

(7.3) /BE(:U,Dh)dxg/BE(x,Df)dx

The distortion inequality together with the hypothesis that K lies in the ex-
ponential class give

(7.4) |Dh| € L™log ' L(B).

The proof of the reverse inequality substantially relies on the fact that f solves

the Beltrami equation (2.4). This equation allows us to replace the integrand
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E(z,Df) by the Jacobian determinant (null Lagrangian). Precisely, we can

write )
/BE(x,Df)dx = nE/BJ(:U,f)dx:
= nlim [ [Df(@)] (. =
(75) . J@, ) Jh)
-, [IDf(x)lf B |Dh<x>|e] !

e—0

n J(z,h)
2l / LN
+ n2 limsup 5 [Dhiz)f T
At this point we make use of a deep result concerning Jacobians [7], namely

/ l J(z, f) J(z,h) ]dm

O\, [ Dr@F ~ DA

< Ce [ [IDf@)]" +|Dh(@) "] da

The estimate holds for arbitrary mappings f,h in WbH"¢(B, IR") provided
these mappings coincide on dB. Also recall that for the functions |D f(x)| and
|Dh(x)| in the Orlicz space L™ log™" L(B), the right hand side tends to zero as

e — 0. Hence we have

/BE(Q:,Df)dx = n hm/137|Dh(x)|fdx§

e—0

(7.7)

: E(x, Dh)
1 /’761 :/E . Dh)dz,
M J D) =/ Bl Pz

by Monotone Convergence Theorem. It follows from the previous estimate that

both f and h have the same energy.

Consequently we must have equality in the middle step of this calcula-

tions, which happens only if
(7.8) n>J(z,h) = E(z, Dh) = (DhG~'(x), Dh)>.

We recall that detG(z) = 1. An analysis of Hadamard’s inequality for deter-
minants reveals that in order to have equality at (7.8), the Jacobian matrix

Dh(x) must satisfy the same Beltrami equation as D f does:
(7.9) D'h(z)Dh(z) = J(z, h)=G(x).
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In this way we have arrived at two solutions of the same first order PDE. These

solutions coincide on dB. Our last step will be to prove that h = f.
Proof of (7.2).
We begin by diagonalizing G :
G =0'TO
where I' = diag(vy, -+, vn). We see that
(I +G)"' =051 +1)™!
and

F+d)71
I+l

Inequality (7.2) thus reduces to showing that

Gt =0

F+6[)—1 />
I+l 7

(M'(6T +G)~', M"Yy < (M'(

for M' = [m;;] = MO". This inequality reads as

n 2 -1 2 2,0 T€
Ei,j:lmij(6 =) < Ei,j:lmij(l e

)
which is immediate from

v;t+e€
1+ ey,

)

(0=")"" <(

8. The Uniqueness, h = f

Denote g = f — h € Wy'" (B, IR"), P(t) = t"log™" (e + t). With the notation

of section 2, we have
(8.1) A(z,Df) =n"T AdjDf, |A(z,Df)| < Cu|Df|"!

(8.2) A(z, Dh) = n"T AdjDh, |A(z,Dh)| < C,|Dh|""
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The function M — A(z, M) is monotone in IR"*", i.e.
<A(IL’, Ml) - A(.’L’, Mg), M1 - M2>

and thus for every 0 < € < 1, we can write

0 < [ (A@.Df)— Az, Dh), |Df — Dh|"“(Df = Dh)) =
(8.3)
— 7 /B(Adef — AdjDh,|Df — Dh|=(Df — Dh))

Next we decompose the matrix field |[Dg| “Dg € L"*¢(B, IR™*") accord-

ing to the well known Hodge decomposition, see [IS1]. Precisely we can write
(8.4) |Dg|~*Dg = Dx + F
where x € W, ""(B, IR") and F is a divergence free matrix field in L"*(B, IR"*"),
since n +€ < 7.

The essence in this procedure lies in the estimate
(8.5) |Fllszs < Cocll Dyl

We then split the integral at (8.3) accordingly. As the Adjoint differential is

divergence free, the first term vanishes:
(8.6) / (AdjDf — AdjDh, Dx)dz = 0.
B

Indeed this certainly holds if x € C§°(B, IR"), see the identity (2.3). The case
when y € W, (B, IR™) follows by an approximation argument. For this we

take into account that
(8.7)  |AdjDf — AdjDh| < C,(IDf|"™" +|Dh|") € L7¥1(B)
Hence the first term vanishes.

The second term can be estimated as follows

[ (AdiDf ~ AGiDLF) < e, [ (DFI" + DRI F| <
B B

n—1 1—¢
n— n—ej| n—e

o | DS+ DRy | [ 1P
cne/B(|Df|n—f+ |Dh|"=)dx

IN

IN
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Letting € go to zero, we conclude
/ (A(z, Df) — A(z, Dh), Df — Dh) = 0.
B

Hence Df = Dh and f = h completing the proof of Theorem 1.

9. Proof of the removability theorem

A compact set E C R" is said to have zero L"log L™~ '-capacity if there

is a bounded open set €2 containing E such that
(9.1) inf/ V6| log™ (3 + [Vo|) = 0
Q

where the infimum is taken with respect to all functions ¢ € C§°(€2) which are

equal to 1 on some neighborhood of the set E.

There are many elementary properties of this capacity which follow as in
the classical setting for the more usual n—capacity. We will use the fact that a
set of zero L™ log L™ '-capacity has vanishing (n — 1)-dimensional measure; in
fact such a set is of Hausdorff dimension zero. It is easy to construct Cantor
sets that have capacity zero in our sense. A closed set has zero L™log L™ '~
capacity if and only if it can be written as the countable union of compact sets

of zero L™ log L™ '-capacity.

Proof. Since E has vanishing (n — 1)-dimensional measure, it suffices to
show that
(9.2) IDf| € L™log " Li,e(2).

Indeed, it then follows that f € W,2'(Q,R") and because J(z, f) > 0 a.e. we
further deduce from (9.2) and [16] that J(z, f) is locally integrable in €. Let
n € C§°(£2) be an arbitrary test function. We denote by E’ the intersection
of E with the support of 7. There exists a sequence of functions {¢;}32, such

that for each 7 we have
1. ¢j € 080(9)7
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2.0<¢; <1,

3. ¢; =1 on some neighborhood U; of E’,
4. lim; ;o ¢j(x) = 0 for almost all z € R”,
5. 1ty oo fo [V og" (3 + [V ]) = 0

We set
(9.3) pj=(1—¢;)ne C°(Q\ E')

The distortion inequality |Df|* < K.J and the inequality
ab < alog(l+a)+ e’ — 1,

for non-negative real numbers, imply

[ DfI" < Klp;|"J
log(3+ |@;DfI") = log(3 + |¢;]"J)
1
(9.4) < 3 [|;]" T + exp(AK)]

We now integrate both sides of this inequality over €2 and use integration by
parts on the term containing the Jacobian determinant. Here we rely on a

result from [16] according to which

/ Sdfy A o Adf, dz = —/ Fidé A Adf, do
G G

whenever ¢ € C$°(G) and f € W2 (G, R") is a Sobolev mapping with |Df| €

L™ log™" Lyp.(G) and J(x, f) > 0 a.e. Notice that the support of ¢; does not

intersect E. We so obtain

|90'Df|n -1 -1
e < 0 [ el Vel A DT

(9.5) + / M@ g
Q

Next we use the inequality

b’l’L

n n—1
log(3+b”)+a og" (34 a)

(9.6) ab"~' < C(n) [
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for non—negative numbers a and b. This yields the inequality

/ lo;Df|"
0 1083 + 17, DI T")
lo;Df|"
< CO) [ et 1a DT

+ C(n)/g|v¢j|n|f|n10gn_1(3+|f||Vg0j|)+/QeAK(’”).

If ) is sufficiently large, then the first part of the right hand side is absorbed

in the left and we have

/ lp; Df"
0 log(3+ [o;DfT")
O7) < ) [19e "l log B+ IFITesl) + [ X0,

Recall that | f| is assumed bounded in €2 and also that V; = (1—¢;)Vn—
nV¢;. It follows from the conditions defining ¢; that we can pass to the limit

(as j — 00) in equation (9.7) to obtain

)\/Q log(3 + [nD f|) < C(n) /Q V0" f|log(3 + |f||Vn]) + /Qe ,

so that |Df| € L"log™" L(G) for G any compact subset of © on which n

does not vanish. Since n € C§°(2) was arbitrary, we conclude that |Df| €
L™log™" L(G) for any compact subset of . This then proves the removability

theorem.

10. The distortion K in exp(Q2)

Let us denote with exp(Q2) the closure of L*°(Q2) in the space EX P(f).
In [3] it is proven that, for g € EX P(Q)

distgxp(g, L>) = inf{u >0 ][ e‘g(f)‘dx < oo}
Q

and this implies immediately that g € exp(Q) iff
][ MDD dr < oo for anyA > 0.
Q

Combining with our Theorem 1 we conclude that if K € exp(Q2) then locally
|Df| € L™log™ L for every «.
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