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1. Introduction

Recently systematic studies of mappings of �nite distortion have emerged in

the geometric function theory. The connection with deformations of elastic

bodies in the theory of nonlinear elasticity is perhaps a primary motivation

for such studies. The regularity properties of these mappings and solutions of

the associated PDEs are the basic theme in [1], [2], [4], [10], [11], [13], [15],

[18], [20], [21], [25], [26], [27], [29]. Those papers proved rather clearly that the

class of mappings with exponentially integrable distortion function is optimal

in many respects. Other related works on mappings with �nite distortion are

[12], [23], [24], [9], [5], [6], [14], [19], [22], [28]. In [10] the authors established,

in even dimensions, improved regularity under the a priori assumption that

the mappings in question have integrable Jacobian determinants. Although
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they did suspect that the results obtained in [10] and [1] remain valid in all

dimensions, there were quite signi�cant obstacles to overcome. In this paper we

continue this theme, re�ning and extending this earlier work to all dimensions.

Let 
 be an open subset of IRn. We shall consider mappings f : 
! IR
n

in the Sobolev class W
1;1
loc (
; IR

n). Thus the di�erential matrix Df(x) 2 IR
n�n

is de�ned at almost every point x 2 
.

De�nition 1. A mapping f 2 W
1;1
loc (
; IR

n) is said to have �nite distortion if:

i) The Jacobian determinant J(x; f) = detDf(x) is locally integrable.

ii) There is a measurable function K = K(x) � 1, �nite almost every-

where, such that

jjDf(x)jjn � K(x)J(x; f):(1)

Note that the operator norm of a matrix M is being used here, jjM jj =

maxfjM�j; j�j = 1g. If f has �nite distortion, then (1) holds for the function

K that is de�ned to take the value 1 when either J(x; f) = 0 or Df(x) does

not exist and the value jjDf(x)jjn=J(x; f) otherwise. We call this function the

distortion function of f:

Every mapping of �nite distortion solves a nonlinear system of �rst order

PDEs, the so-called Beltrami system. This in turn gives rise to a degenerate

elliptic equation of the second order; an analogue of the familiar n-harmonic

equation. Our main idea is to approximate these second order equations by

more regular ones. The solutions of the regular equations approximate our

mapping f . We then exploit a result of [15] which provides a priori estimates

for the solutions of the regular equations. As a �nal step we show that f

coincides with the weak limit of the regular solutions. More importantly, the

estimates are preserved in passing to the limit.

Theorem 1. For each dimension n � 2 and � � 0 there exists ��(n) � 1 such

that if f : 
! IR
n has �nite distortion and the distortion function K = K(x)
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of f satis�es Z


e
�K(x)

dx <1

for some � � ��(n), thenZ
B

jDf(x)jn log�
 
1 +

jDf(x)j

jDf jB

!
dx � C�(n)

Z
2B
J(x; f)dx

for all concentric balls B � 2B � 
. Here jDf jB stands for the integral average

of jDf j over the ball B.

The assumption in Theorem 1 on the size of � is necessary as is easily

seen by considering the mapping f(x) = x

jxj logs(1=jxj)
; s > 0; for x 2 B(0; 1=2);

that has �nite and exponentially integrable distortion.

As a consequence of Theorem 1 and our earlier work in [1], [10] we now

obtain the following modulus of continuity and volume distortion estimates for

mappings of exponentially integrable distortion. These estimates extend the

corresponding results by G. David [4] in the complex plane.

Corollary 1. For each dimension n � 2 and s � 0 there exists �s(n) � 1 such

that if the distortion function K = K(x) of a mapping f : 
 ! Rn of �nite

distortion satis�es Z


e
�K(x)

dx <1

for some � � �s(n); then given B(a; 2R) � 
 there is a constant C so that

jf(x)� f(y)j �
C

logs( 2R
jx�yj

)
(2)

whenever x; y 2 B(a; R) and

jf(E)j �
C

logs(2 + 1
jEj
)

(3)

whenever E � B(a; R) is compact.

We close the introduction with a result that extends a removable sin-

gularity theorem from [10], originally only given in even dimensions, to all

dimensions. For the concept of the capacity referred to in the statement see

Section 9.
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Theorem 2. There exists a number �(n) > 0 with the following properties.

Let E � Rn be a closed set of zero Ln logn�1 L{capacity and let

f : 
 n E ! Rn(4)

be a bounded mapping of �nite distortion and assume that the distortion func-

tion K satis�es Z

nE

e
�K(x)

dx <1

for some � � �(n): Then f extends to a mapping of �nite distortion in 
 with

exponentially integrable distortion function.

2. Algebraic Preliminaries

Here we recall some commonly used formulas.

Recall that the adjoint Jacobian matrix Adj Df(x) 2 IR
n�n satis�es the rule

D
t
f(x)Adj Df(x) = J(x; f)I ;(2.1)

where Dt
f(x) denotes the transpose to Df(x): the entries of Adj Df(x) are

the cofactors of Df(x). In particular

kAdj Df(x)k � kDf(x)kn�1 :(2.2)

It is well known that the adjoint di�erential matrix is divergence free

div [Adj Df(x)] = 0 :

Precisely, this means that

Z


hAdj Df(x); D'j(x)idx = 0(2.3)

whenever f 2 W
1;n�1
loc (
; IRn) and 'j 2 C

1

0 (
; IRn). Here and in the sequel we

use the inner product of matrices de�ned by

hX; Y i = Trace X t
Y :
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This inner product gives rise to another norm in IRn�n, called Hilbert{Schmidt

norm and denoted by jM j2 = Trace M t
M .

To every mapping f of �nite distortion there corresponds the Beltrami equation

D
t
f(x)Df(x) = J(x; f)

2
nG(x) ;(2.4)

where G(x) is the distortion tensor of f : a symmetric, positive de�nite matrix

of determinant 1. Here G is determined by (2.4) when J(x; f) > 0 and we set

G = I otherwise.

Associated with G(x) is the energy integral

E [h] =

Z


E(x; Dh)dx ;

where E(x;M) = hMG
�1(x);Mi

n

2 . It is the essence of the analytic theory

of mappings with �nite distortion that these mappings minimize the energy

functional, subject to a Dirichlet boundary condition. The Euler{Lagrange

equation takes the form

div A(x; Df) = 0 ;

where A : 
� IR
n�n ! IR

n�n is given by

A(x;M) = hMG
�1(x); Mi

n�2
2 MG

�1(x) :

The energy integrand takes the form

E(x;M) = hA(x;M);Mi :

Notice that

E(x;M) � n
n

2 det(M)

for any M and that for M = Df(x) and f satisfying the Beltrami equation we

have

E(x;Df) = n
n

2 J(x; f) :

In particular, our mapping f has �nite energy, since J(x; f) is assumed to

be integrable. We shall make use of the following elementary, though quite
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involved inequality:

1

n
jM j

n +
n� 1

n
jA(x;M)j

n

n�1 � K(x)E(x;M)(2.5)

for M 2 IR
n�n.

Using the terminology of the next section, this inequality tells us that

a mapping of distortion K = K(x) gives rise to an n-harmonic couple � =

[A(x;Df); Df ].

3. p-Harmonic couples

A pair � = [A;M ] of matrix �elds A(x) and M(x) such that

div A(x) = 0

M(x) = DF ; F 2 W
1;1
loc (
; IR

n)

is said to be p-harmonic, 1 < p <1 of distortion K = K(x) � 1, if

1

p
jM(x)jp +

p� 1

p
jA(x)j

p

p�1 � K(x)hA(x);M(x)i :(3.1)

The energy of � is de�ned by

E [�] =

Z


hA(x);M(x)idx :

In what follows we shall assume that this integral converges. We will be inter-

ested in the distortion K of the exponential class EXP(
). Precisely we shall

assume that Z


e
�K(x)

dx <1(3.2)

for a certain � > 0.

Under this condition, the distortion inequality (3.1) implies

M 2 L
p log�1 L(
) and A 2 L

p

p�1 log�1 L(
) ;
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by H�older's inequality in Orlicz spaces.

Recall from the previous section that, for a given mapping f : 
 ! IR
n of

exponentially integrable distortion, the pair

� = [A(x;Df); Df(x)]

is an n-harmonic couple of the same �nite distortion K = K(x) as in (1.1).

This paper relies on the following a priori estimate concerning integrability

properties of p-harmonic couples.

Theorem 2. Let [A;M ] be a p-harmonic couple. For every integer m � 0

there exists �p(m;n) � 1 such that if (3.2) holds with some � � �p(m;n) and


0 � 
 is relatively compact and M 2 L
p logm L(
0); then

kMk
p

Lp logm L(
0) � Cp(

0)

Z


hA(x);M(x)idx :(3.3)

Here the dependence on 
0 is only in terms of d(
0; @
):

Let us emphasize explicitly here that this result requires the left hand

side to be �nite. The proof of Estimate (3.3) can be found in [15]. As a matter

of fact we are going to use it for the exponent p close to n. More speci�cally,

we always assume that

n�
1

2
� p � n :(3.4)

Remark 3.1

It is important to realize that in this range of exponents both �p(m;n) and

Cp(

0) can be made independent of p.

4. The Approximation

First we approximate the distortion tensor G = G(x) by uniformly elliptic ones

G�(x) =
G(x) + �I

I+ �G(x)
; 0 � � � 1 :(4.1)
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Here the quotient notation simply means that we multiply the matrix G + �I

by the inverse of I+�G. We believe that in what follows the analogous symbols

are self-explanatory. In particular we have

G
�1
�
(x) =

G
�1(x) + �I

I+ �G�1(x)
:(4.2)

To ensure convergence of the integrals we will need to work with exponents

slightly below the dimension. Then we set p = n � �, where 0 < � �
1

2
. Ac-

cordingly, we introduce the perturbation

E�(x;M) = hA�(x;M);Mi = hMG
�1
�
(x);Mi

n��

2(4.3)

of the energy integrand, where

A�(x;M) := hMG
�1
�
(x);Mi

p�2
2 MG

�1
�
(x)(4.4)

for x 2 
 and M 2 IR
n�n.

It is a matter of elementary analysis of the eigenvalues of G�(x) that we have

1

p
jM j

p +
p� 1

p
jA�(x;M)j

p

p�1 � K(x)E�(x;M)(4.5)

with the same distortion function K = K(x) as in (3.1).

Next we �x a ball B compactly contained in 
 and consider the minimizer

h = h� : B ! IR
n of the p-harmonic variational integral

Ep[h] =

Z
B

E�(x;Dh)dx :(4.6)

This minimizer is taken under to the Dirichlet condition

h 2 f +W
1;n��
0 (B; IRn) :

This makes sense because f 2 W
1;n��(B; IRn) for each � > 0; see the discussion

in the following section. The existence and uniqueness of h� are easily estab-

lished by the usual convexity arguments. The Euler{Lagrange equation for h�

reads as

div A�(x;Dh�) = 0 :
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Because the equation is uniformly elliptic, the minimizer h� in fact belongs to

W
1;q
loc
(B; IRn) for some q > n � e; see e.g. [8]. We deduce from here that the

pair �� = [A�(x;Dh�); Dh�)] is a p-harmonic couple of distortion K, that is

1

p
jDh�(x)j

p +
p� 1

p
jA�(x;Dh�)j

p

p�1 � K(x)E�(x;Dh�)(4.7)

for almost every x 2 B.

As K satis�es the condition (3.2) with � = �(m;n) suÆciently large, Theorem

2 applies to each h�:

kDh�k
n��

Ln�� logm L(B0) � Cm;n(B
0)

Z
B

E�(x;Dh�)dx(4.8)

for every relatively compact subset B0 � B. Note that the constant Cm;n(B
0)

is independent of �, see Remark 3.1.

Our nearest goal is to show that the mappings h� : B ! IR
n converge to

some h : B ! IR
n weakly in every space W 1;s(B0

; IR
n), where 1 � s < n and

B
0 is an arbitrary compact subdomain of B. We prove this fact in a few steps.

Let us begin with some integrability properties of the Dirichlet data.

5. jDf j belongs to L
n log�1L(
)

By the de�nition of mappings of �nite distortion, the Jacobian determinant

J(x; f) is (locally) integrable on 
; regarding Theorem 1 we may assume that

the integrability is global. On the other hand, the distortion function K lies

in EXP(
). We �nd, by using H�older's inequality in Orlicz spaces, that

K(x)J(x; f) 2 L log�1 L(
) :

This, in view of the distortion inequality (2.5), implies

jDf j 2 L
n log�1 L(
) ;(5.1)

as claimed.
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In particular, we extract two elementary consequences from this fact.

First

f 2 W
1;n��(
; IRn) for every 0 < � � 1 :

Second, it is known [16] that (5.1) implies that f belongs to the grand Sobolev

space W 1;n)(
; IRn), that is

lim
�!0

�

Z


jDf(x)jn�� dx = 0 :(5.2)

We also observe the following upper semicontinuity formula

lim sup
�!0

Z


E�(x;Df) dx �(5.3)

�

Z


E(x;Df)dx = n

n

2

Z


J(x; f)dx :

This is immediate from the elementary pointwise inequality

E�(x;M) �

h
hMG

�1(x);Mi+ �jM j
2
in��

2
�(5.4)

� (1 + Æ)hMG
�1(x);Mi

n��

2 + �CÆjM j
n��

;

where Æ can be any positive parameter whereas the constant CÆ can be quite

large. Applying this inequality to M = Df , and integrating we obtain

lim sup
�!0

Z


E�(x;Df)dx � (1 + Æ)

Z


E(x;Df)dx

+CÆ lim
�!0

�

Z


jDf j

n��
dx :

This last limit equals zero and we conclude with inequality (5.3).

6. A Weakly Converging Sequence fhjg

We show here �rst that there exist positive numbers �j converging to

zero such that the sequence of mappings hj = h�j (x) converges to a mapping

h : B ! IR
n, weakly in every space W 1;s(B0) with 1 � s < n and relatively

compact subdomains B0 � B.
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Indeed, if we �x B0 �� B, then by the estimate (4.8) we obtainZ
B0

jDh�j
n��

dx � kDh�k
n��

Ln�� logm(B0) �(6.1)

� Cm;n(B
0)

Z
B

E�(x;Dh�)dx(6.2)

� Cm;n(B
0)

Z
B

E�(x;Df)dx �(6.3)

� 2Cm;n(B
0)

Z


E(x;Df) dx

provided � is suÆciently small, depending of course on B0, by (5.3).

Finally, a routine diagonal selection method gives the sequence fhjg.

We next show that the limit mapping h : B ! IR
n actually belongs to

W
1;p
loc (B; IR

n), with P (t) = t
n logm(e + t) and satis�es

kDhk
n

Ln logm L(B0) � Cm;n(B
0)

Z


E(x;Df) dx :(6.4)

This estimate follows from the calculation above. Indeed, for suÆciently large

j, with �xed B
0, we can write

kDhjk
n��j

L
n��j logm L(B0)

� 2Cm;n(B
0)

Z


E(x;Df)dx :

Inequality (6.4) follows by simply applying the lower semicontinuity of the

norms k : kLn�Æ logm L with Æ arbitrarily small.

To establish Theorem 1 we need only show that

h(x) = f(x) for a.e. x 2 
 :

This fact still requires some work due to insuÆcient regularity of both h and

f . We proceed by �rst showing that:

7. The Limit Mapping Has Finite Energy

In fact we shall see that h and f have the same energy on the ball B :Z
B

E(x;Dh)dx =

Z
B

E(x;Df)dx =

= n
n

2

Z
B

J(x; f)dx:

(7.1)
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As h� is a minimizer of the functional (4.6), we have

Z
B

E�(x;Dh�)dx �

Z
B

E�(x;Df)dx:

Fix an arbitrary compact set B
0

� B and numbers Æ > 0 and 1 � s < n. We

use the algebraic inequality

hM(ÆI +G)�1;Mi � hMG
�1
�
;Mi(7.2)

for 0 � � � Æ, whose proof will be given at the end of this section. Thus

Z
B
0
hDh(ÆI +G)�1; Dhi

s

2dx � lim
j!1

Z
B
0
hDhj(ÆI +G)�1; Dhji

s

2dx

� lim
j!1

Z
B

hDhjG
�1
�j
; Dhji

s

2dx

� lim
j!1

jBj

n��j�s

n��j

�Z
B

hDhjG
�1
�j
; Dhji

n��j

2 dx

� s

n��j

= jBj
n�s

n lim
j!1

�Z
B

E�j
(x;Dhj)dx

� s

n��j

� jBj
n�s

n lim
j!1

�Z
B

E�j
(x;Df)dx

� s

n��j

= jBj
n�s

n

�Z
B

E(x;Df)dx

� s
n

:

Letting s tend to n yields

Z
B
0
hDh(ÆI +G)�1; Dhi

n

2 �

Z
B

E(x;Df)dx:

Next we may pass to the limit as Æ ! 0. Since B
0

was an arbitrary compact

set in B, we conclude with the inequality

Z
B

E(x;Dh)dx �

Z
B

E(x;Df)dx:(7.3)

The distortion inequality together with the hypothesis that K lies in the ex-

ponential class give

jDhj 2 L
n log�1 L(B):(7.4)

The proof of the reverse inequality substantially relies on the fact that f solves

the Beltrami equation (2.4). This equation allows us to replace the integrand
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E(x;Df) by the Jacobian determinant (null Lagrangian). Precisely, we can

write Z
B

E(x;Df)dx = n
n

2

Z
B

J(x; f)dx =

= n
n

2 lim
�!0

Z
B

jDf(x)j��J(x; f)dx =

= n
n

2 lim
�!0

Z
B

"
J(x; f)

jDf(x)j�
�

J(x; h)

jDh(x)j�

#
dx

+ n
n

2 lim sup
�!0

Z
B

J(x; h)

jDh(x)j�
dx

(7.5)

At this point we make use of a deep result concerning Jacobians [7], namely�����
Z
B

"
J(x; f)

jDf(x)j�
�

J(x; h)

jDh(x)j�

#
dx

����� � C�

Z
B

h
jDf(x)jn�� + jDh(x)jn��

i
dx(7.6)

The estimate holds for arbitrary mappings f; h in W
1;n��(B; IRn) provided

these mappings coincide on @B. Also recall that for the functions jDf(x)j and

jDh(x)j in the Orlicz space Ln log�1 L(B), the right hand side tends to zero as

�! 0. Hence we haveZ
B

E(x;Df)dx = n
n

2 lim
�!0

Z
B

J(x; h)

jDh(x)j�
dx �

� lim
�!0

Z
B

E(x;Dh)

jDh(x)j�
dx =

Z
B

E(x;Dh)dx;

(7.7)

by Monotone Convergence Theorem. It follows from the previous estimate that

both f and h have the same energy.

Consequently we must have equality in the middle step of this calcula-

tions, which happens only if

n
n

2 J(x; h) = E(x;Dh) = hDhG
�1(x); Dhi

n

2 :(7.8)

We recall that detG(x) � 1. An analysis of Hadamard's inequality for deter-

minants reveals that in order to have equality at (7:8), the Jacobian matrix

Dh(x) must satisfy the same Beltrami equation as Df does:

D
t
h(x)Dh(x) = J(x; h)

2
nG(x):(7.9)
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In this way we have arrived at two solutions of the same �rst order PDE. These

solutions coincide on @B. Our last step will be to prove that h = f .

Proof of (7.2).

We begin by diagonalizing G :

G = O
t�O

where � = diag(
1; � � � ; 
n): We see that

(ÆI +G)�1 = O
t(ÆI + �)�1

and

G
�1
�

= O
t(
� + �I

I + ��
)�1:

Inequality (7.2) thus reduces to showing that

hM
0(ÆI +G)�1;M 0

i � hM
0(
� + �I

I + ��
)�1;M 0

i

for M 0 = [mij] =MO
t
: This inequality reads as

�n

i;j=1m
2
ij
(Æ = 
j)

�1
� �2

i;j=1m
2
ij
(

j + �

1 + �
j
)�1;

which is immediate from

(Æ = 
j)
�1
� (


j + �

1 + �
j
)�1:

8. The Uniqueness, h = f

Denote g = f � h 2 W
1;P
0 (B; IRn), P (t) = t

n log�1(e + t). With the notation

of section 2, we have

A(x;Df) = n
n�2
2 AdjDf; jA(x;Df)j � CnjDf j

n�1(8.1)

A(x;Dh) = n
n�2
2 AdjDh; jA(x;Dh)j � CnjDhj

n�1(8.2)
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The function M ! A(x;M) is monotone in IRn�n, i.e.

hA(x;M1)� A(x;M2);M1 �M2i

and thus for every 0 < � � 1, we can write

0 �

Z
B

hA(x;Df)� A(x;Dh); jDf �Dhj
��(Df �Dh)i =

= n
n�2
2

Z
B

hAdjDf � AdjDh; jDf �Dhj
��(Df �Dh)i

(8.3)

Next we decompose the matrix �eld jDgj��Dg 2 L
n+�(B; IRn�n) accord-

ing to the well known Hodge decomposition, see [IS1]. Precisely we can write

jDgj
��
Dg = D�+ F(8.4)

where � 2 W
1;n+�
0 (B; IRn) and F is a divergence free matrix �eld in Ln+�(B; IRn�n),

since n+ � <
n

1��
.

The essence in this procedure lies in the estimate

kFkn��

1��
� Cn�kDgk

1��
n��

:(8.5)

We then split the integral at (8:3) accordingly. As the Adjoint di�erential is

divergence free, the �rst term vanishes:Z
B

hAdjDf � AdjDh;D�idx = 0:(8.6)

Indeed this certainly holds if � 2 C
1
0 (B; IRn), see the identity (2.3). The case

when � 2 W
1;n+�
0 (B; IRn) follows by an approximation argument. For this we

take into account that

jAdjDf � AdjDhj � Cn(jDf j
n�1 + jDhj

n�1) 2 L
n+�

n+��1 (B)(8.7)

Hence the �rst term vanishes.

The second term can be estimated as followsZ
B

hAdjDf � AdjDh; F i � cn

Z
B

(jDf jn�1 + jDhj
n�1)jF j �

� cn

�Z
B

(jDf jn�� + jDhj
n��)dx

�n�1
n��

�Z
B

jF j
n��

1��

� 1��
n��

� cn�

Z
B

(jDf jn�� + jDhj
n��)dx
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Letting � go to zero, we conclude

Z
B

hA(x;Df)� A(x;Dh); Df �Dhi = 0:

Hence Df = Dh and f = h completing the proof of Theorem 1.

9. Proof of the removability theorem

A compact set E � Rn is said to have zero Ln logLn�1{capacity if there

is a bounded open set 
 containing E such that

inf

Z


jr�j

n logn�1(3 + jr�j) = 0(9.1)

where the in�mum is taken with respect to all functions � 2 C
1

0 (
) which are

equal to 1 on some neighborhood of the set E.

There are many elementary properties of this capacity which follow as in

the classical setting for the more usual n{capacity. We will use the fact that a

set of zero Ln logLn�1{capacity has vanishing (n� 1)-dimensional measure; in

fact such a set is of Hausdor� dimension zero. It is easy to construct Cantor

sets that have capacity zero in our sense. A closed set has zero L
n logLn�1{

capacity if and only if it can be written as the countable union of compact sets

of zero Ln logLn�1{capacity.

Proof. Since E has vanishing (n� 1)-dimensional measure, it suÆces to

show that

jDf j 2 L
n log�1 Lloc(
):(9.2)

Indeed, it then follows that f 2 W
1;1
loc
(
;Rn) and because J(x; f) � 0 a.e. we

further deduce from (9.2) and [16] that J(x; f) is locally integrable in 
: Let

� 2 C
1

0 (
) be an arbitrary test function. We denote by E
0 the intersection

of E with the support of �. There exists a sequence of functions f�jg
1

j=1 such

that for each j we have

1. �j 2 C
1

0 (
),

16



2. 0 � �j � 1,

3. �j = 1 on some neighborhood Uj of E
0,

4. limj!1 �j(x) = 0 for almost all x 2 Rn,

5. limj!1

R

 jr�jj

n logn�1(3 + jr�jj) = 0

We set

'j = (1� �j)� 2 C
1

0 (
 nE
0)(9.3)

The distortion inequality jDf jn � KJ and the inequality

ab � a log(1 + a) + e
b
� 1;

for non-negative real numbers, imply

j'jDf j
n

log(3 + j'jDf j
n)

�
Kj'jj

n
J

log(3 + j'jj
nJ)

�
1

�
[j'jj

n
J + exp(�K)](9.4)

We now integrate both sides of this inequality over 
 and use integration by

parts on the term containing the Jacobian determinant. Here we rely on a

result from [16] according to which

Z
G

�df1 ^ ::: ^ dfn dx = �

Z
G

f1d� ^ ::: ^ dfn dx

whenever � 2 C
1

0 (G) and f 2 W
1;1
loc
(G;Rn) is a Sobolev mapping with jDf j 2

L
n log�1 Lloc(G) and J(x; f) � 0 a.e. Notice that the support of 'j does not

intersect E: We so obtain

�

Z



j'jDf j
n

log(3 + j'jDf j
n)

� n

Z


j'jj

n�1
jr'jjjf jjDf j

n�1

+

Z


e
�K(x)

dx(9.5)

Next we use the inequality

ab
n�1

� C(n)

"
b
n

log(3 + bn)
+ a

n logn�1(3 + a)

#
(9.6)
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for non{negative numbers a and b: This yields the inequality

�

Z



j'jDf j
n

log(3 + j'jDf j
n)

� C(n)

Z



j'jDf j
n

log(3 + j'jDf j
n)

+ C(n)

Z


jr'jj

n
jf j

n logn�1(3 + jf jjr'jj) +

Z


e
�K(x)

:

If � is suÆciently large, then the �rst part of the right hand side is absorbed

in the left and we have

�

Z



j'jDf j
n

log(3 + j'jDf j
n)

� C(n)

Z


jr'jj

n
jf j

n logn�1(3 + jf jjr'jj) +

Z


e
�K(x)

:(9.7)

Recall that jf j is assumed bounded in 
 and also thatr'j = (1��j)r��

�r�j. It follows from the conditions de�ning �j that we can pass to the limit

(as j !1) in equation (9.7) to obtain

�

Z



j�Df jn

log(3 + j�Df jn)
� C(n)

Z


jr�j

n
jf j log(3 + jf jjr�j) +

Z


e
�K(x)

;

so that jDf j 2 L
n log�1 L(G) for G any compact subset of 
 on which �

does not vanish. Since � 2 C
1

0 (
) was arbitrary, we conclude that jDf j 2

L
n log�1 L(G) for any compact subset of 
: This then proves the removability

theorem.

10. The distortion K in exp(
)

Let us denote with exp(
) the closure of L1(
) in the space EXP (
).

In [3] it is proven that, for g 2 EXP (
)

distEXP (g; L
1) = inf

�
� > o :

Z


e
jg(x)j
� dx <1

�

and this implies immediately that g 2 exp(
) i�Z


e
�g(x)

dx <1 for any� > 0:

Combining with our Theorem 1 we conclude that if K 2 exp(
) then locally

jDf j 2 L
n log� L for every �.
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